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Abstract. In South Asia, biomass is burned for energy and waste disposal, producing brown carbon (BrC)
aerosols whose climatic impacts are highly uncertain. To assess these impacts, a real-world understanding of
BrC’s physio-optical properties is essential. For this region, the order-of-magnitude variability in BrC’s spec-
tral refractive index as a function of particle volatility distribution is poorly understood. This leads to over-
simplified model parameterization and subsequent uncertainty in regional radiative forcing. Here we used the
field-collected aerosol samples from major anthropogenic biomass activities to examine the methanol-soluble
BrC optical properties. We show a strong relation between the absorption strength, wavelength dependence, and
thermo-optical fractions of carbonaceous aerosols. Our observations show strongly absorbing BrC near the Hi-
malayan foothills that may accelerate glacier melt, further highlighting the limitations of climate models where
variable BrC properties are not considered. These findings provide crucial inputs for refining climate models and
developing effective regional strategies to mitigate BrC emissions.

1 Introduction

Carbonaceous aerosols, such as black and organic carbon,
make up most fine particulate matter (PM2.5) emissions glob-
ally (McDuffie et al., 2020; Roy et al., 2023; Kurokawa and
Ohara, 2020; Crippa et al., 2018) and∼ 40 % over South Asia
(Tibrewal et al., 2024; Pandey et al., 2014; Sadavarte et al.,
2019). Anthropogenic biomass usage for residential cooking
and heating (Pandey et al., 2014; Habib et al., 2023; Navinya
et al., 2023), residue burning for agricultural waste disposal
(Kapoor et al., 2023b; Azhar et al., 2019), and biomass-fired
brick kilns (Weyant et al., 2014; Tibrewal et al., 2023) are
the common sources of these carbonaceous aerosols across
South Asia (Tibrewal et al., 2024; Pandey et al., 2014; Sa-

davarte et al., 2019; Ohara et al., 2007) and many other de-
veloping countries (Bonjour et al., 2013; Yevich and Lo-
gan, 2003; McDuffie et al., 2020). These aerosols perturb
the Earth’s energy balance, depending on their mixing state,
size distribution, wavelength dependence of optical proper-
ties, and absorption strength (Zhang et al., 2020; Neyestani
and Saleh, 2022; Brown et al., 2018; Arola et al., 2015; Bond
and Bergstrom, 2006). However, the extent of this perturba-
tion remains uncertain (Szopa et al., 2021; Gliß et al., 2021).
Over the last 2 decades, extensive research has focused on the
climate impact of highly absorbing black carbon (BC) (Bond
et al., 2013). In contrast, the climate implications of light-
absorbing organic carbon (OC), termed brown carbon (BrC),
have received relatively little attention and are thus less cer-
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tain (Saleh et al., 2018; Brown et al., 2018; Saleh, 2020). The
chemical composition of BrC varies significantly, and con-
sequently its optical properties, as reported across previous
studies, span orders of magnitude in the imaginary refractive
index (k) values that determine its light-absorbing strength
(Chakrabarty et al., 2023; Choudhary et al., 2021, 2018,
2017; Dey et al., 2021; Kapoor et al., 2023a; Kirillova et al.,
2016; Rana et al., 2020; Rathod et al., 2017; Saleh et al.,
2018, 2014; Srinivas and Sarin, 2014). Previous studies have
often measured aged ambient BrC that is weakly absorb-
ing (kBrC,550 < 0.01) due to photobleaching (Sumlin et al.,
2017); hence some climate impact assessment studies have
regarded BrC as a weakly absorbing or non-absorbing parti-
cle (Lee et al., 2010; Sand et al., 2021; Zhang et al., 2020).
However, this underestimates the impact of freshly emitted
BrC that has high absorption strength (kBrC,550 > 0.1) and
resists photobleaching, resulting in an extended atmospheric
lifetime (Chakrabarty et al., 2023). Furthermore, the forma-
tion of light-absorbing secondary BrC and the enhancement
of BC absorption due to OC coating (Rastogi et al., 2021;
Bhowmik et al., 2024; Kapoor et al., 2022) add complexity
to radiative transfer models.

BrC has a wide range of absorption strengths; studies show
kBrC,550 varying from ∼ 0.007 (Islam et al., 2022) to ∼ 0.2
(Chakrabarty et al., 2023). In addition to the different meth-
ods used to derive BrC optical information, such variation
is associated with the different combustion conditions (Saleh
et al., 2018), aging of BrC (Sumlin et al., 2017; Dasari et al.,
2019; Romonosky et al., 2016; Chen et al., 2021), and sec-
ondary reactions (Wang et al., 2020; Kroll et al., 2007; Kroll
and Seinfeld, 2008; Hecobian et al., 2010). An experimen-
tal study explained that the progressive transformation of BC
precursors to BC results from different combustion condi-
tions, which create the BrC–BC light absorption continuum
(Saleh et al., 2018). This continuum shows an increase in the
absorption strength of carbonaceous aerosols that is associ-
ated with a decrease in wavelength dependence (w), solu-
bility, and volatility (Saleh, 2020). Recent studies have also
observed such a relationship but for a smaller range of kBrC
values (< 0.01) (Devaprasad et al., 2024; Luo et al., 2022).
However, information about real-world source-specific BrC
absorption and its position in the BrC–BC continuum is lack-
ing. Understanding this light absorption continuum along-
side carbonaceous aerosol emissions aids BrC parameteri-
zation in climate models (Zhang et al., 2020; Saleh et al.,
2014). Presently, because source-specific BrC information
is absent from emission inventories, many climate models
inadequately account for BrC. Studies have used the BrC-
to-BC ratio along with kBrC to understand its direct radia-
tive effect (Park et al., 2010; Feng et al., 2013). Further-
more, other studies (Zhang et al., 2020; Neyestani and Saleh,
2022; Brown et al., 2018) have employed BrC parameter-
ization schemes based on laboratory-generated data to ad-
dress the climate impact of BrC, but this approach might
not adequately represent real-world biomass burning condi-

tions (Saleh et al., 2014; Lu et al., 2015). Hence, regions with
high OC emissions and stronger BrC (S-BrC), also known as
dark BrC (kBrC,550 > 0.1), could have a high climate impact
caused by persistent BrC, which is possibly underestimated
in the absence of regional source-specific BrC data.

The recent Carbonaceous Aerosol Emissions, Source Ap-
portionment and Climate Impacts (COALESCE) field emis-
sion measurement campaigns and questionnaire surveys in
India (Navinya et al., 2023; Kapoor et al., 2023b; Tibre-
wal et al., 2023; Habib et al., 2023) have prepared a com-
prehensive inventory encompassing both formal (transporta-
tion, industries, and power generation) and informal (resi-
dential, agricultural residue burning, and brick production)
emission sectors (Venkataraman et al., 2020; Tibrewal et al.,
2024). The emission estimates show the substantial contribu-
tion of anthropogenic PM2.5 in India from biomass fuel burn-
ing practices for residential cooking and agricultural residue
burning (Kapoor et al., 2023b; Tibrewal et al., 2024; Habib
et al., 2023). Recent studies have highlighted considerable
biomass consumption for residential heating and brick pro-
duction (Tibrewal et al., 2023; Navinya et al., 2023). Figure 1
shows that 91 % of the OC emissions (3 Tgyr−1) over India
are from three sources: residential cooking (COOK), heating
(HEAT), and agricultural residue burning (AGRI), with most
emissions from the Indo-Gangetic Plain (∼ 50 %) (Tibrewal
et al., 2024). The unexplored climate impacts of OC emitted
from these biomass-based sources make the Indian subconti-
nent particularly prone to environmental challenges.

This study leverages samples of aerosol particle emissions
collected on filter substrates during the COALESCE field
campaign to evaluate BrC–BC light absorption continuum
behavior in real-world biomass burning emissions. Using a
UV–Vis spectrophotometer, we examine BrC derived from
major biomass fuel sources such as cooking, heating, agricul-
tural residue burning, and brick production. The study aims
to connect BrC with the thermo-optically resolved carbon
fractions to parameterize BrC absorption over South Asia.
Further, it endeavors to couple source-specific BrC proper-
ties with the BC-to-organic aerosol (OA) ratio to explore the
spatial variability in the absorption properties of BrC emitted
across India.

2 Data and methods

2.1 Data collection

A field-based emission measurement campaign (Fig. S2 in
the Supplement) was conducted from October 2021 to April
2022 in rural parts of Gujarat and Maharashtra, two west-
ern Indian states. These locations were selected based on
their representativeness of the fuels and devices commonly
used in South Asia based on previous studies (Navinya et al.,
2023; Kapoor et al., 2023b; Tibrewal et al., 2023; Habib
et al., 2023). The primary aim of this campaign was to cap-
ture physical, chemical, and optical information about the
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Figure 1. The spatial distribution of OC emissions
(Mgyr−1 per pixel) from three major sources – agricultural
residue burning (AGRI), residential cooking (COOK), and resi-
dential heating (HEAT) – covers ∼ 91 % of the total OC emissions
(3.3 Tgyr−1) over India. OC emissions are taken from the Car-
bonaceous Aerosol Emissions, Source Apportionment and Climate
Impacts (COALESCE) Speciated Multipollutant Generator for
India (SMoG-India) emission inventory for the year 2019 (Tibrewal
et al., 2024). Here, the pixel size is 5 km× 5 km. The pie chart
represents the shares of anthropogenic biomass burning sources
in the total OC emissions over India. Other sources (OTHR) of
OC include brick production, transportation, industries, and power
generation. Publisher’s remark: please note that the above figure
contains disputed territories.

emissions from biomass sources: agricultural residue burn-
ing, brick production from clamps, cooking, and heating.
The source emission sampling system, as described by Ku-
mari et al. (2024) and Venkataraman et al. (2020), con-
sists of a multi-arm inlet design adapted from Roden et
al. (2006) to function as an area plume sampler, positioned 1
to 1.5 m above the emission source (Fig. S2). The system
comprises eight arms that aspirate aerosols, which are then
combined in a mixing plenum to ensure representative sam-
pling of the smoke plume. Aerosols drawn through the inlet
pass through a 2.5 µm cutoff cyclone and are subsequently di-
vided into two streams for real-time and for time-integrated
filter-based measurements. Aerosols from the latter airstream
were collected on quartz filter substrates for offline labo-
ratory analysis over the entire duration of the experiment,
encompassing the ignition, flaming, and smoldering phases,
in order to obtain a sample representative of the complete
combustion cycle. The temperatures of the emitted plumes
were diluted by the surrounding air, reaching levels close
to the temperature of ambient air before entering the multi-
arm sampler. This ensured that the emissions had undergone

gas-to-particle partitioning, corresponding to the properties
of emissions used in climate models. In this study, we uti-
lized aerosol-laden quartz filter substrates from 14 different
fuel and source combinations (Table S1 in the Supplement) to
understand soluble BrC absorption (Mm−1

= 106 m−1) and
total OC concentration (µgm−3).

2.2 Estimation of BrC properties

We used 4.5 mL of methanol solvent and dissolved two
0.25 in. diameter punches of quartz filters in the solvent.
After 1 h of sonication, the extracted solvent was passed
through a 0.22 µm polytetrafluoroethylene membrane sy-
ringe filter (Fisherbrand™) to remove insoluble debris. The
absorption of this methanol-soluble OC (considered BrC ab-
sorption) was estimated using a UV–Vis spectrophotometer
(LAMBDA 35, PerkinElmer) with a working range of 300 to
900 nm and a spectral resolution of 1 nm. Equation (1) was
used to estimate the absorption coefficient at any given wave-
length (Chakrabarty et al., 2023; Sarkar et al., 2019; Satish
and Rastogi, 2019; Srinivas and Sarin, 2013, 2014; Bikkina
et al., 2020; Boreddy et al., 2021; Choudhary et al., 2017,
2018, 2021, 2022; Dasari et al., 2019; Dey et al., 2021; Kir-
illova et al., 2016; Mukherjee et al., 2020; Rajeev et al., 2022;
Rastogi et al., 2021; Rathod et al., 2017; Rana et al., 2020;
Shamjad et al., 2016, 2018).

babs,BrC,λ =
(Aλ−A700)×VExtract× ln(10)
VSampled×L× ffilter area

(1)

In Eq. (1), Aλ is absorbance at wavelength λ, VExtract is
the volume of solvent extract used (4.5 mL in this study),
VSampled is the volume of air sampled, ffilter area is the frac-
tion of filter area used for the analysis, and L is the optical
path length (0.01 m). Given that soluble BrC does not ab-
sorb at wavelengths of 700 nm and longer or, at best, absorbs
very little, the absorption at 700 nm (A700) was used to nor-
malize absorbance to account for signal drift within the in-
strument, which is a limitation of this method. In this study,
the estimated BrC only includes the methanol-soluble com-
ponent and may not fully represent total BrC, including its
insoluble components. The estimated BrC absorption could
be underestimated due to excluded insoluble BrC and tarball
structures, which possess high absorption strength (Corbin
et al., 2019; Chakrabarty et al., 2023, 2010). The underesti-
mation may be more pronounced as particle light absorption
strength increases, i.e., closer to the dark-BrC region, since
particle solubility is inversely proportional to light absorp-
tion strength (Saleh, 2020). In brief, Saleh (2020, and refer-
ences therein) reviewed and categorized different BrC classes
based on their volatility, using UV–Vis spectrometry, optical
closure (Aethalometer, cavity ring-down spectroscopy, and
photoacoustic spectroscopy), and electron energy loss spec-
troscopy techniques. While UV–Vis spectrometry misses out
insoluble particles, optical closure techniques consider ab-
sorption by particles regardless of their solubility. However,
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they have uncertainties associated with separating BrC light
absorption from the total aerosol light absorption. In this
study only two data points, observed marginally in the dark-
BrC region, might be affected.

Quartz filters were examined using a Magee Scientific
DRI multi-wavelength thermo-optical carbon analyzer with
the IMPROVE_A protocol to estimate the elemental car-
bon (EC) and organic carbon (OC) concentrations (Chow
et al., 2007). Thermo-optically resolved carbon fractions
(OC1, OC2, OC3, OC4, EC1, EC2, and EC3) were used af-
ter pyrolytic correction to reconstruct the total organic car-
bon and total elemental carbon fractions (Chow et al., 2007).
For the purpose of representation in Fig. 3, pyrolytic carbon
was assigned to OC4. These fractions are associated with
the volatility of the OC (Kapoor et al., 2023a; Shetty et al.,
2023; Tohidi et al., 2022; Vodička et al., 2015; Soleimanian
et al., 2019; Ma et al., 2016), as these OC fractions are mea-
sured under increasing temperature peaks (140, 280, 480,
and 580 °C) during thermo-optical analysis. Hence, OC1 ex-
hibits relatively high volatility compared to OC2, while OC2
is more volatile than OC3, and similarly, OC3 shows more
volatility than OC4. In this study, pyrolysis-corrected EC
was treated as a proxy for BC to facilitate the comparison
with other studies. The uncertainties associated with OC and
EC measurements are 5 % and 10 %, respectively (Cheng
et al., 2021; DRI Manual, 2015). Cheng et al. (2021) reported
an overall uncertainty of approximately 10 % for methanol-
soluble kBrC determined through UV–Vis spectrophotometry.
When accounting for the 5 % manufacturer-reported uncer-
tainty in OC concentration, the corresponding uncertainty in
the absorption coefficient is estimated to be around 10 %.

Furthermore, OC concentration and babs,BrC,λ were used
to calculate the mass absorption coefficient (MACBrC,λ). The
imaginary refractive index of BrC (kBrC,λ) was estimated
by considering the density (ρ) of freshly emitted OC to be
1500 kgm−3 (Liu et al., 2013; Shamjad et al., 2016), using
the following relation (Jennings et al., 1979):

kλ =
ρ× λ×MACλ

4π
. (2)

The same equation has been used in many previous
studies, some of which cover the same geographic re-
gion (Shamjad et al., 2018; Bikkina and Sarin, 2019;
Shamjad et al., 2016; Rana et al., 2020; Liu et al.,
2013; Zhang et al., 2020). In addition, an absorption
Ångström exponent (AAE) between 365 and 550 nm
(AAE365/550=− ln(babs,BrC,365/babs,BrC,550)/ ln(365/550))
was also estimated to understand the spectral dependence
of the BrC absorption coefficient. Similarly, w (AAE-1)
indicates the spectral dependence of the imaginary refractive
index between 365 nm (a commonly used wavelength for
studying BrC absorption) and 550 nm (the peak of solar
radiation intensity). In this study, we have used w and k
for ease of comparison with previous studies (Saleh et al.,

2014; Lu et al., 2015; Luo et al., 2022; Saleh et al., 2018).
However, AAE and MAC can also be used alternatively.

2.3 Spatial variation in BrC absorption

The relationship between fuel- and source-averaged kBrC,550
and the BC-to-OA ratio (kBrC,550= 0.0365(±0.006)×
(BC/OA)+ 0.0047(±0.0037), R2

= 0.93) was established
using field-collected fuel samples. Similarly, w was
also calculated as a function of the BC-to-OA ra-
tio (w = 5.355(±0.50)× exp(−0.428(±0.25)× (BC/OA);
R2
= 0.60). Here, OA was derived by multiplying OC by a

factor of 1.8, a methodology consistent with previous stud-
ies (Turpin and Lim, 2001; Chow et al., 2015; Navinya et al.,
2020; Provençal et al., 2017; Kumar et al., 2023) and aligned
with the OA density considered (Kuwata et al., 2012). Al-
though this factor does not impact the R squared (R2) of
the relationship, it facilitates comparisons with other stud-
ies that have utilized the BC-to-OA ratio to derive kBrC,550.
The spatial distribution of BC and OC emissions from the
SMoG-India emission inventory (Tibrewal et al., 2024) was
integrated into the equation, after converting OC into OA
using the same factor, to calculate the nationwide kBrC,550
and w for the major (∼ 90 %) OC-emitting sources: AGRI,
COOK, and HEAT. Additionally, we derived overall kBrC
and w values through a weighted averaging approach, in-
corporating OC emissions (Fig. S5 in the Supplement) as
weights along with source-specific information (Fig. S3 in
the Supplement). BRICK (brick production) was omitted be-
cause field-based samples were limited to clamp kilns and
not available for other major brick production technologies,
including Bull’s trench kilns and vertical shaft brick kilns
(Weyant et al., 2014; Tibrewal et al., 2024, 2023).

3 Results and discussion

3.1 BrC–BC absorption continuum

The measured kBrC,550 values varied from 0.0007 to 0.1199,
while w ranged from 7.52 to 1.00, highlighting the inverse
dependence of kBrC on w (Fig. 2). A previous study us-
ing synthetic fuels under different combustion conditions re-
ported a similar observation based on experimental measure-
ments (Saleh et al., 2018). Relative to the present study, dif-
ferent field-collected sources and fuels reflected real-world
variations in burning practices. An equation fitted to the
data (w = 0.1917/(kBrC,550+ 0.02886)) has an R2 value
of 0.58, and an extension of this curve with 95 % predic-
tion bounds overlaps the BC absorption region (k550= 0.6–
0.8 and w=∼ 0–0.2) (Bond and Bergstrom, 2006; Saleh
et al., 2018; Liu et al., 2018; Gyawali et al., 2013). The
range of kBrC,550 and w values observed in this study spans
three broad classes of BrC (weak, moderate, and strong) sug-
gested by Saleh (2020) for different combustion conditions.
Saleh (2020) suggests that while combustion processes emit
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particles containing a mix of different BrC classes, smolder-
ing biomass emissions are skewed more toward weakly ab-
sorbing BrC (W-BrC), while high-temperature biomass com-
bustion emissions are skewed more toward moderately and
strongly absorbing BrC (M-BrC and S-BrC). In the present
work, some data points, mainly from cooking and heating,
exhibit greater spectral variation (larger w) than that sug-
gested for M-BrC, while falling within its kBrC,550 range.
Changing combustion conditions were observed during sev-
eral experiments, where both flaming and smoldering com-
bustion phases occurred, while particles were collected as
a time-averaged filter sample. Here, the greater spectral de-
pendence in M-BrC measurements implies that these sam-
ples would exert stronger light absorption in the near-UV
range than typical M-BrC would. The thermo-optically re-
solved carbon fractions show a decline in the total OC frac-
tion, mainly in OC1 and OC2 (relatively high volatility frac-
tions), with increasing BrC absorption strength from weak to
moderate (Fig. 3a). A simultaneous increase in EC highlights
the dominance of BC absorption as the strength of BrC ab-
sorption increases, as also reported previously (Saleh et al.,
2014; Chakrabarty et al., 2023). Relationships between BC,
OC, and BrC properties, reported by Saleh et al. (2014), are
useful in parameterizing BrC absorption in radiative and cli-
mate models (Brown et al., 2018; Neyestani and Saleh, 2022;
Wang et al., 2018).

3.2 Source-specific BrC

We observed that the variability in source-specific BrC prop-
erties is larger within a source category than among different
source categories. Figure 3b shows no significant changes in
kBrC,550 among different source categories. However, there
are much larger differences among individual data points
in a source category because of varying fuels, meteorol-
ogy, and burning practices. The kBrC,550 means from agricul-
tural residue burning, brick production, cooking, and heat-
ing are 0.026 (± 0.035), 0.015 (± 0.026), 0.015 (± 0.003),
and 0.010 (± 0.006), respectively (Fig. 3b). A large vari-
ation in kBrC,550 was observed during agricultural residue
burning, with banana, which has a high moisture content
(Tock et al., 2010) showing a kBrC,550 of 0.008, and pi-
geon pea (an oilseed legume), which has a kBrC,550 of 0.082.
In comparison, kBrC,550 varies from 0.006 (final stage) to
0.022 (initial stage) during brick kiln operation and from
0.002 (crop residue) to 0.013 (firewood) during residen-
tial heating. This contrasts with cooking, where deliber-
ate efforts are made to ensure efficient burning of fuel for
meal preparation. Hence, BrC properties in cooking emis-
sions do not vary much (kBrC,550= 0.015± 0.001). Our study
observed kBrC,365 of ∼ 0.1 (± 0.01) for cooking, which is
higher than lab-measured values (0.014–0.054) for the same
fuels at 350 nm (Rathod et al., 2017). We observed that
MACBrC,365 stayed between 1.5–2.5 m2 g−1 for all source–
fuel combinations, except for pigeon pea residue burning

(MACBrC,365= 4.01 m2 g−1). The current findings are com-
parable with the MACBrC,365 value of 2 (± 0.5) m2 g−1 from
Indian air masses influenced by agricultural residue burning
(Satish et al., 2020). The values reported in our study are in
the upper range of ambient MACBrC,365 (0.62–2.3 m2 g−1)
reported previously over India (Sarkar et al., 2019; Sham-
jad et al., 2018; Satish et al., 2020; Rastogi et al., 2021;
Rana et al., 2020; Kirillova et al., 2016; Dey et al., 2021),
which could be due to photobleaching of ambient BrC that
decreases MAC. However, our estimation of MACBrC,365
aligns well with the previously reported source-specific val-
ues (1.09–2.53) (Pandey et al., 2020; Debbarma et al., 2024;
Rathod et al., 2017). The observed AAEBrC (∼ 5.23± 1.51,
range 2–8.5; see Table S1) is comparable with previous ob-
servations (∼ 5.31± 1.67, range 2.3–6.8) for biomass burn-
ing over India (Islam et al., 2022; Pandey et al., 2020; Rathod
et al., 2017; Satish et al., 2020). In agricultural residue burn-
ing, banana residue shows the lowest kBrC,550 (0.008) and
BC-to-OA ratio (0.030) (Table 2 in the Supplement). In con-
trast, pigeon pea residue burning has the highest kBrC,550
(0.082) and BC-to-OA ratio (2.054). A similar relationship
between kBrC,550 and BC-to-OA ratio has also been observed
in other source–fuel combinations and has been used to pa-
rameterize kBrC,550 and w (Fig. 4).

3.3 Parameterization of kBrC and w

We leveraged the significant correlation (p value < 0.01) be-
tween the BC-to-OA ratio and the BrC properties (kBrC,550,
R2
= 0.93; w, R2

= 0.60) to build a relationship between
these quantities. Despite the variety of fuel burning tech-
nologies used, such as traditional stoves, open residue burn-
ing, and brick clamps, kBrC,550 variability is explained
(R2
= 0.93) by the BC-to-OA ratio. We observed that

kBrC,550 varies linearly from 0.006 to 0.74 for BC-to-OA ra-
tios of 0 to 20 (Fig. 4a). Similarly, we explain w using the
BC-to-OA ratio to provide an approximation of the BrC ab-
sorption over the different wavelengths. We observed an ex-
ponential relation between w and the BC-to-OA ratio with
an R2 of 0.60 (w varies from 5 to ∼ 0 for BC-to-OA ratios
of 0 to 20, respectively) (Fig. 4b). Relatively to the present
studies, the relationship used in climate modeling studies
(Zhang et al., 2020; Neyestani and Saleh, 2022; Brown et al.,
2018) given by Saleh et al. (2014) would overestimate the
kBrC,550 over South Asia (Fig. S7 in the Supplement). In con-
trast, previous studies (Saleh et al., 2014; Lu et al., 2015;
Luo et al., 2022) underestimate the range of w values ob-
served in this study, which may result in an underestimation
of kBrC,365 (Fig. S7). Such an underestimation would propa-
gate uncertainties to radiative forcing calculations, especially
over South Asia.
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Figure 2. BrC–BC light absorption continuum on a semi-log scale, showing the wavelength dependence (w=AAE-1) of the imaginary
part of the refractive index (k550) versus the imaginary part of the refractive index at 550 nm (k550), w = 0.1917(±0.074)/(kBrC,550+
0.02886(±0.014)). Here, the BC region lies between k550= 0.6–0.8 and w= 0–0.2. The BrC classes are defined per Saleh (2020): strongly
absorbing BrC (S-BrC), moderately absorbing BrC (M-BrC), and weakly absorbing BrC (W-BrC). The arrow at the right indicates the
reduction in the solubility and volatility with an increase in k550 (Saleh, 2020). The shaded grey area represents the continuum reported by
previous studies (Saleh et al., 2014; Lu et al., 2015; Luo et al., 2022; Saleh et al., 2018), and the equations for the shaded area are given in
Sect. S1 and Fig. S1 in the Supplement. The right axis displays the range of wavelength dependencies for the three BrC classes.

Figure 3. (a) kBrC,550 distribution (right) and thermo-optically resolved carbon fractions (left) with varying BrC classes based on wavelength
dependence. Here, the strongly absorbing BrC (S-BrC), moderately absorbing BrC (M-BrC), and weakly absorbing BrC (W-BrC) ranges
are < 1.5, 1.5–4, and > 4, respectively, in terms of wavelength dependence (Saleh, 2020). (b) Source-specific kBrC,550 distribution (right)
and thermo-optically resolved carbon fractions (left). The distributions of violin plots show the kernel density. The arrow near the legend
indicates the reduction in the relative volatility from OC1 to OC4 (Ma et al., 2016). For the purpose of representation, pyrolytic carbon was
assigned to OC4.

3.4 Spatial differences in kBrC,365 and w

Several studies have reported ambient BrC absorption in the
South Asian region (Dey et al., 2023; Srinivas and Sarin,
2013, 2014; Bikkina et al., 2020; Boreddy et al., 2021;
Choudhary et al., 2017, 2018, 2022; Dasari et al., 2019; Dey
et al., 2021; Kirillova et al., 2016; Mukherjee et al., 2020;
Rajeev et al., 2022; Rastogi et al., 2021; Rana et al., 2020;
Shamjad et al., 2016, 2018), while most climate models con-
tinue to consider weakly absorbing BrC absorption (Sand
et al., 2021; Feng et al., 2013), regardless of sources and

combustion conditions. Feng et al. (2013) simulated global
BrC absorption using kBrC values that are 2- to 5-fold weaker
than those observed in our study, and they noted underes-
timation of BrC absorption efficiency over South Asia ow-
ing to the presence of strongly absorbing BrC. Other studies
(Brown et al., 2018; Zhang et al., 2020) have used kBrC,550
values (Saleh et al., 2014; Mcmeeking, 2008) that are 2-
to 3-fold higher than those observed in this study to simu-
late the global radiative impact of BrC. Hence, neglecting
the spatial variability in kBrC could lead to bias in under-
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Figure 4. (a) Mean KBrC,550 versus the BC-to-OA ratio (kBrC,550= 0.0365(±0.006)× (BC/OA)+ 0.0047(±0.0037); R2
= 0.93) and

(b) w versus the BC-to-OA ratio (w = 5.355(±0.50)× exp(−0.428(±0.25)× (BC/OA)); R2
= 0.60). Here, OA=OC× 1.8: the factor 1.8

is widely used to convert OC into OA (Turpin and Lim, 2001; Chow et al., 2015; Navinya et al., 2020; Provençal et al., 2017; Kumar et al.,
2023). The shaded grey area represents the relationship reported by previous studies (Saleh et al., 2014; Lu et al., 2015; Luo et al., 2022),
and the equations for the shaded area are given in Sects. S2 and S3 and Fig. S1). The right axis in (b) displays the ranges of wavelength
dependencies for the three BrC classes.

standing its radiative impact. Thus, we calculated emission-
weighted BrC optical properties across the Indian region to
demonstrate their spatial heterogeneity in this region. The
relationships shown in Fig. 4 were used to make a spatial
map of kBrC,550, kBrC,365, andw, with emission strength from
the COALESCE SMoG-India emission inventory (Tibrewal
et al., 2024). SMoG-India is a multi-sectoral, multi-pollutant
data set available at a 5 km grid resolution, developed under
the COALESCE network (Venkataraman et al., 2020), which
also facilitated the collection of samples used in the present
study.

Figure 1 shows the large OC emissions over the Indo-
Gangetic Plain, with annual emissions ranging from 50–
70 Mgyr−1 per pixel (pixel size is 5 km× 5 km), while other
regions emit ∼ 10–20 Mgyr−1 per pixel. Emission-weighted
spatial information about w (range 4.3–5.3) and kBrC,550
(0.006–0.023) aids in the estimation of kBrC,365. Figure 5a
shows kBrC,365 ranges from 0.05 to 0.14, indicating strong
absorption in the UV–Vis wavelengths. The Himalayan
foothills show large kBrC values compared to other parts
of India, mainly due to high BC-to-OA emissions from the
predominant heating activity. A recent study highlighted the
low photobleaching rate of BrC near Himalayan regions due
to the low ambient temperatures (Choudhary et al., 2022).
The coincidence of dark-BrC particle emissions in this study,
along with their reported extended lifetimes, could result
in snow darkening upon deposition along with accelerated
snowmelt and glacier melt (Chelluboyina et al., 2024). The
northwestern region of India exhibits the highest OC emis-
sions from agricultural residue burning (Fig. S5), primarily
from straw residue burning (Kapoor et al., 2023b), which has
a relatively low BC-to-OA ratio. Consequently, the kBrC re-
mains lower compared to its values in other regions, such
as Maharashtra and Andhra Pradesh, where oilseed crop

burning is prevalent (Kapoor et al., 2023b), resulting in a
higher BC-to-OA ratio and higher kBrC values. Heating ac-
tivities are particularly intense in the colder areas, especially
in the Himalayan foothills, with higher use of firewood in the
eastern India (Navinya et al., 2023), leading to significantly
higher BC-to-OA ratios and elevated kBrC in the northern
and eastern regions (Fig. S3). In the central Indo-Gangetic
Plain, particularly in Uttar Pradesh and Bihar, dung cake
is more commonly used for heating (Navinya et al., 2023),
which contributes to very low kBrC values. The variation in
the BC-to-OA ratio across India due to cooking activities is
minimal (0.075–0.125) compared to that from agricultural
residue burning (0.025–0.2) and heating (0.025–0.25), result-
ing in substantially low spatial variation in kBrC,365 (0.06–
0.08) from cooking (Fig. S3). The kBrC,550 values of combus-
tion aerosol emissions from India vary from 0.006 to 0.023
(Fig. S6 in the Supplement), with some hotspots scattered
across the country. These numbers highlight the order-of-
magnitude increase in kBrC,365 compared to kBrC,550, with
higher values over eastern and northern India. An earlier in-
vestigation also noted elevated modeled BrC absorption in
the eastern regions of India (Zhu et al., 2021). The substantial
emissions of BrC across the country, coupled with the high
kBrC values observed in certain other regions, suggest that
BrC particles may have significant radiative impacts over the
region.

4 Implications

The variability in kBrC,near-UV across modeling studies, rang-
ing from 0.045 (Zhang et al., 2020) to 0.168 (Lin et al.,
2014), arises from methodological, fuel, and burning con-
dition disparities in the studies reporting BrC absorption
properties from lab-based biomass combustion (Kirchstet-
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Figure 5. The spatial distribution of (a) kBrC,365 and (b) wavelength dependence (w). The BC-to-OA ratio is taken for the year 2019 from the
COALESCE SMoG-India emission inventory (Tibrewal et al., 2024). Publisher’s remark: please note that the above figure contains disputed
territories.

ter et al., 2004; Chen and Bond, 2010; Lack et al., 2012).
However, our study, using field measurements of a variety
of sources, introduces source- and fuel-specific kBrC values,
enhancing modeling capabilities for a more nuanced under-
standing of the radiative and climate impacts of BrC. Addi-
tionally, the observed varying wavelength dependence (w),
linked with the BC-to-OA ratio in this research, amplifies
uncertainty when it is assumed to be constant in models
(Zhang et al., 2020). Compared to the findings of this study,
typical BrC parameterization schemes (Saleh et al., 2014;
Lu et al., 2015; Luo et al., 2022) in climate models tend
to overestimate kBrC,550 while substantially underestimating
wavelength dependence, which may misrepresent near-UV
BrC absorption in world regions with biomass combustion
emissions resembling those in South Asia. Additionally, this
study’s findings aid in pinpointing biomass fuels and activi-
ties, including burning of some agricultural residues and res-
idential space heating, that are both prone to emitting more
strongly absorbing BrC (kBrC,550 > 0.1) and prevalent across
developing nations. These variations in kBrC with sources and
fuels lead to spatial variations in emitted BrC properties. In
the Himalayan foothills, residential space heating produces
more strongly absorbing (and more persistent) BrC emis-
sions, and the deposition of these emissions increases the
potential risks of increased snow darkening and accelerated
glacier melting. Leveraging this information with emission
inventories enables the identification and potential interven-
tional targeting of these biomass fuels and activities, with
the goal of reducing both their local health impacts and their
global climate impacts.
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