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Abstract. Clouds affect the sensitivity of the climate system by changing their distribution, height, and optical
properties under climate change. Although the precise magnitude remains uncertain, the direct cloud response to
an external forcing is known to be destabilising. Additionally, clouds have a masking effect on CO2 forcing and
can influence other feedback mechanisms such as the surface albedo feedback. To understand the overall impact
of clouds, we compute how much the equilibrium climate sensitivity (ECS) to a doubling of CO2 changes when
clouds are made transparent to radiation in an Earth system model (MPI-ESM1.2, the Max Planck Institute for
Meteorology Earth System Model version 1.2). In practice, to stabilise the model climate at near-preindustrial
temperatures, the solar constant was reduced by 8.8 %. Our experiments reveal that clouds exert a stabilising
influence on the model, with a clear-sky ECS of 4.29 K, which is higher than the corresponding full-sky ECS
of 2.84 K, contrasting with their direct destabilising effect. Detailed partial radiative perturbation diagnostics
show that beyond directly amplifying warming by themselves, clouds also strengthen the negative lapse rate and
positive water vapour feedbacks, while strongly damping the positive albedo feedback. These findings highlight
the complex role of clouds in modulating climate sensitivity.

1 Introduction

The radiative balance at the top of the atmosphere (TOA) de-
termines the state of the climate system. When the system
is in equilibrium the mean imbalance is zero, but when the
system is forced, a positive or negative imbalance can arise,
resulting in warming or cooling of the system. The magni-
tude of climate change is usually quantified as the equilib-
rium climate sensitivity (ECS), which is defined as the long-
term global mean temperature change when the system is
forced by a doubling of the CO2 concentration relative to
preindustrial levels. The ECS assessed value by the IPCC
AR6 (Intergovernmental Panel on Climate Change Sixth As-
sessment Report) is 3 K, with a likely range from 2.5 to 4 K
(Forster et al., 2021). In recent years, after having been the
main tool to assess the ECS for decades, climate model sim-
ulations have been largely shelved in favour of other lines
of evidence that allowed the ECS uncertainty to be narrowed
down by close to a factor of 2 (Sherwood et al., 2020; Forster
et al., 2021). This seemed timely since the Coupled Model

Intercomparison Project phase 6 (CMIP6) showed, across 27
global climate models (GCMs), a wider range of the ECS
than in previous phases. The causes of this widening have
been partly traced back to model representation of cloud pro-
cesses, not all of which are completely understood (Zelinka
et al., 2020; Flynn and Mauritsen, 2020).

Generally, ECS can be estimated elegantly in a linear
framework (see Sect. 2.1) as the temperature change that
would re-establish the radiation balance at the TOA, and it
can be expressed as (minus) the ratio of a radiative forcing
F to a linear response to temperature changes λ, the feed-
back parameter (Gregory et al., 2004). One approach, which
generally goes by the name of process understanding, builds
on this simple formula, separately estimating the forcing F
and the feedback λ using different lines of evidence. Recent
studies (Wilson and Gea-Banacloche, 2012; Jeevanjee et al.,
2021; Stevens and Kluft, 2023) have shown how it is possi-
ble to derive analytical expressions for the feedback and the
forcing in the spectral space by making only a few reason-
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able assumptions, mainly regarding the dependencies of rel-
ative humidity on temperature and on the spectral properties
of water vapour and CO2 absorption. For example, the works
of Jeevanjee et al. (2021) and Stevens and Kluft (2023) have
focused on the calculation of the clear-sky ECS by comput-
ing the effects of the atmospheric components on the feed-
back and the forcing. The effects of water vapour and CO2
are computed one after the other; however, introducing the
role of clouds into this analysis is intrinsically complicated
due to the multitude of mechanisms associated with them.
Therefore, Stevens and Kluft (2023) conclude that within
their framework, it is not yet evident if clouds play more of
a stabilising or a destabilising role, since cloud feedback and
masking effects on both forcing and feedback push the ECS
in different directions. As a consequence, the cloud effect on
ECS can be seen as a correction to a clear-sky ECS, which
itself depends mostly on physical mechanisms that are quan-
tifiable with greater confidence than cloud-related processes.

Motivated by these ideas of estimating ECS without
clouds influencing the result, we set out to test this idea in
a global climate model. We achieved this by making clouds
transparent to all radiation and compensating for the warm-
ing that results by adjusting the solar constant. Essentially,
one can think of the present study as complementing the
one-dimensional models proposed earlier, in that we addi-
tionally simulate the global circulation response to the pres-
ence (full-sky, FS) and absence of clouds (clear-sky, CS).
We compare our findings with clear-sky diagnostics obtained
within the full-sky simulations, which are indicative of the
direct effect of clouds, without including the global circula-
tion response (clear-sky from full-sky, CSF), finding surpris-
ing agreement in the total feedback strength with our clear-
sky experiment. We furthermore apply the partial radiative
perturbation (PRP) technique to separate the feedbacks and
forcing contributions, to elucidate which mechanisms differ
between the two simulations.

We expect clouds to affect non-cloud feedback mecha-
nisms in two ways: modifying the control climate state, e.g.
the sea-ice extent, and affecting the general circulation re-
sponse to increasing CO2 concentration. Within our clear-
sky framework, the two effects act simultaneously, while CSF
only diagnoses the effect of the cloud response to CO2 con-
centration increases. Another method that has been exten-
sively employed to address similar questions is cloud-locking
(Mauritsen et al., 2013; Middlemas et al., 2020). Prescrib-
ing the cloud field from a control state under warming al-
lows us to remove the role of cloud feedbacks without sig-
nificantly altering the control state. However, this approach
is less suitable for the assessment of the role of clouds as
a whole, as fixing cloud radiative properties under warming
does not ensure the removal of their masking effect on CO2
forcing, water vapour, and albedo feedbacks (Kang et al.,
2008), in contrast to our method. Our idea of removing the
cloud radiative effect is not completely novel, and examples
of a similar approach for the longwave component can be

found in Slingo and Slingo (1988, 1991) and more recently
in the COOKIE intercomparison experiment (Stevens et al.,
2012), where fixed sea surface temperature (SST) simula-
tions proved useful to study inter-model differences in pre-
cipitation climatology (Fläschner et al., 2018). In our setup,
using coupled simulations without prescribing the SST pat-
terns allows us to study how clouds affect climate sensitivity
and the response to CO2 in a more natural framework.

2 Methods

Our analysis was carried out by performing simulations
with the Max Planck Institute for Meteorology Earth Sys-
tem Model version 1.2 (MPI-ESM1.2). The next sections de-
scribe the linear framework and the general procedure used
for feedback and forcing estimations, the peculiarities of the
model we used, the setup necessary for the clear-sky simula-
tions, and the experiment design.

2.1 The linear framework and the regression method

To study the temperature response to a given forcing, a linear
framework (Forster et al., 2021) is used, expressing the TOA
imbalance N as the sum of an effective radiative forcing F
(ERF in the following, Sherwood et al., 2015) and a con-
tribution linearly proportional to the surface air temperature
(SAT) change 1T :

N = F + λ1T, (1)

where the strength of the effect that the temperature change
feeds back to the TOA imbalance is given by the feedback pa-
rameter λ. Typically, if the applied forcing is small enough,
it can be assumed that the feedback parameter is state and
time-independent. This assumption, which is not always per-
fect (Ceppi and Gregory, 2019), is generally accepted when
the magnitude of the forcing is small enough, as is the case
with CO2 concentration doubling.

In this framework it is often assumed that different feed-
back mechanisms act independently from each other, allow-
ing for a separation of the total imbalance into as many terms
as the number of mechanisms affecting it. Traditionally, the
imbalance is separated into contributions from CO2, temper-
ature, water vapour, surface albedo, and clouds:

N =NCO2 +NT+NWV+Nα +NC, (2)

where the temperature contribution is further divided into
stratospheric (to separate effects of the well-known strato-
spheric cooling), Planck, and lapse rate tropospheric terms.
In principle, additional feedback mechanisms may apply for
forcings other than CO2 concentration changes, which would
result in corresponding contributions to the imbalance. Nev-
ertheless, for our model configuration and CO2 concentration
changes, this separation adds up to the total imbalance. In ac-
cordance with this framework, the imbalance N is calculated
at the TOA throughout the entirety of our analysis.
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The established Gregory regression method (Gregory
et al., 2004) is used to compute the ECS and the contribu-
tions to the total feedback from different mechanisms (see
Sect. 2.5), whereby an ordinary least-squares linear regres-
sion is applied to the first 100 years of each simulation un-
less otherwise stated. Since the TOA imbalance goes to zero
at the equilibrium, the ECS can be derived from Eq. (1) as

ECS=−
F

λ
. (3)

Although great care was taken to stabilise the control sim-
ulations, these still had some drift. Therefore, yearly TOA
imbalance and temperature differences are calculated with
respect to contemporaneous 21-year running mean values
from the control simulation (Caldwell et al., 2016; Zelinka
et al., 2020), so that by TOA imbalance we actually mean
the difference between the imbalances of the experiment
and the control simulation N = Rexp−Rctrl. Although after
100 years the climate system is still far from the equilib-
rium, and this might lead to an estimated ECS smaller than
the true value, our model configuration is not particularly
prone to show feedback time-dependency after 100 years
(see Sect. 3). Therefore, for the scope of this paper we study
feedback changes to 100-year regressions after CO2 is dou-
bled.

For the ERF contributions, we complement the Gregory-
derived estimates with estimates based on the fixed-SST
method (Hansen et al., 2005). In these experiments, the forc-
ing is estimated from a fixed-SST simulation as

FS =N0− λδT0, (4)

with N0 the average TOA imbalance over 30 simula-
tion years, λ the feedback parameter from the regression
method, and δT0 the 30-year average global mean temper-
ature change, which differs from zero since land tempera-
tures are not fixed. The second term thus accounts for the
small surface-temperature response to the forcing, although
the λ from the coupled run may differ from the actual feed-
back parameter of the fixed-SST run due to a different warm-
ing pattern. Nevertheless, it still yields a good approximation
of FS since δT0 is small and is likely to be more accurate
than discarding the second term entirely, as noted by Hansen
et al. (2005). Averaging over 30 years accounts for the inter-
nal variability in the climatology.

2.2 Model properties

MPI-ESM1.2, a coupled Earth system model, was used at
its coarse resolution, i.e. CR (Mauritsen et al., 2019), to
allow us to perform longer simulations and investigate the
dependency of our results on slow adjustments and initial
conditions. The atmosphere model uses T31 spectral trun-
cation with a corresponding 96× 48 atmospheric grid (about
3.75°× 3.75°) and 31 vertical levels, while the ocean compo-
nent has a bipolar curvilinear grid with a nominal resolution

of 3°× 1.8° and 40 vertical levels. MPI-ESM1.2-LR has an
ECS of 2.77 K, and our computed value for MPI-ESM1.2-
CR is 2.84 K, placing it near the 3 K best estimate by IPCC
AR6 but in the lower half of the assessed likely range of 2.5–
4.0 K (Forster et al., 2021).

Cloud mechanisms have been identified as one of the main
sources of the ECS spread among different models (Bony
et al., 2006, 2015; Zelinka et al., 2020; Flynn and Mauritsen,
2020), and for this reason, it is important to bear in mind how
the model we use represents their behaviour under warming.
MPI-ESM1.2 shows a positive cloud fast adjustment and an
overall small but positive cloud feedback (Mauritsen et al.,
2019), which is broadly in line with what other models do
(Andrews and Forster, 2008; Zelinka and Hartmann, 2010;
Kamae et al., 2015; Zelinka et al., 2020).

Given that both their feedback and forcing adjustment con-
tributions are positive, clouds in MPI-ESM1.2-CR directly
act to raise the model’s ECS. We can quantify this effect by
isolating the cloud contributions and computing the diagnos-
tic clear-sky ECS that we would obtain if the effect of making
the clouds transparent to radiation were only that of zeroing
their feedback (λC) and fast-adjustment (fC) contributions in
the full-sky experiment:

ECS⊥CS = ECSFS

[
λFS

λFS− λC
·
FFS− fC

FFS

]
︸ ︷︷ ︸

ξ−1

. (5)

The diagnostic estimate of the direct effect that clouds have
on the ECS using PRP-derived λC and fC (see Sect. 2.5) is
ξ = 1.18±0.04. As a value greater than 1, this indicates that
the direct cloud effect is destabilising.

However, clouds not only play a direct role in the climate
system through their radiative response to CO2 increases and
feedback to global warming but also can have a strong indi-
rect effect in that they mask the response of non-cloud feed-
back mechanisms. The sum of these indirect and their direct
effects on the climate system determines whether clouds ul-
timately stabilise or destabilise the climate. We calculate this
total effect in two ways. The first one, which consists of look-
ing at clear-sky fluxes from our full-sky simulation (CSF),
accounts for all of the clouds’ effects except for their dynam-
ical response to circulation changes. The second one, imply-
ing the calculation of the clear-sky ECS within our simulated
transparent-cloud world, also accounts for their dynamical
response to CO2 increases and their alteration of the con-
trol climate. We introduced here ECS⊥CS in the comparison
with ECSFS and ECSCS to emphasise the difference between
the effect on the ECS that clouds directly have through their
feedbacks and the indirect effect that they produce affecting
the other forcing and feedback mechanisms. In the majority
of model intercomparison analyses, the focus is on the direct
effect, although in our experiment the indirect cloud effect is
of comparable magnitude.
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2.3 Cloud transparency and solar constant adjustment

In the clear-sky simulations, the clouds are made transpar-
ent to radiation of every wavelength in order to remove the
cloud radiative effect (CRE). This is achieved by setting the
cloud water path equal to zero in the radiation calculations,
such that the cloud optical depth is effectively zero. In the
standard MPI-ESM1.2 control climate, the CRE calculated
at the top of the atmosphere results in a strong cooling in the
shortwave, as clouds reflect solar radiation, and warming to
a lesser extent in the longwave, as is also the case in the real
world (Boucher et al., 2013). The net global mean CRE being
negative implies that removing clouds would lead to a much
warmer climate, and our estimate from Gregory extrapola-
tion is that it could stabilise at approximately 22 K warmer
than the current climate. We thus deemed the results to be
less relevant to the goals of the current study. For this reason,
we chose to compensate for this warming, and we achieve
this by reducing the solar constant.

The intensity of the reduction is first computed theoreti-
cally by matching the extrapolated ERF of the CRE removal
with the reduction in the incoming shortwave radiation. Such
simulations nevertheless resulted in a residual 4.7 W m−2 im-
balance that would lead to a prohibitive drift. Consequently,
the solar constant was further reduced in an iterative tuning
process aiming at getting as close as possible to initial zero
imbalance. Our final value for the solar constant multiplica-
tion factor is 0.912, meaning a reduction by −8.8 % of its
current magnitude. This value is then used for all the clear-
sky simulations henceforth.

Given the strong differences in the spatial patterns of the
two forcings we applied when compensating for the removal
of cloud radiative effects by the reduced solar constant, we
analyse how letting the system equilibrate on long timescales
affects our findings. As shown in Sect. 3.1, waiting 800 years
rather than 100 does not yield substantially different results
and only marginally enhances differences that are already
discernible after 100 years. In the following, clear-sky ex-
periments spun-up after 800 years are considered.

2.4 Clear-sky simulation peculiarities

Whilst the ECS is a metric defined using global mean quanti-
ties, SAT patterns are known to affect climate feedbacks (Ar-
mour et al., 2013; Andrews et al., 2015; Ceppi and Gregory,
2017). Hence it is worth describing them in the clear-sky sim-
ulation. As the clear-sky system was tuned to aim at zero ini-
tial imbalance, we used surface air temperature time series of
the clear-sky simulation to compare with the full-sky prein-
dustrial control simulation. In the case of MPI-ESM1.2-CR,
the full-sky preindustrial control simulation itself is the re-
sult of a spin-up from the ocean state of the previous model
version and of fine tuning until quasi-stationarity is achieved
(Mauritsen et al., 2019). From the same preindustrial con-
trol simulation, we started the clear-sky experiment by si-

multaneously applying the solar constant reduction and cloud
transparency. In the clear-sky experiment, the sea surface and
deep-ocean temperature responses to our perturbation are ob-
served over decadal and centennial timescales, respectively,
motivating the choice of performing CO2 doubling experi-
ments after either 100 or 800 years. However, the conclu-
sions drawn from our results are independent of either of the
choices.

Compensation for the CRE removal by the solar con-
stant reduction ensured that the clear-sky simulation under-
went only a slight cooling relative to the full-sky simula-
tion, with a decrease in the global mean temperature by
0.61 K after 900–1000 years. The global pattern (Fig. 1) ex-
hibits more-pronounced temperature differences over land
(−2.08 K) and especially over dry regions, while midlatitude
oceans are warmer (+0.59 K), particularly in correspondence
with stratocumulus-covered regions such as the northeast Pa-
cific. Clear-sky conditions also affect the sea-ice annual cy-
cle, resulting in an increase in both its amplitude and annual
mean in the Southern Hemisphere. Specifically, the Southern
Ocean sea ice increases by almost 100 % in extent and more
than 150 % in volume as a consequence of the removal of the
cloud radiative effect, which is positive in the Antarctic re-
gion. As we shall see, this is a major cause of the albedo
feedback increase and the Planck feedback intensification
observed in the clear-sky experiments (see Sect. 3.1). The
two effects partially compensate for each other, as the feed-
backs have opposite signs. The clear-sky temperature pattern
is a consequence of the different spatial pattern of the CRE
removal and the compensating solar constant reduction. De-
spite these differences, the global pattern of warming shows
good agreement between the two simulations, with the clear-
sky simulation warming slightly more in the Southern Hemi-
sphere.

2.5 Experiment design and feedback decomposition

Despite the ECS being defined as the temperature difference
after CO2 concentrations doubling, the standard experiment
from CMIP5 and from CMIP6 onwards in the DECK (Diag-
nostic, Evaluation and Characterization of Klima) setup was
the abrupt4xCO2 scenario (Eyring et al., 2016). This was
chosen in order to obtain a higher signal-to-noise ratio in
the Gregory plot, assuming the forcing from CO2 doubling
is half that of CO2 quadrupling. Nevertheless, it has been
shown that many models indicate a significant ECS increase
with warming because of non-linearity that arises when the
forcing of the system is not small enough (Jonko et al., 2013;
Meraner et al., 2013). In our experiments, we want to dis-
entangle the effect of cloud transparency on feedback mech-
anisms from the internal variability in the system. To over-
come both problems, we account for the variability by per-
forming an ensemble of 10 experiments (abrupt2xCO2) for
each of the two configurations, with different initial condi-
tions. This way, differences that stand out from the ensemble
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Figure 1. (a) SAT difference between the control simulations, 100-year average. Values for the clear-sky simulation are computed 800 years
after its spin-up from the full-sky scenario. (b) Net cloud radiative effect in the full-sky experiment, showing positive values over Antarctica.
(c, d) Yearly average Southern Ocean ice cover in the control simulation for the full-sky and clear-sky simulations. (e, f) SAT warming
100 years after the CO2 concentration doubling, normalised to its global mean, for the full-sky and clear-sky simulations and (g) the latitudinal
average.

spread can be considered significant. The 10 ensemble mem-
bers are simulations starting 20 years apart from each other,
running for 100 years each. Initial conditions are taken after
the system has equilibrated. For the clear-sky experiments,
this is between 800 and 1000 years after spinning up from
the full-sky state, which is quasi-stationary from the begin-
ning (a detailed description is provided in Mauritsen et al.,
2019, Sect. 8.1).

The feedback decomposition is achieved by making use
of an online partial radiative perturbation technique (PRP;
Wetherald and Manabe, 1988; Colman and McAvaney, 1997;
Meraner et al., 2013). It is more computationally expensive
than the radiative kernel method (Soden et al., 2008), but
PRP is far more accurate and allows for direct computation
of the feedback contribution from clouds, which in the stan-
dard kernel method is only computed as a residual (e.g. So-
den et al., 2008). The application of the PRP technique with
a time step for the PRP call in the radiation code of 10 h, re-
sulting in a sampling of the diurnal cycle in 5 d, shows that
the single-feedback contributions add up to the total feedback
with just a 0.2 % error.

3 Results

By means of Gregory regression over the 10 ensemble mem-
bers, we estimate the effective ECS of the full-sky and clear-
sky experiments in two steps. First, we calculate feedback
and forcing for each ensemble member, then, assuming the
regressed feedbacks and forcings are taken from a Gaussian
distribution whose standard deviation we estimate from the

ensemble spread, we determine the ECS distributions. Our
results (Fig. 2) show that the clear-sky ECS (4.29 K) is signif-
icantly higher than the full-sky ECS (2.84 K), with the clouds
having an overall effect opposite in sign to that of just their
direct feedback (diagnosed ECS⊥= 2.36 K). The picture is
similar if, assuming that the clear-sky and the cloud-mediated
TOA imbalances independently approach zero at the equilib-
rium, we calculate an ECS from the clear-sky fluxes within
the full-sky simulation (4.80 K, a detailed description of this
calculation is provided in Appendix A). The increase in the
ECS is mainly caused by a significant reduction in the feed-
back strength without the clouds, a feature consistent be-
tween the values derived from the clear-sky experiment and
the clear-sky fluxes within the full-sky simulation. We inves-
tigate the feedback changes in the next section before moving
on to the forcing differences in Sect. 3.2.

3.1 Feedbacks

In the clear-sky simulation, the total feedback pa-
rameter (λCS =−0.81± 0.03 W m−2 K−1) is significantly
weaker than in the full-sky simulation (λFS =−1.30±
0.03 W m−2 K−1) and extremely close to the clear-sky fluxes
from full-sky estimate (λCSF =−0.80± 0.04 W m−2 K−1).
In Fig. 3, the full-sky and clear-sky individual feedbacks
are compared, together with the values obtained by regress-
ing the clear-sky fluxes in the full-sky simulation (CSF). We
can consider the latter values as indicative of the immediate
impact one would observe by swiftly removing the clouds
without allowing the system to adjust to this change as in
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Figure 2. Gregory plot (yearly global mean TOA imbalance versus
SAT change) for the full-sky (blue), clear-sky (red), and clear-sky
fluxes from full-sky (purple) experiments. Regression lines are ob-
tained from the ensemble average slope and intercept, with shaded
areas covering their total spread. Using 500 simulation years (grey
dots, single realisation) does not change the result substantially, al-
beit with a slight bending (ECS= 4.7 K). The bottom panel shows
the computed ECS distributions. The green bar plot represents the
diagnosed ECS⊥CS of Eq. (5).

the clear-sky simulation (Appendix A). Differences between
full-sky and CSF values are representative of the masking
effect of clouds, whereas clear-sky values account for both
simple masking and the feedback mechanisms’ alteration
by the global circulation response to cloud transparency.
The biggest differences between full-sky and clear-sky come
from the positive variations in the surface albedo and lapse
rate (LR) feedbacks, the latter being only partially compen-
sated by the weakening of the water vapour (WV) feedback.

The weakening of the LR feedback is the most interesting
result. It is mostly given by the weakening of the strongly
negative LR feedback in the tropical region. The upper-
tropospheric warming has already been found to be cloud-
induced (Wetherald and Manabe, 1988; Langen et al., 2012),
and Mauritsen et al. (2013) proposed that this could be due to
a longwave flux convergence below the cloud tops, as warm-
ing the surface emits more radiation, while anvil clouds emit
roughly the same (Hartmann and Larson, 2002), thus lead-
ing to flux convergence and heat accumulation aloft. If the
flux convergence of heat, which is generated below the anvil
tops but can propagate horizontally, disappears when clouds
are made transparent, then there would be less heating aloft,
ultimately leading to a weaker negative lapse rate feedback.
This similarity in the lapse rate feedback strength between
full-sky and CSF in Fig. 3 is consistent with this hypothe-
sis, as anvil clouds do not seem to significantly mask high-

Figure 3. Feedback parameters across 10 ensemble members, di-
agnosed with the PRP technique for the full-sky (blue), clear-sky
fluxes from full-sky (CSF, purple), and clear-sky (red) experiments.
The biggest differences between full-sky and clear-sky simulations
are in the lapse rate and albedo feedbacks.

altitude tropical warming. A focus on the Indo-Pacific Warm
Pool region (15° S–15° N, 110° E–160° W; e.g. in Jian et al.,
2022), which is characterised by strong negative lapse rate
feedback, shows the high-altitude warming, peaking between
300 and 200 hPa. The peak is located below the level of max-
imum cloudiness, where differences between clear-sky and
full-sky cloudiness are the greatest (Fig. 4). This further sug-
gests that high clouds play an important role in determining
the strength of the lapse rate feedback.

The WV feedback instead shows completely different be-
haviour. Because the water vapour is primarily located at
lower altitudes and is thus masked by the clouds above it,
the sudden removal of this masking, as for the CSF value,
results in a stronger WV feedback. Conversely, when the
clouds are permanently made transparent to radiation (clear-
sky), the weakening of the LR feedback also reduces the WV
feedback originating from water vapour at higher altitudes; if
there is less warming in the upper troposphere, where humid-
ity can be considered temperature-constant, there would be
less high-altitude water vapour increase with the same sur-
face warming and hence a weaker WV feedback. This com-
pensating effect, which is well-known in the literature (Col-
man and Soden, 2021), is better appreciated when compar-
ing CSF and clear-sky since in full-sky clouds mask the two
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Figure 4. Warming 100 years after CO2 concentration doubling,
normalised to the surface values for the clear-sky and full-sky sim-
ulations in the Indo-Pacific Warm Pool, together with the average
cloud cover fraction of the area in the full-sky simulation.

feedbacks differently, and this is the main reason that the in-
dividual CS and CSF feedbacks add up to nearly the same
total feedback.

The albedo feedback is primarily caused by the snow and
sea-ice melting in the polar regions. Those regions are gen-
erally cloudy, and hence removing cloud radiative effects al-
lows more SW radiation to reach the surface, thus enhanc-
ing the surface albedo feedback with all other things be-
ing equal. The albedo feedback strength grows from 0.46 to
0.73 W m−2 K−1 from the full-sky to clear-sky experiments,
which would become 0.80 W m−2 K−1 if normalised by the
solar constant reduction in the latter experiment. The agree-
ment between CSF and clear-sky feedback strength might
lead us to think that the effect of clouds is that of pure mask-
ing. However, this agreement is purely coincidental, as the
increase in Antarctic sea ice in the clear-sky experiment is re-
sponsible for a widening of the area where a positive albedo
feedback acts rather than an increase in feedback intensity in
the same regions, as would be expected from masking (see
Fig. 5 and the discussion in Sect. 3.3).

The Planck feedback shows minor differences, but it is
slightly stronger under clear-sky conditions, possibly be-
cause the emission level is closer to the surface and thus
warmer when clouds are transparent.

3.2 Effective radiative forcing

The differences in the ERF between full-sky and clear-sky
simulations can be traced back to not only the direct CO2
forcing but also stratospheric temperature and cloud adjust-
ments that act to enhance the forcing. When separating the
total imbalance into the single components, extra care should
be taken in the interpretation of the fast adjustments. When
analysing the single contributions using the Gregory method,
deviations from linearity can lead to what we would think are
fictitious adjustments because the regression method is ex-
trapolating back to zero temperature change (the y-axis in-
tercept). To take this into account, for our analysis we used
three methods to assess the ERF. Here we highlight strengths
and weaknesses of each of them.

1. Gregory regression across the entire 100 years of sim-
ulation (G100). As this is the same method as the one
used to assess the feedback parameter, it allows us to ex-
plain the extent to which the contributions to the ERF in
the full-sky and the clear-sky simulations lead to a dif-
ferent ECS. But because the regression is determined by
interpolation of points that get denser further away from
the y axis, the method leads to a low bias in the case of
a gradually weakening time-dependent feedback.

2. Gregory regression for the first 20 years of the simu-
lation, as in Block and Mauritsen (2013) (G20). Us-
ing points on a smaller temperature range closer to
1T = 0, where they are less affected by feedback time-
dependency, is more representative of the initial forc-
ing. However, it does not entirely explain ECS differ-
ences and is more susceptible to short-term variability,
although the 10-ensemble method we use addresses the
latter limitation.

3. Fixed-SST 30-year experiments, following the Hansen
et al. (2005) method (H30). An advantage of this
method is that a fixed SST results in most feedback
mechanisms being effectively disabled. Nevertheless,
land temperatures may change, and in particular, feed-
backs occurring over land might be different in the full-
sky and clear-sky simulations.

Consequently, when focusing on the impact on the ECS,
G100 is preferable, while physical interpretation is more
straightforward using G20 and H30.

Results for the total forcing with the three methods are pre-
sented in Fig. 6. What we would expect from the physically
grounded argument of clouds masking the direct CO2 forc-
ing, is that their transparency should result in an increase in
the total forcing. However, this forcing enhancement in the
clear-sky simulation is only observed when using G20 and
H30, although the differences are not statistically significant
for any of the three methods. This is primarily attributable
to the presence of a cloud adjustment that partially offsets
the direct CO2 forcing. The calculations also show notable
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Figure 5. Local feedback parameters as averages over the 10 ensemble members and the differences between full-sky and clear-sky exper-
iments. The total row is the sum of temperature, water vapour, and albedo and cloud feedbacks, while temperature is the sum of the Planck
and lapse rate feedbacks and a negligible stratospheric component (not shown).

agreement between the clear-sky experiment and the corre-
sponding forcing estimated from the clear-sky fluxes in the
full-sky simulation (CSF) when using G20 and H30. Consis-
tently with the physical interpretation that the difference be-
tween the two setups is solely attributable to the dynamical

role of clouds, it appears reasonable to observe differences
only in the feedback. Therefore, since there are other mech-
anisms that we expect to potentially be affected by the cloud
transparency, we further analyse them by separating the total
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Figure 6. Total forcings from the full-sky experiment (blue), clear-
sky experiment (red), and clear-sky fluxes from the full-sky exper-
iment (purple) computed with three different methods. Error bars
are plus and minus 1 standard deviation of the ensemble spread for
G100 and G20 and 1 standard deviation of the yearly mean imbal-
ances for H30.

Figure 7. CO2 direct forcing and fast adjustments assessed with the
PRP technique for the full-sky experiment (shades of blue), clear-
sky simulation (red to yellow), and clear-sky fluxes from the full-
sky experiment (shades of pink) using the three methods described
in Sect. 3.2. Error bars are 1σ of the ensemble spread for G100 and
G20 and 1σ of the yearly mean imbalances for H30.

ERF in the direct CO2 forcing and the fast adjustments using
PRP, as shown in Fig. 7.

In the clear-sky simulation, the CO2 direct forcing is en-
hanced with respect to the full-sky simulation. The three
methods show good agreement, with clear-sky forcings al-
ways stronger than those of the full-sky simulation. The ef-

fect of clouds damping this forcing, which has long been
known (e.g. Myhre et al., 1998), is explained well by Stevens
and Kluft (2023): since the temperature of high clouds con-
trols the emission of the CO2 below them, they reduce the
effects of changes in CO2 concentration. Nevertheless, the
presence of clouds also permits a cloud adjustment, that is,
a change in cloudiness in direct response to the change in
CO2 concentration. In MPI-ESM1.2 there is a positive cloud
fast adjustment (Fig. 7), primarily due to a reduction in the
low-level stratiform clouds in the subtropics. Similar mecha-
nisms have been found in other models (Andrews et al., 2012;
Kamae et al., 2015). The removal of this cloud adjustment,
however, only partially counterbalances the direct CO2 forc-
ing, such that other small changes to adjustments add up to
the nearly identical ERF between the full-sky and clear-sky
experiments (Fig. 6).

Differences in the diagnosed adjustments between the
three different methods, (G100, G20, H30), can also be ef-
fects of the bending and feedback time-dependency in the
Gregory diagram (Block and Mauritsen, 2013). Such be-
haviour is particularly evident for the lapse rate and water
vapour feedbacks, which nearly cancel, as well as for the
surface albedo feedback. These effects are larger in the clear-
sky experiments. The G100 method is mostly affected by the
bending, and in most cases the H30 method is least affected.
As can be observed from Fig. 2, the feedback time depen-
dency affects the CS experiment more than the FS, while be-
ing mainly limited to sub-centennial scales. Somewhat sur-
prisingly, the water vapour adjustment computed with H30
is negative. This is due to the Hansen forcing definition, and
we explain it in Sect. 3.3.

3.3 Spatial patterns of feedback and forcing

Following Hedemann et al. (2022) we used the global mean
temperature definition of local feedback to represent the spa-
tial differences between the full-sky and clear-sky simula-
tions. In this way, local feedbacks are linearly additive and
local differences can explain global feedback variations. Lo-
cal feedback differences for each component are plotted in
Fig. 5. Two details can be observed from the map of total
feedback differences. First, the spatial pattern is strongly in-
fluenced by that of the cloud feedback, which is zero in the
clear-sky scenario. Second, the strongest differences are in
the Southern Ocean, where cloud transparency strongly en-
hances the albedo feedback as a consequence of the different
ice distributions it induces in the control state (see panels (c)
and (d) in Fig. 1). The different behaviour of Southern Ocean
sea ice, which is subject to larger seasonal changes in the
clear-sky experiment, also affects the temperature feedback.
This feedback is generally stronger at high latitudes under
clear-sky conditions. The removal of clouds also plays an im-
portant role in damping the positive water vapour feedback
at low latitudes, reducing latitudinal variations.
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Figure 8. Local ERF contributions and the differences between the full-sky and clear-sky experiments, calculated using H30.

Spatial forcing contributions are shown in Fig. 8. As with
the case of feedbacks, the rich spatial pattern observed in
full-sky experiment is primarily attributed to the contribu-
tion of clouds, which is positive over land and predominantly
negative over the oceans, especially in the eastern boundary

regions and within the equatorial band. Contributions from
other mechanisms exhibit greater spatial homogeneity. It is
interesting to observe how the CO2 forcing is influenced by
high and thick clouds, with the forcing being more strongly
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damped in the regions of the Southern Ocean storm tracks
and the Asian monsoon.

With respect to the water vapour feedback, it can be puz-
zling to see a negative global mean adjustment in the fixed-
SST scenario. This is an artefact of the local application of
Eq. (4). The term F0 is positive over all land and nearly zero
over the oceans (not shown), while the WV feedback is pos-
itive and stronger over the oceans (Fig. 5). This means that
removing it from the oceans (where temperatures are held
fixed and feedbacks are disabled) introduces a strong nega-
tive offset that adds to the less intense removal over lands,
resulting in a negative FS.

4 Conclusions

By comparing climate change simulations with abruptly dou-
bled atmospheric CO2 using the MPI-ESM1.2 global climate
model in runs with and without cloud radiative effects, we
have shown that clouds can exert a stabilising influence on
the climate system. When clouds are made transparent to ra-
diation in the model, the equilibrium climate sensitivity in-
creases from 2.84 to 4.29 K. Whereas the effective radiative
forcing is surprisingly close in magnitude, the total negative
feedback is substantially weakened when clouds are made
transparent.

At face value, this may seem surprising since the MPI-
ESM1.2 model’s diagnosed cloud feedback and the cloud ad-
justment to increasing CO2 are both positive and so should
act to enhance global warming. According to these diag-
nostics, the equilibrium climate sensitivity should have de-
creased to 2.36 K when clouds were made transparent. The
reason is that clouds have more effects in the model. In ad-
dition to the positive cloud feedback and fast adjustment
to CO2, clouds also mask part of the direct CO2 forcing,
and they alter the strength of other feedback mechanisms,
through either simple masking or altering the mechanism
through changes in the control climate or the circulation.

When it comes to effective radiative forcing, the situation
is fairly simple. The masking effect of clouds is to dampen
the direct radiative forcing from a doubling of CO2 by about
0.7 W m−2. In simple terms, high clouds mask the CO2 in-
crease occurring below them. In MPI-ESM1.2 the clouds re-
spond directly to a CO2 increase with a decrease in cloudi-
ness, thereby increasing the forcing by about 0.4 W m−2. To-
gether with a number of other small contributions, the net
effect of clouds on the effective radiative forcing in this par-
ticular model is close to zero.

The situation is more complex when it comes to the ef-
fect of clouds on the total feedback. When including clouds,
the total feedback is reduced by nearly −0.5 W m−2 K−1,
despite the fact that the MPI-ESM1.2 model has a positive
cloud feedback of about 0.1 W m−2 K−1.

A naive expectation might be that removing clouds should
unmask a stronger surface albedo feedback. This simple idea

is supported by the fact that the diagnosed clear-sky surface
albedo feedback in the full-sky experiment is close in mag-
nitude to that in the clear-sky experiment. However, upon
closer inspection of the spatial distribution of the surface
albedo feedback, this appears to be coincidental since there
are substantial changes in the base climate with less snow and
ice in the Northern Hemisphere and much more abundant sea
ice in the Southern Ocean in the clear-sky experiment. The
end result in both these cases is that the presence of clouds
dampens the surface albedo feedback by about a factor of 2,
or about −0.3 W m−2 K−1.

The largest single contribution to the change in the to-
tal feedback comes from the lapse rate feedback, about
−0.7 W m−2 K−1. This is partially compensated for by
shifts in the water vapour and Planck feedbacks, but if we
add up all three feedbacks, the difference is still close to
−0.3 W m−2 K−1. The much stronger lapse rate feedback is
primarily associated with cloud-induced heating in the tropi-
cal upper troposphere and represents an effect that is not sim-
ply a cloud masking effect.

All in all, it should be remembered that the effect of clouds
will be model dependent. But also, therefore, it is to be ex-
pected that inter-model differences for the models without
cloud radiative effects will be smaller than inter-model dif-
ferences for the models with them. In the present study, we
propose a fairly simple protocol of reducing the solar con-
stant to stabilise the climate near the preindustrial state, and
so it could be easily replicated by other modelling groups.

Appendix A: Diagnosing clear-sky ECS from the
full-sky simulation

What is the meaning of the clear-sky feedback and forcings
that we obtain from the clear-sky fluxes in the full-sky simu-
lation (CSF)? The single calculation that the radiation code
performs is exactly the same as the one performed in the
clear-sky simulation, except for the fact that clear-sky val-
ues are not used to update physical quantities outside the
radiation code in the full-sky simulation. This means that
we can regard CSF as an instantaneous “transient” value be-
tween the full-sky and the clear-sky simulation, which ac-
counts only for the instantaneous cloud masking without the
dynamical response to their radiative effect. In the clear-sky
experiment instead, the system dynamically reacts to the ab-
sence of clouds. It is important to note that from the clear-sky
fluxes within the full-sky simulation, inferring a clear-sky
ECS is possible under one assumption. The Gregory regres-
sion method builds on the physical argument that the TOA
imbalance goes to zero at the equilibrium, and in principle
such an argument does not hold for the clear-sky fluxes since
the clouds’ contributions can be different at different states,
and the two contributors to the equilibrium imbalance can
change:

1Neq =NCSF +NCL = 0, (A1)
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namely RCSF and RCL being different for different equilib-
rium states (with higher CO2 concentrations, the low clouds’
radiative effect would be partly damped by the extra CO2
above them), where N = R−R0 is the TOA imbalance and
R0 the TOA net flux of a reference equilibrium state. How-
ever, if the full-sky simulation were not to see NCL, it would
continue warming until NCSF = 0 alone, and consequently,
the equilibrium temperature can be inferred with the same
extrapolation method using NCSF and temperature from the
full-sky experiment. In other words, the decomposition of
Eq. (A1) is an alternative to that of Eq. (2), with NCL being
the sum of the direct cloud contribution NC and the masking
effect on all other feedbacks.
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