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Abstract. Anthropogenic emissions from city clusters can significantly enhance secondary organic aerosol
(SOA) formation in the downwind regions, while the mechanism is poorly understood. To investigate the ef-
fect of pollutants within urban plumes on organic aerosol (OA) evolution, a field campaign was conducted at a
downwind site of the Pearl River Delta region of China in the fall of 2019. A time-of-flight chemical ionization
mass spectrometer coupled with the Filter Inlet for Gases and Aerosols (FIGAERO–CIMS) was used to probe
the gas- and particle-phase molecular composition and thermograms of organic compounds. For air masses in-
fluenced by urban pollution, strong daytime SOA formation through gas–particle partitioning was observed,
resulting in higher OA volatility. The obvious SOA enhancement was mainly attributed to the gas–particle par-
titioning of high-volatility (semi-volatile organic compounds + intermediate volatility organic compounds +
volatile organic compounds, C∗ > 0.3 µg m−3) organic vapors. Using the equilibrium equation could underesti-
mate the contribution of high-volatility organic vapors, since the volatility of these species in the particle phase
was lower than that in the gas phase. We speculated that the elevated NOx concentration could suppress the
formation of highly oxidized products, resulting in a smooth increase of low-volatility (extremely low volatility
organic compounds+ low volatility organic compounds, C∗ ≤ 0.3 µg m−3) organic vapors. Evidence has shown
that urban pollutants (NOx and VOCs) could enhance the oxidizing capacity, while the elevated VOCs were
mainly responsible for promoting daytime SOA formation by increasing the RO2 production rate. Our results
highlight the important role of urban anthropogenic pollutants in SOA control in the suburban region.
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1 Introduction

As a major concern of air pollution, aerosol particles are
known to have significant impacts on public health and cli-
mate (Apte et al., 2018; Arias et al., 2024). Primary particu-
late matter (PM) in China has shown a remarkable reduction
since 2013, owing to strict clean-air policies implemented
by the Chinese government (Zhang et al., 2019). Despite
the effective reduction of primary emissions in the past 10
years, secondary organic aerosol (SOA) remains at high lev-
els and is mainly responsible for the haze development in
China (Huang et al., 2014). SOA is thought to be formed
through the oxidation of volatile organic compounds (VOCs)
and atmospheric aging processes of primary organic aerosol
(POA). However, models are especially challenged in repro-
ducing SOA concentration and properties, since the forma-
tion mechanisms and gas precursors of SOA remain poorly
characterized (Hodzic et al., 2010).

Gas–particle partitioning of organic vapors is found to be
the important formation pathway of SOA worldwide (Nie et
al., 2022; Hallquist et al., 2009; Lanzafame et al., 2021). Nie
et al. (2022) suggested that the contribution of the conden-
sation of organic vapors to the SOA mass growth ranged
from about 38 %–71 % in China megacities. Photochemi-
cally produced SOA via gas-phase chemistry is usually re-
lated to a higher volatility and a lower oxidation degree
than that formed in the aqueous phase (Ervens et al., 2011;
Saha et al., 2017). The condensation processes of organic va-
pors are determined by their volatility, which is closely re-
lated to oxidation state, functional groups, and the number of
atomic carbons. Laboratory studies revealed that high nitro-
gen oxide (NOx) concentration can suppress the production
of molecules with a high oxidation degree by inhibiting au-
toxidation (Rissanen, 2018; Peng et al., 2019), which is con-
sidered to be an important pathway of low-volatility vapor
formation (Praske et al., 2018). Such compounds have been
shown to play a vital role in the SOA formation and growth
of newly formed particles (Mutzel et al., 2015; Bianchi et al.,
2019; Mohr et al., 2019). On the other hand, it is shown that
the increase of oxidants owing to elevated NOx concentra-
tion can offset the decrease of autoxidation efficiency, lead-
ing to a higher production of oxygenated organic vapors (Pye
et al., 2019), highlighting the complexity of SOA formation.
However, the lack of a molecular dataset of SOA and gas
precursors hinders the understanding of the SOA formation
mechanism.

Recently, a chemical ionization time-of-flight mass spec-
trometer coupled with the Filter Inlet for Gases and Aerosols
(FIGAERO–CIMS) has been employed to measure gas- and
particle-phase oxygenated organic compounds worldwide
(Chen et al., 2020; Buchholz et al., 2020; Masoud et al.,
2022). Using the FIGAERO–CIMS, Cai et al. (2023) showed
that a heterogeneous reaction might have an important role in

the secondary formation of particle-phase oxidized organic
nitrogen. The volatility of organic aerosol (OA) can provide
information about the formation and aging processes of OA,
given that it is strongly affected by chemical composition.
In past decades, a thermodenuder (TD) coupled with aerosol
detection instruments (e.g., aerosol mass spectrometer and
condensation particle counter) was widely used in the estima-
tion of OA volatility (Philippin et al., 2004; Lee et al., 2010).
Cai et al. (2022) found that the OA volatility was higher at a
particle size range of 30 to 200 nm during daytime, suggest-
ing that the SOA formation through gas–particle partition-
ing could generally occur at all particle sizes. However, this
method failed to provide the volatility information of differ-
ent molecules of OA. In recent years, the FIGAERO–CIMS
was developed to characterize the volatility of oxygenated
organic molecules in the particle phase (Ren et al., 2022;
Ylisirniö et al., 2020). Wang and Hildebrandt Ruiz (2018)
showed that the thermal desorption products of SOA can be
separated into different groups on a two-dimensional thermo-
gram measured by the FIGAERO–CIMS. Ren et al. (2022)
investigated the relationship between the molecular formu-
lae of OA components and their volatilities and suggested
that the volatility of OA compounds was strongly affected
by the O-to-C ratio. These results provide valuable insights
into the SOA formation mechanisms. However, as of yet, few
FIGAERO–CIMS field studies are available in the literature
in China (Ye et al., 2021; Salvador et al., 2021), especially in
urban downwind areas.

Observational studies have demonstrated that anthro-
pogenic emissions can significantly affect SOA formation in
the downwind region. Fry et al. (2018) observed an enhance-
ment of organic nitrate aerosol formed through NO3+ iso-
prenes in a power plant plume during nighttime, which was
mainly attributed to NOx emissions from the power plant.
The results from Liu et al. (2018) suggested that the OH con-
centrations increased by at least 250 % under polluted condi-
tions, which might promote the daytime SOA formation. A
field measurement in the Amazon forest by de Sá et al. (2018)
showed that the enhancement of OA (about 30 %–171 %)
in urban plumes was mainly contributed by SOA. A recent
study found that anthropogenic emissions of NOx from urban
areas could enhance oxidant concentrations, thereby promot-
ing daytime SOA formation (Shrivastava et al., 2019).

In this study, we investigate the SOA formation through
photochemical reactions at a typical downwind site in the
Pearl River Delta (PRD) region using the FIGAERO–CIMS
along with a suite of other online instruments. The volatility
of OA and its relationship with identified OA sources during
long-range transport, urban air mass, and coastal air mass
periods are discussed. The formation mechanisms of day-
time SOA formation within the urban plume are investigated
based on online measurements of gas- and particle-phase or-
ganic compounds, gaseous pollutants, and aerosol physico-
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chemical properties. The impact of urban pollutants on SOA
formation will be discussed.

2 Measurement and method

2.1 Field measurement

The campaign was conducted at the Heshan supersite in
the PRD region during the fall of 2019 (29 September to
17 November 2019). The Heshan supersite, surrounded by
farms and villages, is located southwest (22°42′39.1′′ N,
112°55′35.9′′ E, at an altitude of about 40 m) of the PRD re-
gion and about 70 km southwest of the city of Guangzhou
(Fig. S1 in the Supplement). During the measurement, the
sampling site was mainly influenced by the air masses from
the center of the PRD region (Fig. S2a). All instruments were
placed in an air-conditioned room on the top floor of the su-
persite. A detailed description of the site and experimental
setup can be found in Cai et al. (2021).

2.2 Instrumentation

2.2.1 FIGAERO–CIMS

The FIGAERO–CIMS coupled with an X-ray source was
employed to measure organic compounds in the gas- and
particle-phase using I− as the chemical ionization reagent.
The particle sampling inlet of the FIGAERO–CIMS was
equipped with a PM2.5 cyclone and a Nafion dryer (model
PD-07018T-12MSS, Perma Pure, Inc., USA). The principle
of the instrument can be found in Lopez-Hilfiker et al. (2014)
and Le Breton et al. (2018). In general, the operation settings
and data processing were the same as in Cai et al. (2023) and
Ye et al. (2021). Here, only a brief description relevant to the
measurement is given. The instrument was worked in a cycle
pattern of 1 h, with 24 min of gas-phase measurements and
particle collection (sampling mode), followed by a 36 min
particle-phase analysis (desorption mode). In the sampling
mode, ambient gas was measured in the first 21 min, followed
by a 3 min zero air background. At the same time, ambient
particles were collected on a PTFE membrane filter. In the
desorption mode, the collected particles were desorbed by
heated N2. The temperature of the N2 was linearly ramped
from indoor temperature (∼ 25 °C) to ∼ 175 °C in 12 min
and held for 24 min. The data processing steps in this cam-
paign were the same as in Ye et al. (2021). A few chemicals
were calibrated before and after the measurement. For un-
calibrated species, a voltage scanning method was employed
to obtain their sensitivities (referred to as semi-quantified
species) (Ye et al., 2021; Iyer et al., 2016; Lopez-Hilfiker et
al., 2016).

2.2.2 SP-AMS

The PM1 chemical composition was measured by a soot
particle aerosol mass spectrometer (SP-AMS, Aerodyne Re-

search, Inc., USA). The details of the operation and data anal-
ysis can be found in Kuang et al. (2021). Source apportion-
ment was performed for organic aerosols in the bulk PM1 us-
ing positive matrix factorization (PMF). The organic aerosol
could be divided into six components, including two primary
OA factors and four secondary OA factors. The mass spec-
tral profiles of six OA factors are shown in Fig. S3. The time
series and diurnal variation of these factors are presented in
Fig. S4.

The primary OA factors include hydrocarbon-like OA
(HOA), mainly contributed by traffic and cooking emissions,
and biomass-burning OA (BBOA) originating from biomass-
burning combustion. The HOA was identified by hydrocar-
bon ions CxH+y . Owing to the prominent hydrocarbon ions
and low O : C value (0.10), HOA could be attributed to pri-
mary emissions from cooking and traffic. The BBOA was
recognized by the markers C2H4O+2 (m/z 60.022, 0.5 %) and
C3H5O+2 (m/z 73.029, 0.4 %), which are considered tracers
of biomass-burning OA (Ng et al., 2011).

The SOA factors include biomass-burning SOA (BBSOA)
likely formed from oxidation of biomass-burning emissions,
less oxygenated OA (LOOA) provided by strong daytime
photochemical formation, more oxygenated OA (MOOA)
related to regional transport, and nighttime-formed OA
(night-OA) contributed by secondary formation during night-
time. The BBSOA was likely formed through oxidation of
biomass-burning precursors, which was supported by the
evening peak at about 19:00 LT (Fig. S4). BBSOA showed a
similar variation trend with C6H2NO+4 , which might be con-
tributed by oxidation of gaseous precursors from biomass-
burning emissions (Wang et al., 2019; Bertrand et al., 2018).
The significant afternoon peak of LOOA indicates its for-
mation through photochemical reactions, which will be dis-
cussed in detail in Sect. 3.1. The negligible diurnal variation
and the highest O : C value (1.0) of MOOA suggested that it
could be aged OA resulting from long-range transport. Night-
OA was formed through NO3 nighttime chemistry, supported
by a pronounced evening elevation and positive correlation
with nitrate (R = 0.67). The detailed determination of PMF
factors has been found in Kuang et al. (2021) and Luo et
al. (2022).

2.2.3 Particle number size distribution measurements

Particle number size distribution in a size range of 1 nm–
10 µm was measured by a diethylene glycol scanning mo-
bility particle sizer (DEG-SMPS, model 3938E77, TSI Inc.,
USA), a SMPS (model 3938L75, TSI Inc., USA), and an
aerodynamic particle sizer (APS, model 3321, TSI Inc.,
USA). All sample particles first passed through a Nafion
dryer (Model MD-700, Perma Pure Inc., USA) to reduce rel-
ative humidity (RH) lower than 30 %. A detailed description
of these instruments can be found in Cai et al. (2021).
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2.2.4 Other parameters

The non-methane hydrocarbons (NMHCs) were measured
by an online gas chromatography–mass spectrometry/flame
ionization detector (GC-MS/FID, Wuhan Tianhong Co., Ltd,
China). The concentrations of oxygenated VOCs, includ-
ing formaldehyde (HCHO) and acetaldehyde (CH3CHO),
were measured using a high-resolution proton transfer re-
action time-of-flight mass spectrometer (PTR-ToF-MS, Ion-
icon Analytik, Austria). HONO was detected by the gas
and aerosol collector (GAC) instrument (Dong et al., 2012).
Trace gases, including O3, NOx , and CO, were measured by
gas analyzers (model 49i, 42i, and 48i, Thermo Scientific,
USA). Meteorological parameters (i.e., wind speed, wind di-
rection, and temperature) were measured by a weather station
(Vantage Pro 2, Davis Instruments Co., USA).

2.3 Methodology

2.3.1 Estimation of the volatility of particle- and
gas-phase organic compounds

During the heating processes, the FIGAERO–CIMS simulta-
neously measured the desorbing compounds of the collected
particles. Thus, the volatility information of particles can be
obtained by investigating the relationship between the mea-
sured signals and desorption temperature. The temperature
of the peak desorption signal (Tmax) has a nearly linear rela-
tionship with the natural logarithm of saturation vapor pres-
sure (Psat) of the respective compound (Lopez-Hilfiker et al.,
2014):

ln (Psat)= aTmax+ b, (1)

where a and b are fitting coefficients. Thus, the saturation
vapor concentration (C∗, µg m−3) can be obtained:

C∗ =
PsatMw

RT
106, (2)

where Mw is the molecular weight of the compound (deter-
mined by the FIGAERO–CIMS), R is the universal gas con-
stant (8.314 J mol−1 K−1), and T is the thermodynamic tem-
perature in kelvin (298.15 K).

We used a series of polyethylene glycol (PEG 5–8) com-
pounds to calibrate the Tmax and obtained the fitting param-
eters a and b. The PEG standards were prepared in a mix-
ture of acetonitrile and then atomized with a homemade at-
omizer. The atomized particles are classified by a differen-
tial mobility analyzer (DMA, model 3081 L, TSI Inc., USA)
at two diameters (100 and 200 nm). The selected particles
were then split into two paths: one to a condensation parti-
cle counter (CPC, model 3775, TSI Inc., USA) for measur-
ing the particle concentration and another one to the parti-
cle inlet of the FIGAERO–CIMS. The collected concentra-
tion can be calculated based on the selected particle diam-
eter, particle number concentration, flow rate of the particle

inlet of the FIGAERO–CIMS, and collection time. The cal-
ibration results and corresponding fitting parameters can be
found in Fig. S5 and Table S1 in the Supplement. Note that
the Tmax can vary with mass loading, and it is necessary to
consider this for estimation of the relationship between Tmax
and C∗ (Wang and Hildebrandt Ruiz, 2018). Our calibration
results demonstrated that the correlation between Tmax shift
and mass loading was not linear, which may be attributed to
matrix or saturation effects (Huang et al., 2018). During the
measurement, the collected mass loading centered at about
620 ng, and the particle volume size distribution (PVSD) cen-
tered at about 400 nm (Fig. S6). Thus, the fitting parameters
(a =−0.206 and a = 3.732) of the calibration experiment
with a diameter of 200 nm and mass loading of 407 ng were
adopted in the C∗ calculation, since the mass loading and
diameter are the closest to the ambient samples.

For gas-phase organic compounds (organic vapors), we
first divided them into two groups based on their oxidation
pathways (multi-generation OH oxidation and autoxidation;
solid line in Fig. S7) and then used different parameters in
their volatility estimation. The classification of pathways was
based on the molecular characteristics of oxidation products
of aromatics and monoterpene, respectively (Wang et al.,
2020). In general, their saturation vapor concentration (C∗,
at 300 K) can be estimated as follows:

log10
(
C∗(300K)

)
= (25− nc) · bC− (nO− 3nN)

· bO−
2(nO− 3nN)nC

(nC+ nO− 3nN)
· bCO− nN · bN, (3)

where nc, nO, and nN are the numbers of carbon, oxygen,
and nitrogen atoms in each compound. For oxidation prod-
ucts formed from the multi-generation OH oxidation (ag-
ing) pathway, the volatility parameters bC, bO, bCO, and bN
were assumed to be 0.475, 2.3, −0.3, and 2.5, respectively
(Donahue et al., 2011). For oxidation products formed from
the autoxidation pathway, the modified parameterization is
used, with bC = 0.475, bO = 0.2, bCO = 0.9, and bN = 2.5
(Bianchi et al., 2019). It should be noted that this method can
only roughly distinguish the formation pathways of ambient
organic vapors, since it is based on the oxidation products of
specific species in a laboratory study.

2.3.2 Calculation of oxidation state (OSC) of CxHyOz
and CxHyN1,2Oz compounds

For CxHyOz compounds, the OSC can be estimated as

OSC = 2×
O
C
−

H
C
. (4)

For CxHyN1,2Oz compounds, the OSC can be calculated
from the following equation:

OSC = 2×
O
C
−

H
C
− x×

N
C
, (5)
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where x is the valence state of N atoms, which is dependent
on functional groups. Several assumptions were adopted to
classify them:

1. N-containing functional groups were nitro (−NO2, x =
+3) or nitrate (−NO3, x =+5) in our measurement.

2. N-containing aromatics contain nitro moieties, while N-
containing aliphatic hydrocarbons contain nitrate moi-
eties.

3. N-containing aromatics have 6–9 carbon atoms and
fewer hydrogen atoms than aliphatic hydrocarbons with
the same number of carbon atoms.

2.3.3 Estimation of condensation sink

The condensation sink (CS) represents the condensing vapor
captured by pre-existing particles and can be calculated from
the following equation:

CS= 2πD
∑
Dp

βm,DpDpNDp , (6)

where D is the diffusion coefficient of the H2SO4 vapor
(0.8× 10−5 m2 s−1); βm,Dp is the transitional regime correc-
tion factor, which can be calculated from the Knudsen num-
ber (Fuchs and Sutugin, 1971); and NDp represents the parti-
cle number concentration at Dp.

2.3.4 Estimation of OA contributed by high-volatility
organic vapors

Organic vapors with higher volatility (SVOC+IVOC+VOC,
C∗ > 0.3 µg m−3) can easily reach an equilibrium between
the gas and particle phase. Thus, the contribution of high-
volatility organic vapors to OA concentration (OAHVgas)
through gas–particle partitioning can be estimated as fol-
lows:

OAHVgas =
∑
i

Ci,gfi, (7)

where Ci,g is the gas-phase concentration of species i. fi is
the fraction of species i in the particle phase and is defined
as

fi =
COA

COA+C
∗

i (T )
, (8)

where COA is the concentration of OA measured by the SP-
AMS, and C∗i (T ) is the saturation concentration of species
i at temperature (T ). The temperature-dependent C∗i (T ) was
obtained by (Nie et al., 2022)

log10C
∗

i (T )= log10C
∗

i (300K)+
1Hvap,i

Rln (10)

(
1

300
−

1
T

)
(9)

1Hvap,i =−5.7log10C
∗

i (300K)+ 129, (10)

where 1Hvap,i is the enthalpy of vaporization and can be
estimated based on log10C

∗

i (300K).

2.3.5 Estimation of the production rate of RO2 and OH

A zero-dimensional box model (0-D Atmospheric Modeling,
F0AM; Wolfe et al., 2016) based on the Master Chemical
Mechanism (MCM v3.1.1, https://mcm.york.ac.uk/MCM,
last access: September 2023) was used to simulate the pro-
duction rate of OH in this study. The F0AM box model
has been widely used in investigating chemical reactions of
VOCs, NOx , and ROx radicals (including OH, HO2, and
RO2) in field and laboratory research (Baublitz et al., 2023;
Yang et al., 2022; D’Ambro et al., 2017). The simulation was
constrained with the observation data of non-methane hy-
drocarbons (NMHCs), HCHO, CH3CHO, NO, CO, HONO,
and meteorological parameters (RH, temperature, photolysis
rates, and pressure). The background concentration of CH4
was set to 1.8 ppm (Wang et al., 2011). The simulation time
step was set to 5 min. With respect to the integrity and tem-
poral coverage of the observation data, the simulation period
was from 16 October to 16 November 2019. Further details
on model settings can be found in Yang et al. (2022).

The empirical kinetic modeling approach (EKMA) is ap-
plied to investigate the sensitivity of the production rate of
RO2 and OH to the variation of NOx and VOCs. The base
case was simulated based on the observation of average con-
ditions. Sensitivity tests are performed by adjusting NOx or
VOCs by a ratio ranging from 0.1 to 2.0 without changing
other parameters.

3 Results and discussion

3.1 Overview

Figure 1 shows the temporal profile of particle number size
distribution (PNSD) and condensation sink (CS) during the
measurement (Fig. 1a), one-dimensional thermograms and
Tmax measured by the FIGAERO–CIMS (Fig. 1b), bulk
PM1 chemical composition measured by the SP-AMS and
PM1 concentration (Fig. 1c), deconvolved OA factors from
the PMF analysis (Fig. 1d), and wind speed and direction
(Fig. 1e). Note that all measurements started on 2 Octo-
ber 2019. As shown in Fig. 1a, new particle formation (NPF)
events occurred frequently along with relatively low CS val-
ues during the measurement period (44.4 %, 20 out of 45 d).
The Tmax mainly varied in two temperature ranges: 80–95 °C
and 110–120 °C (Fig. 1b). The lower Tmax was usually ac-
companied by high desorption signals peaked at 80–95 °C
(Fig. 1b), a higher fraction of LOOA (Fig. 1d), and an obvi-
ous wide accumulation mode in PNSD (Fig. 1a).

The evening peak of hydrocarbon-like OA (HOA) and
biomass-burning OA (BBOA) was related to local anthro-
pogenic activities (e.g., biomass burning, cooking, and traf-
fic; Fig. 2). The less oxygenated OA (LOOA) and biomass-
burning SOA (BBSOA) showed afternoon peaks (Fig. 2),
which could be attributed to secondary organic aerosol
(SOA) formation through daytime photochemical reactions.

https://doi.org/10.5194/acp-24-13065-2024 Atmos. Chem. Phys., 24, 13065–13079, 2024
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Figure 1. Temporal profile of the measured variables during the campaign: (a) particle number size distribution and condensation sink
(black line); (b) one-dimensional thermograms of organic compounds (ions containing C, H, and O atoms, referred to as sum thermogram)
and the Tmax values (white dots) measured by the FIGAERO–CIMS; (c) bulk PM1 chemical composition measured by SP-AMS and PM1
concentration; (d) mass fraction of six OA factors from PMF analysis of SP-AMS data; and (e) wind speed and wind direction. The color
in (b) represents the normalized count per second (ncps) of oxygenated organic compounds calculated based on total count per second (cps)
of oxygenated organic compounds at all m/z (total cps), m/z 127 (cps127), and m/z 145 (cps145) measured by the FIGAERO–I–CIMS,
ncps= total cps

(cps127+cps145)×106 . The OA factors included more oxygenated OA (MOOA), less oxygenated OA (LOOA), aged biomass-burning

OA (BBSOA), hydrocarbon-like OA (HOA), biomass-burning OA (BBOA), and nighttime OA (night-OA).

LOOA showed a noticeable increase corresponding to the
particle surface area (Fig. S8), while we did not observe such
a correlation for other SOA factors (MOOA and BBSOA).
Furthermore, LOOA exhibited a stronger positive correlation
with organic vapors measured by the FIGAERO–CIMS com-
pared to other OA factors (Fig. S9). These results suggested
that the daytime formation of LOOA was attributed to gas–
particle partitioning. The Ox (Ox =O3+NO2) had a strong
a correlation with organic vapors in the afternoon (10:00–
16:00 LT; Fig. S10), highlighting an important role of photo-
chemical reaction in the formation of LOOA.

The high desorption signal at a lower temperature range
suggested that the volatility of OA could be higher, which
could be associated with the formation of LOOA. Coin-
cidently, either NPF events or a higher fraction of LOOA
could only be observed during the period prevalent with
north wind direction (Fig. 1e), when the measurement site
was affected by the pollutant from the city cluster around

the city of Guangzhou. It indicates that the urban pollutants
might promote particle formation and growth and daytime
SOA formation by increasing oxidants and acting as pre-
cursor gases. Xiao et al. (2023) suggested that fresh urban
emissions could enhance NPF, while NPF was suppressed in
aged urban plumes. Shrivastava et al. (2019) found that urban
emissions, including NOx and oxidants, could significantly
enhance the SOA formation in the Amazon rainforest. Three
periods were classified based on the combination of wind di-
rection and the analysis of backward trajectories to further
investigate the impact of urban pollutants on this downwind
site, which were long-range transport, urban air mass, and
coastal air mass periods (Fig. S2 and Table S2). The long-
range transport period was related to long-range transport
masses from northeast inland. The urban air mass period was
mainly affected by regional urban air masses from the PRD
region. The coastal air mass period was associated with air
masses from the South China Sea and the northeastern coast.

Atmos. Chem. Phys., 24, 13065–13079, 2024 https://doi.org/10.5194/acp-24-13065-2024
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Figure 2. Average diurnal variation of six OA PMF factors dur-
ing (a) the whole campaign, (b) long-range transport, (c) urban air
mass, and (d) coastal air mass periods.

A significant daytime peak of LOOA (10.4 µg m−3) was
shown during the urban air mass period (Fig. 2c), while the
enhancement of BBSOA was inapparent. It suggests that the
contribution of gas–particle reactions to SOA formation was
enhanced when the site was affected by urban plumes. The
Ox concentration in the afternoon during the urban air mass
period was higher than that during the long-range transport
period (Fig. S11), which might be able to explain the signif-
icant enhancement of LOOA for the urban air mass period.
These results imply that urban pollution plumes could pro-
mote the formation of SOA in the downwind region by in-
creasing the oxidant concentration.

3.2 The daytime formation of FIGAERO OA

As mentioned before, the increase of LOOA was usually
along with the significant desorption signals measured by
the FIGAERO–CIMS at a low temperature range (80–95 °C),
suggesting that OA volatility could be higher. The average
two-dimensional thermograms of all calibrated and semi-
quantified species and an example of a one-dimensional ther-
mogram of levoglucosan can be found in Fig. 3a and b,
respectively. According to Eqs. (1) and (2), we calculated
the C∗ value of all calibrated and semi-quantified species
based on their Tmax and constructed the volatility distri-
bution as a volatility basis set (VBS; Fig. 3c). The Tmax
of each species is obtained based on their average thermo-
gram. These 12 VBS bins were classified into 3 groups
(Donahue et al., 2012): semi-volatile organic compounds
(SVOCs, 0.3<C∗ ≤3× 102 µg m−3), less-volatile organic
compounds (LVOCs, 3× 10−4 < C∗ ≤0.3 µg m−3), and ex-
tremely low-volatility organic compounds (ELVOCs, C∗ ≤
3× 10−4 µg m−3). In general, most species measured by the

Figure 3. The average (a) two-dimensional thermograms of all cal-
ibrated and semi-quantified species, (b) one-dimensional thermo-
gram of levoglucosan, and (c) volatility distribution of all calibra-
tion and semi-quantified species in the particle phase measured by
the FIGAERO–CIMS (referred as FIGAERO OA). The Tmax was
converted to the C∗ according to Eqs. (1) and (2).

FIGAERO–CIMS fall into LVOC groups (Fig. S12). Note
that the decomposition of organic compounds was ignored
in this method, which could affect thermogram peaks in
some cases and the measurement of low-volatility com-
pounds (Wang and Hildebrandt Ruiz, 2018). Furthermore,
the fraction of SVOC might be underestimated owing to its
high volatility. As a result, fast evaporation could occur dur-
ing the collection on the filter and the shift from sampling
mode to desorption mode.

During the urban air mass period, the FIGAERO–CIMS
measured significant signals at a desorption temperature
range of SVOC and LVOC (Fig. S13) in the afternoon
(12:00–16:00 LT), indicating that the OA volatility could be
higher. The SVOC+LVOC in the FIGAERO OA increased
from 5.2 µg m−3 (8:00 LT) to 16.29 µg m−3 (15:00 LT) dur-
ing the urban air mass period (Fig. 4a), which was coinci-
dent with an enhancement of LOOA (Fig. 2c). It suggested
that daytime enhancement of the SVOC+LVOC in the FI-
GAERO OA was closely related to the obvious LOOA for-
mation. The FIGAERO OA during the urban air mass pe-
riod was systemically higher than that during the long-range
transport period, with a significantly higher concentration of
LVOC group (Fig. 4b), especially the portion with a volatility
log10C

∗ of−1. Table 1 investigated the relationship between
SVOC+LVOC and six OA factors. The SVOC+LVOC in
FIGAERO OA had a significant positive correlation (R =
0.72–0.85) with the LOOA, especially during the urban air
mass period (R = 0.85; Fig. S14 and Table 1), suggesting
that the LOOA formation was mainly responsible for the in-
crease of OA volatility.

Interestingly, the high-volatility organic vapors
(SVOC+IVOC+VOC, C∗ > 0.3 µg m−3) dramatically
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Figure 4. Diurnal variation of (a) SVOC+LVOC in FIGAERO OA,
(b) the difference of FIGAERO OA between the urban air mass
and long-range transport periods, and (c) low-volatility organic va-
pors (ELVOC+LVOC; solid lines) and high-volatility organic va-
pors (SVOC+IVOC+VOC; dashed lines) during the whole cam-
paign and three selected periods.

Table 1. The correlation coefficient between SVOC+LVOC in FI-
GAERO OA and six OA factors in AMS OA during different peri-
ods.

All Long-range Urban air Coastal air
campaigns transport masses masses

MOOA −0.004 0.02 0.11 −0.19
LOOA 0.83 0.74 0.85 0.72
BBSOA 0.47 0.48 0.75 0.14
HOA 0.11 0.18 −0.11 0.61
BBOA 0.57 0.55 0.55 0.77
Night-OA 0.35 0.39 0.07 0.53

increased in the afternoon during the urban air mass pe-
riod, while we did not observe such a phenomenon for
low-volatility (ELVOC+LVOC, C∗ ≤ 0.3 µg m−3) organic
vapors (Fig. 4c). The concentration of low-volatility organic
vapors in the afternoon (12:00–16:00 LT) did not show
a significant difference (1.76 and 1.84 µg m−3) between
the long-range transport and urban air mass periods, indi-
cating that the irreversible condensation of low-volatility
organic vapors could not fully explain the enhancement
of LOOA during the urban air mass period (Wang et al.,
2022). However, the high-volatility organic vapors had a
notably higher concentration (51.69 µg m−3) during the

urban air mass period than that (41.70 µg m−3) during the
long-range transport period. This implies that the significant
enhancement of LOOA during the urban air mass period
might be mainly attributed to the equilibrium partitioning of
high-volatility organic vapors, which could also increase the
volatility of total OA.

Here we selected a typical day (2 November 2019) of the
urban air mass period for further investigation. The measure-
ment site was affected by the urban plume from the city clus-
ter in the PRD region on this day (Fig. S15). A wide ac-
cumulation mode centered at about 180 nm in PNSD was
observed, with a significant desorption signal measured by
the FIGAERO–CIMS in the afternoon and weak north wind
(Fig. S16). As shown in Fig. 5a, the desorption signals of or-
ganic compounds increased from 09:00 LT and reached their
peak at 14:00 LT, suggesting a significant daytime SOA for-
mation. The variation of OA volatility distribution and mean
C∗ (C∗) is shown in Fig. 5b. The C∗ showed an afternoon
peak (0.021 µg m−3) at 15:00 LT, suggesting a higher OA
volatility in the afternoon. An evident enhancement of OA
with a volatility log10C

∗ of −1 was observed in the after-
noon, aligning with the formation of LOOA (Fig. 5c), which
primarily contributes to higher OA volatility. Combined with
the volatility distribution analysis in Fig. 4b, the positive cor-
relation between LOOA and OA with a volatility log10C

∗

of −1 indicated that the main components of LOOA have a
volatility log10C

∗ of −1. Interestingly, the Tmax value of the
sum thermogram (Fig. 5a) increased from 81 °C at 09:00 LT
to 96 °C at 17:00 LT, implying that the OA volatility de-
creased during the daytime owing to the daytime aging pro-
cesses. However, the C∗ value consistently increased from
06:00 LT until 15:00 LT and then began to decrease, which
was in conflict with the increasing Tmax. One possible rea-
son is that species in the FIGAERO OA fell into a specific
Tmax range (about 11 °C) and were categorized into differ-
ent C∗ bins by a factor of 10. Thus, the slight variation of
Tmax might not affect the estimated volatility distribution of
FIGAERO OA. The other possible reason is that the volatil-
ity distribution of FIGAERO OA was estimated based on the
Tmax value of calibrated and semi-quantified species, while
the sum thermograms contained all organic compounds con-
taining C, H, and O atoms. There could be some organic
compounds formed through aging processes that were not in-
cluded in the C∗ estimation.

3.3 The contribution of high-volatility organic vapors to
SOA formations

In the previous section, we found that the significant en-
hancements in LOOA during the urban air mass period might
be attributed to the high-volatility organic vapors through
gas–particle partitioning. The contribution of high-volatility
organic vapors to the OA concentration via equilibrium par-
titioning can be estimated based on Eq. (7). Our results show
that the estimated contribution of high-volatility organic
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Figure 5. (a) The sum thermograms at 9:00, 12:00, 14:00, and
17:00 LT; (b) variation of FIGAERO OA volatility presented in
a volatility range from 10−5 to 100 µg m−3 and mean C∗; and
(c) variation of six OA factors from PMF analysis on 2 Novem-
ber 2019. The mean C∗(C∗) is estimated as C∗ = 10

∑
fi log10C

∗
i ,

where fi is the mass fraction of OA with a volatility C∗
i

.

vapors (estimated OAHVgas) was higher (peaked at about
1.17 µg m−3) during the urban air mass period (Fig. 6a). Cor-
respondingly, we observed an enhancement in the measured
concentration of these species in the particle phase (measured
OAHVgas, peaked at about 10.32 µg m−3; Fig. 6b). This im-
plies that the increase in high-volatility organic vapors might
significantly contribute to the daytime SOA formation dur-
ing the urban air mass period. However, the estimated con-
tribution was much lower than the measured value. It sug-
gests that using the equilibrium equation might not be able to
fully explain the increase of LOOA contributed by the high-
volatility organic vapors during the urban air mass period.
Nie et al. (2022) indicated that the estimation of OA con-
tribution through the equilibrium equation can be easily dis-
turbed by varied meteorological processes, which would lead
to uncertainties in the calculations.

Moreover, the gas–particle equilibrium theory assumes
that particles are droplets and that the high-volatility species
in the particle phase could reach a reversible equilibrium
with the gas-phase concentration. However, some studies in-
dicate that this assumption significantly overestimates the
volatility of these species in the particle phase and underesti-
mates the contribution of high-volatility organic vapors to the
SOA concentration (Kolesar et al., 2015; Cappa and Wilson,
2011). This is because particles might exist in a glassy state
rather than a liquid state. This was consistent with the dif-
ference of the volatility distribution of these species between
the particle and gas phase (Fig. 7a). The volatility in the par-
ticle phase was centered at a log10C

∗ of−1, while that in the

Figure 6. The diurnal variation of (a) the estimated contribution of
high-volatility organic vapors to the OA (estimated OAHVgas) and
(b) the total concentration of corresponding species in the particle
phase measured by the FIGAERO CIMS.

gas phase showed a higher concentration of log10C
∗
= 6–

8 µg m−3, implying that the volatility of these compounds in
the particle phase could be lower than that in the gas phase.

Another possible explanation is that the corresponding
species in the particle phase could be the decomposition
products of low-volatility compounds, leading to a higher
concentration than expected. We further investigate the dif-
ference between the measured and estimated concentration
of different high-volatility species (Fig. 7b). The measured
concentration was systematically higher than the estimated
value. The higher measured concentration of C2H2O4I−

could be due to the decomposition of low-volatility spices, as
the desorption signal peaked at the ELVOC region (Fig. 7c).
However, for higher-molecular-weight compounds, the cor-
responding Tmax values were in the LVOC region, suggesting
that these species might not be the decomposition products.
This implies that the decomposition products might play a
minor effect in the difference between the measured and es-
timated concentration.

Taken together, these results suggest the increase in high-
volatility organic vapors could promote the daytime en-
hancement of SOA during urban air mass periods. However,
this contribution might be underestimated using gas–particle
equilibrium theory, since the volatility of organic aerosol
may differ significantly from the volatility determined by the
equilibrium theory.
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Figure 7. (a) The average volatility distribution of high-volatility
organic vapors in the gas phase and particle phase. (b) The aver-
age difference between the measured concentration in the particle
phase (Ci,PM) and the estimated concentration (Ci,gfi ) of differ-
ent compounds in the high-volatility organic vapors. (c) The av-
erage thermograms of C2H2O4I−, C4H6O5I−, C6H8O5I−, and
C7H10O5I−.

3.4 Enhancement of SOA formation by urban pollutants

As mentioned before, the significant enhancement of high-
volatility organic vapors was observed during the urban air
mass period. Figure 8 compares the difference in organic va-
pors in the carbon oxidation state (OSC) in the afternoon
(12:00–16:00 LT) between the long-range transport and ur-
ban air mass periods. A higher concentration of organic va-
pors with a low OSC (OSC ≤ 0) was observed during the
urban air mass period, while this trend overturned for high
OSC (OSC > 0) organic vapors. This suggests that the oxida-
tion degree of organic vapors was lower during the urban air
mass period, even though the Ox concentration was higher
(Fig. S11). This trend was more significant for compounds
with carbon numbers between 2 and 5, indicating a higher
concentration of small molecules with low OSC during the
urban air mass period. The OSC of major C5 compounds was
about −1.33, which was mainly contributed by C5H8NOI−,
highlighting the role of NOx chemistry. The oxygenated or-
ganic vapor production rates depend on oxidant and pre-
cursor concentration, and the mechanism of significant en-
hancement of high-volatility organic vapors remains unclear.
We speculated that it could be partly attributed to the ele-
vated NOx concentration in the afternoon during the urban
air mass period (Fig. S17). NOx was found to have a detri-
mental effect on the production of highly oxidized products
and thus on the formation of low-volatility vapors (Rissanen,
2018), which might be responsible for the smooth increase
of low-volatility organic vapors. Previous studies have found
that the increase of NOx could lead to higher OH produc-

Figure 8. Difference in the carbon oxidation state (OSC) in the gas
phase in the afternoon (12:00–16:00 LT) between the long-range
transport and urban air mass periods. The symbol sizes are propor-
tional to the logarithm of concentration. The symbol colors repre-
sent that the concentration during the urban air mass period was
higher (red) or lower (blue) than that during the long-range trans-
port period.

tion, which would offset decreases in the autoxidation effi-
ciency and further result in enhanced SOA formation (Liu et
al., 2021; Pye et al., 2019). During the urban air mass period,
both low-volatility and high-volatility CHON compounds in-
creased in the afternoon, implying the effect of NOx on the
photochemical reactions (Fig. S18a and b). That was further
evidenced by the higher fraction of CHON compounds in the
FIGAERO OA (Fig. S18f). This result was consistent with
Schwantes et al. (2019), who reported that low-volatility or-
ganic nitrates might have a significant contribution to SOA
under high NOx conditions. Interestingly, in contrast with
the higher fraction of low-volatility CHON compounds in the
afternoon, the fraction of high-volatility CHON compounds
was lower at the same time (Fig. S18d and e), indicating that
the effect of high NOx concentration on photochemical oxi-
dation goes beyond the formation of CHON compounds for
high-volatility species.

To further understand how the urban plumes affect the
SOA formation, we used an observation-constrained box
model to simulate the production rate of organic peroxy rad-
icals (RO2) and OH with different NOx and VOC concen-
trations (Fig. 9). The detailed description of the box model
is described in Sect. 2.3.4. In general, the production rates
of OH (P (OH)) were close to the transition regime during
three selected periods (Fig. 9a), where the P (OH) is sen-
sitive to both VOC and NOx variation. Further, the P (OH)
tended to be in the NOx-limited regime during the coastal air
mass period. The emission of NOx might enhance the atmo-
spheric oxidation capacity, consistent with the results from
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Figure 9. The simulated production rate of OH (a) and RO2
(b) with NOx and VOC concentration predicted by an observation-
constrained box model under campaign average conditions. The
blue square, red diamond, and yellow triangle represent the aver-
age conditions during the long-range transport, urban air mass, and
coastal air mass periods, respectively.

other observations (Shrivastava et al., 2019; Pye et al., 2019).
Interestingly, the sensitivity regime of P (OH) changed to the
VOCs limited during the urban air mass period, suggesting
that the production of OH would be suppressed with contin-
ued increases in NOx . During the urban air mass period, the
concentration of NOx and VOCs was noticeably increased
compared to the coastal air mass period, leading to a signifi-
cant increase of P (OH).

Recent studies show that autoxidation of RO2 can result
in highly oxygenated molecules (O : C≥ 0.7) and promote
SOA formation (Pye et al., 2019, 2015). In general, the
production rate of RO2 (P (RO2)) was in the VOC-limited
regime during three selected periods (Fig. 9b), where the
P (RO2) increased with the increase of VOCs. It suggests that
the production of RO2 was suppressed with the increase in
NOx . During the urban air mass period, the concentration of
VOCs was noticeably increased compared to the coastal air
mass period, leading to a significant increase of P (RO2). The
model results indicate that urban pollutants, including NOx
and VOCs, could enhance the oxidizing capacity, while the
increase of VOCs was mainly responsible for significant day-
time SOA formation.

4 Conclusions

In this study, we demonstrated that daytime SOA forma-
tion could be enhanced when the rural site was affected by
pollutants from the city region, which could be partly at-

tributed to the high concentration of oxidants in urban pol-
lution. A higher volatility of OA was observed during the
urban air mass period, which was mainly contributed by the
component with a volatility log10C

∗ of −1. The significant
increase of SVOC+LVOC in FIGAERO OA in the afternoon
was associated with enhanced LOOA formation. Similar to
other measurements, the daytime formation of LOOA was
mainly through gas–particle partitioning of organic vapors,
supported by a significant positive relationship between the
LOOA and organic vapors. We observed a dramatic increase
in the high-volatility organic vapors in the afternoon during
the urban air mass period, while low-volatility organic vapors
did not exhibit a similar growth trend. This indicated that the
rapid increase of LOOA during the urban air mass period was
mainly contributed by the gas–particle partitioning of high-
volatility organic vapors. However, this contribution was un-
derestimated using equilibrium theory, since the the volatility
of “high-volatility” organic vapors in the particle phase was
significantly lower than that in the gas phase.

The high NOx might also suppress the formation of highly
oxidized products. Thus, the elevated NOx in the urban
plume might be able to explain the smooth increase in low-
volatility organic vapors and a higher concentration of or-
ganic vapors with a low OSC. A box model simulation
showed that the P (OH) was close to the transition regime
during three selected periods, indicating that the elevated
NOx and VOCs in urban plumes can increase the oxidiz-
ing capacity. However, the P (RO2) was in the VOC-limited
regime, suggesting that the increase in VOCs was mainly re-
sponsible for the daytime enhancement of SOA. Further in-
vestigations on the effect of urban pollutants on SOA forma-
tion on the regional scale are still needed for formulating air
pollution control strategies.
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