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Abstract. We conducted a 2-year study utilizing a network of fixed sites with sampling throughout an extended
prescribed burning period to characterize the emissions and evolution of smoke from silvicultural prescribed
burning at a military base in the southeastern USA. The measurement approach and an assessment of the in-
strument performance are described. Smoke sources, including those within and off the base, are identified, and
plume ages are determined to quantify emissions and study the evolution of smoke PM2.5 (particulate matter with
aerodynamic diameters 2.5 µm or smaller) mass, black carbon (BC), and brown carbon (BrC). Over the 2021 and
2022 prescribed burning seasons (nominally January to May), we identified 64 smoke events based on high lev-
els of PM2.5 mass, BC, BrC, and carbon monoxide (CO), of which 61 were linked to a specific burning area.
Smoke transport times were estimated in two ways: using the mean wind speed and the distance between the
fire and the measurement site, and from Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT)
back-trajectories. PM2.5 emission ratios based on 1PM2.5 mass / 1CO for fresh smoke (age ≤ 1 h) ranged
between 0.04 and 0.18 µg m−3 ppb−1 with a mean of 0.117 µg m−3 ppb−1 (median of 0.121 µg m−3 ppb−1).
Both the mean emission ratio and the variability were similar to findings from other prescribed fire studies
but were lower than those from wildfires. The mean emission ratios of BC and BrC were 0.014 µg m−3 ppb−1

and 0.442 Mm−1 ppb−1, respectively. Ozone enhancements (1O3) were always observed in plumes detected
in the afternoon. 1PM2.5 mass / 1CO was observed to increase with plume age in all of the ozone-enhanced
plumes, suggesting photochemical secondary aerosol formation. In contrast, 1BrC/1CO was not found to vary
with plume ages less than 8 h during photochemically active periods.

1 Introduction

Large and intense wildfires have been increasing over the
past few decades, and their emissions are a critical concern
(Singleton et al., 2019; Jaffe et al., 2020). Fire is also an es-
sential ecological process, and prescribed burning, which is
the act of starting controlled fires for specific purposes, is an
important tool for restoration of ecosystems, land manage-
ment, and reducing fuel to prevent destructive wildfires (Kelp
et al., 2023). Prescribed fires are typically conducted under
favorable conditions associated with fuel type and amount,

soil moisture, and meteorology. For example, in 2018, the
United States Department of Agriculture (USDA) Forest Ser-
vice indicated a high risk of hazardous wildfires over approx-
imately 234 million acres (∼ 95 million hectares) of forest
lands in the USA (Wyden and Manchin, 2020). However,
prescribed fires were conducted over approximately 8.5 mil-
lion forestry and rangeland acres (3.4 million hectares) in
2018 (Melvin, 2020). The southeastern USA has a long his-
tory of using prescribed fires (Melvin, 2021). For example,
in 2017, 7.6 million acres (3 million hectares) out of the 11.3
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million acres (4.6 million hectares) burned nationally were
in the southeast (Melvin, 2018). Florida and Georgia each
exceeded 1 million acres (0.4 million hectares) burned an-
nually (Melvin, 2018). Recognizing the need to mitigate the
size and severity of wildfires, prescribed burning is antici-
pated to increase in the coming years (USDA, 2022).

While prescribed burning can be performed under favor-
able weather conditions, it can still contribute to serious lo-
cal and regional air pollution, as it is a source of primary
and secondary air pollutants (Lee et al., 2008). Like other
types of biomass burning, prescribed burning releases large
amounts of particulate matter, CO, and inorganic and organic
compounds (Lee et al., 2005), which have negative effects on
health and visibility (Bell, 2004; Huang et al., 2019). Par-
ticularly in the southeastern USA, prescribed burning was
significantly associated with high PM2.5 (particulate matter
with aerodynamic diameters 2.5 µm or smaller) levels (Afrin
and Garcia-Menendez, 2020; Larkin et al., 2020). Prescribed
fires are often conducted at urban–rural interfaces, creating a
buffer zone to prevent the spread of wildfires to the built envi-
ronment. However, this means that planned fires often occur
closer to populated areas and potentially lead to high pop-
ulation exposure due to this proximity. Although prescribed
fires generally produce less pollutants by consuming less fuel
per area burned than wildfires, the population health costs
can be substantially higher for prescribed fires due to burn-
ing near higher population densities (Borchers-Arriagada et
al., 2021).

Both wildfires and prescribed fires emit a large variety of
gases and particulates (X. Liu et al., 2017; Burling et al.,
2011; Gkatzelis et al., 2024; Permar et al., 2021; Travis et al.,
2023). The gases include nitrogen oxides and volatile organic
compounds, which can form ozone and secondary particulate
matter. Hazardous air pollutants are also produced but may
be less detrimental to exposed populations than particulates
(O’Dell et al., 2022). PM2.5 is directly emitted as primary
particles and is also formed from condensation of emitted
gases and their oxidation products (Liu et al., 2016; May
et al., 2014). While secondary organic aerosol (SOA) can
be a significant component of aged biomass burning PM2.5,
its contribution changes depending on emissions and atmo-
spheric conditions. Additionally, the volatile nature of pri-
mary and secondary components of PM2.5 can lead to evap-
oration and a net loss of mass as the plume ages. PM2.5 ex-
posure has been linked by many epidemiological studies to
serious health problems, e.g., respiratory, cardiovascular, and
neurological diseases as well as an increased risk of adverse
birth outcomes (Liu et al., 2015; Reid et al., 2016; Naeher
et al., 2007; Yu et al., 2023; Xi et al., 2020; Garcia et al.,
2023). Given their significant impact on the environment and
health, satellite, airborne, or ground-based studies of smoke
emissions have been conducted extensively.

Detection and characterization of wildland fires is an im-
portant step towards assessing their impacts. Remote sensing
via satellites can detect wildland fires by thermal anomalies

(Kuenzer et al., 2008) or vegetation changes (Mildrexler et
al., 2007). While satellite-based approaches offer valuable
insights (Martinsson et al., 2022; Ichoku and Kaufman, 2005;
Christopher et al., 1998), challenges such as cloud cover,
spatial resolution limitations, and the complex nature of fire
emissions can hinder accurate detection and quantification
of fire impacts, especially for lower-intensity fires like pre-
scribed burns (Liu et al., 2019; Wang et al., 2018; Martin et
al., 2018). Therefore, factors like fire radiative power (FRP),
burned area estimation, and fuel consumption modeling are
often integrated into fire monitoring systems (Li et al., 2020;
Nguyen and Wooster, 2020).

Aircraft (fixed-wing and helicopters) and more recently
drones have been commonly used in airborne studies of wild-
land fires (Decker et al., 2021b; Cubison et al., 2011; Aurell
and Gullett, 2024) and have been deployed for prescribed
burning studies (Yokelson et al., 1999; May et al., 2014; Pratt
et al., 2011; Aurell et al., 2021). Airborne studies provide
high-spatial-resolution data that are often used to assess the
evolution of smoke properties by measurements at various
downwind distances. However, this is discontinuous and can
miss certain aspects of smoke emissions, such as longer-term
smoldering, especially at night (Burling et al., 2011). Em-
ploying a combination of airborne and ground-based mea-
surements can be beneficial in providing a comprehensive
view of the plume (Burling et al., 2011; Akagi et al., 2014;
Yokelson et al., 2013; Strand et al., 2016).

In ground-based studies, mobile labs may capture dynamic
air quality patterns and to some extent assess the spatial vari-
ability of species in plumes and their changes with plume
age (Levy et al., 2014; Fiddler et al., 2024; Lee et al., 2023).
However, they are usually limited in space and instrumenta-
tion capacity, such as filter samples collected only during sta-
tionary measurements (Warneke et al., 2023). Interferences
from the power source, vibration, and speed changes during
transportation can affect the instrument stability and perfor-
mance, leading to inaccurate measurements or limiting the
types of instruments that can be used. Attempting to track
wildland smoke plumes can be challenging due to unpre-
dictable winds and dispersion conditions combined with ac-
cess limitations. For example, Burling et al. (2011) reported
successfully sampling smoke from 2 out of 14 prescribed
fires using a battery-powered mobile Fourier transform in-
frared (FTIR) system.

Fixed ground-based monitoring stations equipped with
various instruments provide continuous, localized measure-
ments for short- or long-term monitoring by studies assessing
diurnal, seasonal, and long-term trends in air pollution. Mul-
tiple sites provide spatial coverage within a region. A variety
of highly sensitive instruments can be deployed, ensuring ac-
curate and precise measurements of various pollutants that
can be compared with air quality data across different loca-
tions for regional assessments (Strand et al., 2016; Warneke
et al., 2023). The importance of pre-existing fixed monitor-
ing sites lies in their ability to capture wildfire smoke events
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that can occur at any time (Selimovic et al., 2019; Jaffe et
al., 2022). These sites often include regulatory monitoring
stations, which are highly valuable for studying local and
regional smoke impacts over both short- and long-term pe-
riods. For example, Jaffe et al. (2022) used PM2.5 and CO
observations from a regulatory monitoring site in Sparks,
Nevada, collected from May to September between 2018 and
2021, as indicators of wildfire smoke in urban areas (Jaffe et
al., 2022). Investigating the emissions and evolution of pre-
scribed fires based on fixed sites is not as common, and there
are limitations with this approach, but also some advantages.

Here, we present the results from a 2-year study utiliz-
ing fixed monitoring stations and continuous sampling in a
region of active prescribed burning at Fort Moore in cen-
tral Georgia, USA. The observations are analyzed to iden-
tify smoke plumes and determine their sources, such as those
set within the fort or from burning in surrounding areas. We
also use these data to estimate the age of the detected smoke
to determine emission ratios and changes with plume age in
PM2.5 mass, black carbon (BC), brown carbon (BrC), and
their variability. Not all smoke from the prescribed fires set
within the fort is detected, so the overall impact of all the
fires on the regional air quality cannot be determined and is
better addressed by a model simulation. Instead, our goal is
to sample multiple smoke events so that an analysis of the
data will provide a robust characterization of smoke from
prescribed burning within the fort and in the region and with
sufficient data to evaluate ground-level pollutant concentra-
tions predicted by “smoke” models in prescribed fire simu-
lations. Our concentration data cover measurements over a
large range of distances from the burn plots. Fresh plume
measurements with ages less than 1 h can be used to evaluate
the predictions of local-scale models such as the Wildland
Fire Dynamics Simulator (WFDS) urban interface (Mell et
al., 2007) and QUIC-Fire (Linn et al., 2020). They can also
be used to evaluate the emissions and plume rise parameter-
izations of larger-scale models like the BlueSky framework
(Larkin et al., 2009). Additionally, more aged smoke mea-
surements can be used to test the predictions of downwind
concentrations in coupled fire–atmosphere models such as
the Weather Research and Forecasting model, coupled with
the fire-spread model (WRF-SFIRE) (Mandel et al., 2011)
as well as chemical transport models like the Community
Multiscale Air Quality (CMAQ) model (Appel et al., 2021),
equipped with fire plume parameterizations. In the follow-
ing sections, we describe the methodology, data analysis ap-
proach, and studies of various detected or missed smoke
plumes, so that attribution of smoke from fires within the fort
can be assessed. Findings on the emission estimates of PM2.5
mass, BC, BrC, and their evolution are compared to other
prescribed and wildfire studies. These findings can help to
assess the impact of prescribed burns by a specific entity or
organization on a variety of public health and policy issues.

2 Method

2.1 Site description

Prescribed burning at Fort Moore Army Base (formerly Fort
Benning), in western central Georgia, United States, was
studied from March through May 2021 and February through
May 2022. Since 1981, prescribed burning has been used as a
land management tool at the 182 000 acres (∼ 74 000 ha) mil-
itary base, of which 145 000 acres (∼ 59 000 ha) are forested
lands. Vegetation is characterized by pine-dominated uplands
and hardwood-dominated bottom lands, with the dominant
tree species being longleaf pine and white oak, respectively.
Small wildfires ignited during military training exercises also
occur at the base, and the land managers have been recording
data on both prescribed fires and wildfires since the 1980s.
Prescribed burning at the fort has been effective: it has re-
duced the frequency of wildfires from ∼ 300 to 500 wild-
fires per year in the early 1980s to less than 100 wildfires per
year in the mid-1990s. During this period the prescribed fire-
burned area changed from ∼ 7500 acres (∼ 3000 ha) in 1981
to ∼ 12 000 acres (∼ 5000 ha) in 1992. Currently, 30 000
woodland acres (∼ 12 000 ha) are burned annually using con-
trolled fires, with future planned burning of 45 000 acres
(∼ 18 000 ha) annually. Prescribed burning at the fort is also
used for ecological objectives, such as restoring the longleaf
pine forest and creating and maintaining the habitat for red-
cockaded woodpeckers. Prescribed burning occurs from De-
cember through May, when there is sufficient but not exces-
sive rainfall and suitable temperatures and wind conditions
to burn deadwood, brush, and low-growing vegetation accu-
mulating on the forest floor. The area of the base is divided
into 332 burn units that range in size from 100 to 1800 acres
(∼ 40 to 728 ha) and are burned alternately every 2 to 3 years.

2.2 Measuring sites

One instrumented research trailer (7′W× 18′ L× 6.5′ H)
was deployed in the 2021 burning season (18 March to
15 May 2021), and successive trailers (6′W× 12′ L× 7′ H)
were added in 2022 (11 February to 18 May 2022), reach-
ing a total of five trailers located at different sites throughout
the fort. In 2021, the one trailer operated at the same loca-
tion until it was moved on 26 April 2021 to a new site for
the remaining season as the expected burning regions at the
fort changed. The trailers sampled continuously, except dur-
ing periods of power loss or technical issues. The locations
of the trailers, shown in Fig. 1, were chosen based on power
availability, prevailing wind, and burning plans set prior to
the burning season.

2.3 Instrumentation

To characterize the prescribed fire smoke, the trailers were
equipped with several instruments selected based on factors
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Figure 1. Study region overview. The (a) Fort Moore map with the locations of the trailers, the RAWS weather station, and two state-operated
sampling sites (Columbus Airport and Phenix City South Girard (PCSG) school) are shown along with the location of the city of Columbus,
GA. (b) Fort Moore map showing the planned burn units for the year 2021, sourced from the Fort Moore authorities and natural resource
management team, with the prevailing winds in the region.

such as availability, ability for extended standalone opera-
tion, and significance to the study. All sampling was done
through inlets nominally 4 m above ground level and 1.5 m
above the trailer roof. The measurements included carbon
monoxide (CO), nitrogen oxides (NO, NO2, NOx), ozone
(O3), PM2.5 mass concentration, BC concentration, and BrC
light absorption coefficients. Carbon monoxide serves as a
standard tracer for combustion sources in atmospheric chem-
istry studies since it is a relatively long-lived species, with
a typical lifetime of ∼ 1 month, emitted during incomplete
combustion and used as a tracer of smoke movement and dis-
persion (Forrister et al., 2015; Liu et al., 2016). Other forms
of incomplete combustion emissions (e.g., mobile sources)
and oxidation of volatile organic compounds (VOCs) are also
CO sources. CO mixing ratios were measured by IR analyz-
ers (Thermo Fisher Scientific Inc, model 48C, Franklin, MA)
with a lower detection limit (LOD) of 0.04 ppm at an aver-
aging time of 390 s. The measurements alternated between
blank and ambient measurements every 195 s. The blanks
were determined with a custom-built CO scrubber made of
0.5 % Pd on an alumina catalyst heated to 180 °C (Parrish et
al., 1994), which oxidizes CO to CO2. Calibration of CO an-
alyzers was performed at a 2.2 ppm concentration before and
after each field study using a 100 ppm CO in-air standard
purchased from nexAir (Memphis, TN).

O3 was measured using an ultraviolet (UV) photometric
analyzer (Thermo Fisher Scientific Inc, model 49C, Franklin,

MA) zeroed through an O3 scrubber in the instrument, with
an LOD of 1.0 ppb and an averaging time of 20 s. The ana-
lyzer was calibrated before and after each field deployment
using an O3 calibrator (Thermo Fisher Scientific Inc, model
49C, Franklin, MA). We note that O3 may be overestimated
due to interferences from VOCs emitted by the fire (Long
et al., 2021), but the instrument used has been found to
be in agreement with a federal reference method (Gao and
Jaffe, 2017). NOx species were measured using a chemilu-
minescence NO–NO2–NOx analyzer (Thermo Fisher Scien-
tific Inc, model 42i, Franklin, MA). The NOx analyzer was
calibrated automatically every 6 h using NO and NO2 cali-
bration standards purchased from Airgas (Radnor, PA) and
has an LOD of 0.40 ppb.

The PM2.5 mass concentration was determined using a
Tapered Element Oscillating Microbalance (TEOM) series
1400a ambient particulate monitor (Thermo Fisher Scien-
tific, Franklin, MA) with data recorded at an averaging time
of 60 s and a typical detection limit of 5.58 µg m−3 deter-
mined by 3 standard deviations of blank (filtered ambient air)
measurements. These data were subsequently averaged to
time intervals of 20 and 60 min to mitigate noise, especially
when sampling under background conditions. The TEOM se-
ries 1400a developed originally by Rupprecht and Patashnick
is a US EPA approved instrument for measuring mass con-
centrations of ambient PM2.5 and PM10 and could be used
for Federal Equivalent Method (FEM) regulatory measure-
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ments (D. Liu et al., 2017; Patashnick and Rupprecht, 1991).
It is a gravimetric measurement that determines the mass ac-
cumulated on a microbalance over a specified time interval
at a monitored sample air flow rate. The sample air is pre-
conditioned to a temperature of 50 °C to remove liquid wa-
ter interferences (Patashnick and Rupprecht, 1991), which
may lead to the evaporation of highly volatile PM2.5 com-
ponents, potentially underestimating the total mass concen-
tration. The mass concentration over an averaging period is
calculated from the difference recorded between successive
intervals. Due to random fluctuations in the instrument op-
eration when concentrations are low, this can lead to nega-
tive numbers, illustrated by the frequency distribution of the
high-time-resolution data recorded by one TEOM shown in
Fig. S1 in the Supplement. When determining the average
background concentration, we include the negative mass con-
centrations since converting negative concentrations to one-
half of the LOD or ignoring them will produce an average
that is biased high. In 2021, PM10 TEOMs were also de-
ployed, but this was found to be highly influenced by pollen,
which can be high in the springtime, and so the measurement
was discontinued. Regional hourly PM2.5 mass was reported
at two Environmental Protection Division (EPD) sites. In the
following analysis we compare the PM2.5 measured within
the fort to the EPD measurements at Columbus Airport and
Phenix City South Girard (PCSG) school shown on the map
in Fig. 1a. At Columbus Airport, the Teledyne T640, which is
based on broadline spectroscopy, is used, while the Met One
BAM-1022 mass monitor is used in Phenix City, utilizing a
beta attenuation technique.

The PM2.5 BC mass concentration was measured using
aethalometers. A range of multi- and single-wavelength in-
struments was deployed. Two were seven-wavelength instru-
ments (Magee Scientific, model AE33 and model AE31,
Berkeley, CA) with detection ranges of 0.1–100 µg m−3 and
averaging times of 60 and 120 s, respectively. One was a two-
wavelength aethalometer (Magee Scientific, model AE22,
Berkeley, CA) with a 0.1 µg m−3 detection limit and a 60 s
averaging time. Two were single-wavelength particle soot
absorption photometers (PSAPs) (Radiance Research, Seat-
tle, WA) with sensitivity > 0.1 µg m−3 and a 60 s averaging
time. For the multi-wavelength aethalometers, BC was de-
termined from the light absorption at 880 nm using the man-
ufacturer’s specified mass absorption cross section (MAC)
of 7.77 m2 g−1, whereas for the single-wavelength PSAPs
BC was determined from the optical absorption coefficient
at 565 nm assuming a specific mass absorption cross sec-
tion of 10 m2 g−1 following the manufacturer’s specifica-
tions. Two spot samplings of the AE33 model were cor-
rected for mass loading errors. This was not done in the
other instruments, and so the data of the aethalometers (AE31
and AE22) were corrected for loading interference using the
method of Virkkula et al. (2007). PSAP measurements were
not corrected due to the unavailability of the scattering coeffi-
cients needed for correcting filter-based PSAP measurements

(Bond et al., 1999; Virkkula et al., 2005), which may lead
to 10 %–20 % underestimation of BC at sites where PSAPs
were installed.

BrC was calculated from the seven-wavelength aethalome-
ter measurements. It is largely produced from biomass burn-
ing (Hecobian et al., 2010; Laskin et al., 2015; Yan et al.,
2018; Fleming et al., 2020), and in the following analysis
it is used as a unique indicator of biomass burning smoke.
While a small amount of BrC can be produced from mo-
bile sources and other sources of incomplete combustion, in
the USA its predominant source is biomass burning (Jo et
al., 2016; Hecobian et al., 2010). We calculate the light ab-
sorption of BrC at 365 nm as a marker for BrC levels. Us-
ing the aethalometer data, the absorption coefficient, which
corresponds to BC+BrC, was inferred by multiplying the
mass concentration at each wavelength by the correspond-
ing MAC value provided by the manufacturer (Magee Sci-
entific, Berkeley, CA). The absorption coefficient at 365 nm
was determined by extrapolating the linear regression of the
log absorption coefficient and log wavelength since the low-
est wavelength at which the aethalometer operates is 370 nm.
The slope of the linear relationship represents the negative
absorption Ångström exponent (AAE), a parameter used to
study the optical properties of the aerosol. BrC at 365 nm was
then calculated by removing the estimated contribution of
BC at 365 nm, assuming that BrC does not absorb at 880 nm
and that the AAE of pure BC is 1. The BrC absorption at
shorter wavelengths is the difference of the aethalometer-
measured total absorption and the extrapolated BC absorp-
tion (Lack and Langridge, 2013). All the data of the light
absorption of BrC discussed in this work correspond to the
absorption calculated at 365 nm. Both AAEtotal and AAEBrC
were calculated as the negative slopes of the log absorption
coefficient of the total (BC+BrC) and BrC, respectively, as
a function of log wavelengths. For AAEtotal, the fit included
the wavelengths from 370 to 880 nm (i.e., 370, 470, 520, 590,
660, and 880), whereas for AAEBrC the wavelengths ranged
from 370 to 660 nm (i.e., 370, 470, 520, 590, and 660).

In our analysis, we used meteorological and fuel moisture
data from the Remote Automated Weather Stations (RAWS)
available online (https://raws.dri.edu/index.html, last access:
1 May 2024). The RAWS closest to all of the sites is Fort
Benning, Georgia (Fig. 1a). At each trailer, all of the instru-
ments were connected to a laptop computer with remote ac-
cess to reduce the personnel time spent at the sites. The sites
were generally visited every 1 to 2 weeks, during which regu-
lar instrument checks and maintenance were performed, such
as restoring power, changing filters (for TEOMs and PSAPs),
and measuring and recording flow rates and other instrument
performance parameters.
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2.4 Tools and analysis methods

2.4.1 Normalized excess mixing ratios

To account for dilution of species of interest in a smoke
plume, normalized excess mixing ratios (NEMRs) are used.
An NEMR is the ratio of enhancement of a studied species
above the local background concentrations to the enhance-
ment of a long-lived component co-emitted from a biomass
burning event. CO is often used as the reference species. For
example, the NEMR of species X is 1X/1Y , where Y is CO
measured in the same sample as X. To determine the NEMR
of X and the contribution of smoke to X from an identi-
fied burning region, the background concentration of X (i.e.,
the concentration in the case of no smoke emissions) is sub-
tracted from the measurement. In our study we used the av-
erage of the measurements before and after the smoke event
as the background since sampling was not performed upwind
of the fire. This method is supported by the observation from
multiple sampling sites of spatially uniform background con-
centrations and, in most cases, very low background concen-
trations relative to those recorded in smoke. However, there
is more uncertainty when calculating O3 NEMRs due to sig-
nificant levels and diurnal changes in background concentra-
tions. NEMRs can also be determined from the slopes of lin-
ear regressions. Here, we determine NEMRs for each smoke
event for PM2.5 mass, BC, and BrC normalized by CO by
first removing background concentrations for data recorded
during the event and then calculating the slope by linear re-
gressions (i.e., the slope of PM2.5 mass concentration, BC
concentration, or BrC absorption at 365 nm vs. CO concen-
trations to determine the respective NEMRs).

2.4.2 Determining smoke sources and plume age

To match specific fires to observed smoke at monitoring sites,
several methods were used. Data from the Fire Information
for Resource Management System (FIRMS) provided ac-
tive fire data based on thermal anomalies. These are based
on measurements from the Moderate Resolution Imaging
Spectroradiometer (MODIS), carried by the Aqua and Terra
satellites, and the Visible Infrared Imaging Radiometer Suite
(VIIRS), carried by the Suomi National Polar-orbiting Part-
nership (Suomi NPP) and NOAA-20 satellites. FIRMS pro-
vides live and historical fire maps and data that can be ac-
cessed online (https://firms.modaps.eosdis.nasa.gov/, last ac-
cess: 1 May 2024). This platform can be used to pinpoint spe-
cific locations and obtain distances between points, which is
useful for identifying possible fires where smoke was trans-
ported to the sampling site and the time for smoke trans-
port when combined with wind speed and direction data.
Although the FIRMS fire map is updated every 5 min, the
polar-orbiting satellites only pass over the location twice
per day, meaning that some fires starting and ending be-
tween satellite observations are not detected (Schroeder and
Giglio, 2018; Giglio et al., 2021). Also, small or relatively

cool fires may not be detected, especially when there is sig-
nificant cloud coverage, thick smoke, or a continuous thick
forest canopy, which can block satellite detection of pre-
scribed understory burns in forests. Cloud coverage data are
available online (https://worldview.earthdata.nasa.gov, last
access: 5 May 2024), and satellite data, including MODIS-
/VIIRS overpass times, the number of active fire detections
per pass, and the FRP for all fires that impacted the mon-
itoring sites, can be downloaded from the abovementioned
FIRMS website. Burn data provided by Fort Moore were
used with the FIRMS data to minimize the limitations of each
method in identifying sources of observed smoke. For each
of the 64 smoke events studied in the paper, burn data are
added to the Supplement (Table S1). Additionally, the tem-
perature, relative humidity, and fuel moisture data used can
be accessed online through the RAWS USA Climate Archive
(https://raws.dri.edu/index.html, last access: 1 May 2024) at
the weather station that is closest to all the measurement sites
(Fort Benning, Georgia).

The Hybrid Single-Particle Lagrangian Integrated Trajec-
tory (HYSPLIT) model (Stein et al., 2015) was used to cal-
culate back-trajectories from monitoring sites. This trajec-
tory analysis was based on meteorological data derived from
the WRF model (Shamarock et al., 2019) and enhanced with
grid nudging and observational nudging (Deng et al., 2009;
Liu et al., 2005) using a 20 min time step. The WRF domain
settings are shown in Fig. S2 in the Supplement. The winds
used in the trajectory analysis are from the 1 km grid resolu-
tion domain. Each analysis covered a total of 10 trajectories,
all below the planetary boundary layer (PBL). HYSPLIT was
run with 10 min time steps, and the locations of the fires were
determined based on FIRMS data and the Fort Moore fire
management records.

3 Results and discussion

3.1 Assessment of PM2.5 monitors and background
concentrations

The focus of this analysis is on PM2.5 mass concentrations
from the prescribed fires. Aerosol particle mass concentra-
tion measurements are difficult, especially under background
conditions, when concentrations are low. Calibrating instru-
ments with known mass standards is also problematic. We
performed intercomparisons between monitors, including di-
rect comparisons for two pairs (side by side) and intercom-
parison of background PM2.5 mass concentrations measured
by the study TEOMs to the values reported at state mon-
itoring sites. For example, two TEOMs (used in the main
and T1293 trailers) collocated at Eglin Air Force Base from
19 March 2023 at 08:00 local time till 20 March 2023 at
10:00 had an orthogonal regression slope of 0.98± 0.09,
an intercept of 0.45± 0.37 µg m−3, and an r2 of 0.84 (see
Fig. S3 in the Supplement). The main trailer TEOM was
also compared with the TEOM used on T1291 when they

Atmos. Chem. Phys., 24, 12749–12773, 2024 https://doi.org/10.5194/acp-24-12749-2024

https://firms.modaps.eosdis.nasa.gov/
https://worldview.earthdata.nasa.gov
https://raws.dri.edu/index.html


R. El Asmar et al.: A multi-site passive approach to studying emissions and evolution 12755

were collocated at the Georgia Institute of Technology from
22 September 2023 at 19:00 till 7 October 2023 at 14:00.
Although measurements during that period were close to
the background levels, the comparison resulted in an or-
thogonal regression slope of 0.88± 0.03, an intercept of
3.75± 0.09 µg m−3, and an r2 of 0.76 (see Fig. S4 in the
Supplement). The frequency distributions used to determine
the mean values and the mean background values of the data
recorded at the main trailer and the EPD sites in 2022 are
shown in Fig. S5 in the Supplement. The mean concentra-
tions in 2022 were 7.02, 9.47, 9.01, 9.26, and 7.11 µg m−3 at
the main trailer, T1293, T1292, T1921, and T1290 and 10.33
and 10.67 µg m−3 at the Columbus Airport and PCSG school
EPD sites, respectively. Background air PM2.5 mass concen-
trations were also determined by excluding smoke events
(discussed below). The monthly backgrounds of PM2.5 mass
concentrations are shown in Table S2 in the Supplement.
Background concentrations were in the range of approxi-
mately 3–7 µg m−3 for monitors at the fort and between 7
and 9 µg m−3 at the state monitoring sites (Table S3 in the
Supplement). The higher background PM2.5 mass concen-
trations at the state sites are likely due to local anthropogenic
(urban) influence. These comparisons provide confidence in
the mass measurements that cannot be calibrated in a manner
similar to gas monitors.

Background concentrations of CO and BC are also given
in Table S2. The background CO ranged from ∼ 150 to
200 ppb, and the background BC ranged from 0.14 to
0.57 µg m−3. In terms of the spatial variation at Fort Moore,
the background levels of the measured species were slightly
lower at sites located far from the main roads and train-
ing areas, such as measurements at the main trailer during
May 2021 and the entire 2022 season. No significant tem-
poral variation is observed, although fires within the base
and in its vicinity increase during the transition from win-
ter to spring, indicating that smoke was efficiently dispersed
on timescales of approximately 1 d. Frequent smoke events
where concentrations of the various measured species were
substantially above these background levels were observed
during the 2021 and 2022 field deployments.

3.2 Study of fires at Fort Moore during 2021 and 2022

We first present an overview of the measurements at Fort
Moore during two burning seasons. In the 2021 season, only
one research (main) trailer was deployed. In the following
year, four more were deployed for a total of five sites.

On 18 March 2021, a fully equipped trailer was deployed
at the northern boundary of Fort Moore, and we sampled at
that location until 26 April 2021. It was then moved to the
center of the fort for sampling from 26 April to 15 May 2021
(see Fig. 1a). During this period, peaks of measured species
were observed, as shown in the time series of PM2.5 mass
in Fig. 2b. A peak of a measured species is defined as the
highest value observed within its data points, spanning from

an initial rise until a return to background levels. The max-
imum PM2.5 mass concentrations reached 2000 µg m−3 for
20 min averaged data and 1400 µg m−3 for hourly averaged
data (Table S4 in the Supplement). A total of 11 PM2.5
peaks with mass concentrations greater than 35 µg m−3 were
recorded. In 2022, over the course of the entire burning sea-
son, 32 d recorded a total of 53 PM2.5 mass concentration
peaks greater than 35 µg m−3 across the five measuring sites,
as shown in Fig. 2c with similar high concentrations, reach-
ing 841 µg m−3 for 20 min averaged data and 513 µg m−3 for
hourly averaged data (Tables S5 to S8 in the Supplement).

We focus on smoke plumes with higher PM2.5 mass con-
centrations to identify their sources and estimate the emis-
sions and evolution of the PM2.5 mass, because the burn-
ing areas are readily identified (e.g., detected remotely by
satellites) and the plume can be easily delineated from the
background. An increase in the measured species is con-
sidered a peak, or event, when the 20 min average PM2.5
mass is greater than 35 µg m−3 and the 40 min average PM2.5
mass concentration (average of two consecutive measure-
ments) is higher than 30 µg m−3. This excludes shorter tran-
sient events, which include a passing vehicle, that can occur
at measuring sites near training areas.

The high peaks in PM2.5 mass are always accompanied by
an increase in CO, BC, and BrC. Figure 3 shows the scatter-
plots of the 20 min averaged data collected in 2021 and 2022.
The linear relation between PM2.5, CO, BC, and BrC during
the events resulted in r2 values of 0.85, 0.68, and 0.71, re-
spectively. On the other hand, for the non-event data, which
include all the observations during the entirety of the mea-
surement period, r2 drops to 0.12, 0.33, and 0.17 for PM2.5
mass vs. CO, BC, and BrC, respectively. These correlations
suggest that the identified events correspond to periods of
measuring smoke from biomass burning sources. However,
it is important to note that variability still exists in slopes
among different events, which will be explored and discussed
in the later sections.

3.3 Determining smoke sources

To study the emission and evolution of smoke plumes and
make our measurements useful for evaluating smoke trans-
port and dispersion models, we aim to link identified smoke
plumes to specific burn areas and determine their transport
time. Attribution of the smoke to specific fires is also useful
for assessing the impacts of a specific prescribed burning pro-
gram, such as the one at Fort Moore. Identifying the locations
of prescribed fires was complicated by several factors. In this
study, we had limited prior information on the timing and lo-
cation of planned burns from the burn managers. Moreover,
smoke from other sources, such as prescribed and wildfires
in the region but not within the fort, as well as uncertainty
and variability in wind patterns at the time of burning, led us
to utilize multiple methods to determine the source of each
identified smoke episode.
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Figure 2. PM2.5 mass measurements over 2 burning years. (a) Map of the burned areas in the years 2021 and 2022 and locations of the
monitoring sites. (b) Time series of 20 min average PM2.5 mass concentrations measured at the main trailer during the burning seasons of
2021 and (c) 2022 across the different sites. The dotted lines represent a PM2.5 mass concentration of 35 µg m−3 above which peaks were
selected for detailed analysis.

Figure 3. Correlations between the PM2.5 mass concentration and CO, PM2.5 BC, and PM2.5 BrC for measurements from the main trailer
in 2021 and 2022 and T1291 and T1293 in 2022. The blue data points are characterized as PM2.5 events when the concentration is more
than 35 µg m−3 averaged over a 20 min period. In the plot, all data associated with an identified event are shown in blue (this includes event
data down to the background levels before and after the peak). All other data (non-events) are shown in red. The slope is from the orthogonal
distance regression (ODR) of the 20 min averaged data during the event periods.

Our analysis started by using satellite data from FIRMS to
identify the locations of the fires (when the satellites passed
overhead). After the end of the study, these locations were
verified by cross-referencing with the Fort Moore fire man-
agement reports, which provided the locations and acreage

of the prescribed burns and ongoing wildfires exclusively
within the fort for each day. Afterwards, we pinpointed the
smoke source that reached the monitors by averaging the
wind vectors at and before the peaks using the meteorologi-
cal data from RAWS. This provided the expected general up-
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wind region the smoke likely came from. We also used the
HYSPLIT model to conduct back-trajectory analysis from
the measurement trailer for 8 h prior to ascertain whether
the air mass containing the measured smoke had passed the
satellite-identified hotspot or the units reported as burned by
the fort’s fire management. HYSPLIT’s initial altitudes were
determined by the PBL height, where the trajectories for 10
equally distributed altitudes between 10 m above the surface
and the top of the PBL were generated for each simulation.
For example, if the PBL height was 100 m, the trajectories
were calculated at 10, 20, 30, 40, 50, 60, 70, 80, 90, and
100 m.

Through the systematic combination of these methods, we
attempted to identify specific fire sources associated with
each observed smoke event and the time of transport of the
smoke from the fire to the measurement site (referred to as
the smoke age). This procedure was successful for 61 of
the 64 identified smoke events. We failed to identify three
events that had no apparent source, in agreement with the
studied wind patterns. Moreover, of the 61 identified smoke
events, 7 were matched to different sources using the ob-
served wind vector method vs. using the HYSPLIT trajecto-
ries, 7 were matched to sources using HYSPLIT only, and 5
were matched to sources using the wind vector method only.

The variability of the smoke sources determined in some
cases is attributed to the difference between the wind direc-
tion used by HYSPLIT and that recorded by RAWS used for
the wind vector calculation. In HYSPLIT, wind data are de-
rived from the three-dimensional wind fields predicted by the
application of the WRF model. Figure 4 shows a compari-
son between modeled and observed wind directions during
the events identified in 2021 and 2022 at the main trailer. A
closer alignment in wind direction is observed under higher-
speed wind conditions.

As an example of source determination, Fig. 5a shows the
time series of CO, PM2.5 mass, BC, and BrC during three
smoke episodes recorded on 6, 7, and 8 April 2021, which are
indicated by blue, yellow, and green shading, respectively.
Along the top of the graph are the hourly averaged wind vec-
tors based on data from RAWS. Note the high correlation
between PM2.5 mass, CO concentration, and BrC absorp-
tion coefficient, indicating that the PM2.5 peaks were due to
smoke. During the period of 3 d, the three events were mea-
sured during the late evening, nighttime, and early morning
periods. In each case, there is a time delay between when the
burning occurred and when the plume was measured, which
is due to the transport time. In all three cases, burning re-
gions at the fort were identified as the source. Consider the
first smoke event detected at the trailer between 01:00 and
11:00 on 6 April 2021 (blue-shaded region in Fig. 5a). Fig-
ure 5b shows the map of the fort and FIRMS satellite data on
the day before (5 April 2021), indicating two hotspots on the
base that were later verified in the fire report as burning of
two units and four sections of a third unit. Both burns were
to the south and south-southeast of the trailer, and the winds

Figure 4. Comparison between the wind direction modeled by
WRF and that recorded by the RAWS located at Fort Moore. The
slope is from the ODR.

were from the west during the daytime on 5 April 2021.
By midnight, the wind direction had shifted, with air flow-
ing from the south and southeast, transporting smoke to the
trailer’s location and leading to elevated concentrations of
species on monitors. Wind speeds were very low at night. At
about 08:00, the wind speed increased, its direction changed,
and the concentrations of the species all dropped.

Burning of the other units took place on 6 April 2021 at
distances of 1.3, 3.4, 4.0, 10, and 12 km from the trailer. The
level of the measured smoke products started increasing in
the evening after the winds became southwesterly and stayed
high until the morning of the next day (7 April 2021) (yellow-
shaded region in Fig. 5a). Later on the night of 7 April
(green-shaded region in Fig. 5a), the concentration levels in-
creased slightly after the burning of two connected units to
the south of the base during the daytime of 7 April 2021
at a distance ranging from 17 to 20 km, as indicated by the
fort’s fire management and seen on FIRMS. HYSPLIT back-
trajectory analysis, shown in Fig. 5e, f, and g, was conducted
to assess our conclusion about the sources, especially in the
cases of wind variation and/or multiple fires such as for the
peaks monitored on 6 April (blue-shaded region in Fig. 5a)
and 7 April 2021 (yellow-shaded region in Fig. 5a). Since
there are multiple fires on the fort, all in the same southerly
direction relative to the trailer, the exact source cannot be de-
termined solely based on wind vectors from RAWS data. In
these cases, HYSPLIT back-trajectories help to pinpoint the
exact fire or fires contributing to the observed smoke event.
In both cases on 6 April (blue-shaded region in Fig. 5a) and
7 April 2021 (yellow-shaded region in Fig. 5a), the closer fire
was the smoke source as shown in Fig. 5e and f.
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Figure 5. Three case studies illustrating the application of our method in determining the sources of smoke events. (a) Time series of species
measured at the main trailer. The time resolution is 20 min for CO, PM2.5 mass, BC, and BrC. The wind vectors depict hourly data obtained
from RAWS, with the direction of the arrow indicating the wind direction and the length of the arrow representing the wind speed. (b, c,
d) Maps of the fort showing historical satellite data from the FIRMS website observed for 5, 6, and 7 April 2022. The red dots represent
fires detected by the satellite. (e, f, g) HYSPLIT back-trajectories during the occurrence of each of the three peaks. The date and time of the
back-trajectory are indicated on top of each map. The time and height at which the trajectory crosses the trailer are shown in the box inside
each map. The red dots are fires detected by FIRMS on the same day as the back-trajectory. The orange dots are fires detected by FIRMS 1 d
before the back-trajectory. The colors of the traces in the back-trajectories indicate the height above ground level. The green star marks the
location of the main trailer. The satellite overpass times are shown in Table S9 in the Supplement.

3.4 Determining smoke age

An estimate of the smoke age is needed to separate fresh and
aged smoke to estimate emissions of various species (i.e., in
fresh smoke) and the changes in their concentrations with
plume age. The physical age of smoke is the time it takes the
smoke to be transported from the source to the monitoring
sites. Following the concept presented for source identifica-
tion, the transport time of smoke is estimated by averaging
wind speed over the period it takes for the smoke to travel
from the fire to the measurement sites and is determined by
iteration (mean wind speed recalculated with a new trans-
port time until convergence). When the average wind speed
in the hour leading up to the peak does not result in a smoke

age of 1 h or less, we begin iterative steps by calculating
the average wind vector for additional increments 1 h at a
time. A detailed example of using an average wind vector
in estimating the physical age of smoke is provided in Sup-
plement Sect. S1. It is important to note the uncertainty in
the estimated smoke age using this method for smoke mon-
itored before and after the peak (maximum concentration),
particularly when the smoke event duration (from the start to
the end of smoke monitoring) is prolonged and when wind
conditions are highly variable. The age was also determined
from the HYSPLIT back-trajectories as the time when the
lowest trajectory intersects the smoke source that was iden-
tified. The back-trajectory is initiated from the start time of
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the smoke event. Due to uncertainties in the WRF-simulated
winds, particularly at night when wind speeds are low, the
back-trajectory occasionally missed the source. Therefore, a
series of HYSPLIT simulations was conducted with 20 min
intervals from the event start time until the smoke source
could be identified. The 20 min interval was chosen based
on the temporal resolution of the WRF data.

For the three events discussed in Fig. 5, the physical ages
estimated using the wind vector averaged from the observed
RAWS wind data are 75 min for 6 April (blue shading),
14 min for 7 April (yellow shading), and 162 min for 8 April
(green shading). For the same events, and using HYSPLIT
trajectories closest to the surface and passing through the
identified sources, the ages were estimated as 130 min for
6 April (blue shading), 10 min for 7 April (yellow shad-
ing), and 40 min for 8 April (green shading). Based on our
analysis, 6 April (blue shading) stands out as the only case
where the HYSPLIT age exceeds that estimated using the
mean wind vector for the same fire source. The difference
between the modeled and observed wind for these three in-
stances was investigated further by comparison with the ob-
served wind at Columbus Airport. As shown in Fig. S6 in
the Supplement, the wind direction observed at the airport
aligns more closely with that observed at the RAWS site at
Fort Moore (though with faster winds at the airport, likely
due to the forest canopy effect on wind flow) than with the
WRF-modeled winds at both sites. However, it is difficult
to determine which method is more reliable for studying any
specific smoke event. For all the smoke plumes identified, the
age of smoke estimated based on HYSPLIT back-trajectories
ranged from 10 min (single time step of the trajectory) to 6 h
(36 time steps) and from a few minutes to 8 h based on the
average wind vector method (Table S10 in the Supplement).
A comparison summary between wind speeds observed by
the RAWS and those modeled by WRF during all the events
identified in 2021 and 2022 at the main trailer is shown in
Fig. 6a. The observed weak correlation (r2

= 0.29) could be
due to several factors. For the wind vector analysis, observed
winds are measured at one location and 2 m above ground
level with a single monitor, which may not accurately repre-
sent the wind patterns along the entire smoke transport path,
especially in forested areas where the canopy can affect the
wind flow (Mallia et al., 2020). On the other hand, WRF sim-
ulates winds for 34 layers at different altitudes from 10 m
(the lowest) to levels higher than the PBL. HYSPLIT applies
bilinear interpolation to the data from WRF for the 10 tra-
jectories that it calculates, introducing additional uncertainty
into the wind patterns used in the simulations. Although the
comparison between ages estimated based on the two differ-
ent methods resulted in a reasonable correlation (r2

= 0.59),
the slope clearly indicates a significantly higher estimation
of age when using the wind vector method, particularly for
more aged smoke events as shown in Fig. 6b, where ages
from the two methods show stronger agreement for fresh
smoke. This can be attributed, in many cases, to the uncer-

tainty in observed winds under low-speed wind conditions,
the measurement being far from where winds are observed
(RAWS), and most importantly to the fact that the RAWS
measures winds at 2 m above ground level, whereas smoke
transport happens at higher altitudes with stronger winds.
There are additional discrepancies resulting from wind vari-
ation at each altitude at which HYSPLIT is running.

3.5 Limitations of the fixed-site method

The goal of this project is to study the emissions and evo-
lution of smoke from prescribed fires and provide data to
test model simulations and assessments of prescribed burn-
ing impacts. Some limitations and challenges are associated
with our approach of collecting data from a network of fixed
sites.

3.5.1 Identification of burning regions

First, due to the limitations of satellite fire detection, some
fires were not seen in FIRMS satellite detection data but
were subsequently identified from the fire management re-
port, such as the prescribed fires on 23 March 2021 shown in
Fig. S7a in the Supplement. The 20 min averaged PM2.5 mass
concentration at the trailer increased to 74.8 µg m−3 and to a
47.8 µg m−3 hourly average at the EPD site located off-base
at Columbus Airport on the afternoon of 23 March 2021, as
shown in the time series of Fig. S7b in the Supplement. This
increase was accompanied by an elevation in the levels of
CO, PM2.5 mass, BC, and BrC measured at the trailer. This is
an example of burning on the fort likely affecting the nearby
urban population. The prevailing winds were from the south-
east at the time of the smoke event, as can be seen from the
wind vectors presented in the same time series in Fig. S7b.
However, FIRMS satellite data showed no hotspots on the
fort during the entire day. After checking the fire manage-
ment report for 2021, prescribed burns were identified for
three units located in the eastern central part of the fort at
distances ranging from 13 to 24 km from the trailer. Look-
ing at either the wind vector at the time of the peak or the
HYSPLIT back-trajectories, the source of the smoke event
identified on 23 March 2021 matches the closer prescribed
burn conducted on the fort.

Another issue with this approach is that relying only on
data from the burning authorities at Fort Moore can, in some
cases, be insufficient due to the lack of information about
fires taking place off-base by landowners, such as the off-
base fire seen on FIRMS during three overpasses of satel-
lites at 12:38, 13:54, and 14:42 (Fig. S8a). On 9 May 2022 at
16:30, the monitored species increased at the main trailer and
the 20 min average of the PM2.5 mass reached 52.3 µg m−3

(Fig. S8b). The fort’s fire management reported no prescribed
fires and one wildfire in the southern part of the base, with an
indication of zero probability of smoke from that fire reach-
ing the trailer based on wind patterns. Based on both wind
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Figure 6. (a) Comparison between the wind speed modeled by WRF and that observed by the RAWS located at Fort Moore. (b) Comparison
between the age estimated using the HYSPLIT model and using the wind vector method.

vectors and HYSPLIT simulations, the source of the event
was identified as an off-base fire detected to the northeast
of Fort Moore. The same smoke event was also observed at
multiple trailers operating at the time and will be discussed
more in the following section.

3.5.2 Identifying a specific fire impacting the site when
multiple burns are occurring

When multiple fires take place simultaneously under varying
wind conditions, it can be difficult to identify the specific
fire impacting the site, which can lead to uncertainty in the
smoke age. This occurred in smoke detected around midnight
on 14 March 2022 (see Fig. S9a in the Supplement). Relying
on wind data, the smoke source is likely one or more of the
fires on the eastern and/or southeastern sides of the base, with
a zero probability of it being one of the fires in the northern
part of the base. HYSPLIT may help in narrowing down the
possibilities of the smoke source (Fig. S9b), but there is still
uncertainty in linking a specific fire to an observed event.

When several burning units are in close proximity and
near the measurement site, identifying the specific source and
smoke age can also be difficult (for example, see Fig. S10
in the Supplement). In this case burning in three units in-
dicated by the fort’s fire management occurred at the same
time close to each other and the trailer (distances of 0.97, 2.3,
and 3.5 km from the trailer). The HYSPLIT trajectory at the
lowest altitude passed near (to the east) but not over the pre-
scribed fires. Wind direction at the time of the event suggests
the influence of a minor portion from the northern part of the
fire. It is important to note that, in such cases, transport near
the surface may be heavily influenced by fire–atmosphere in-
teractions, making it difficult to rely on data from RAWS or
WRF simulations as accurate indicators of atmospheric flows
close to an active fire.

We note that there is no direct correlation between the
amount of smoke reaching the trailer, i.e., measured species
concentrations, and the distance of the fire from the monitor-
ing site. The relation depends on the smoke transport and
dispersion that may allow smoke to either directly hit the
measuring site, partially reach the measuring site, or pass
above the trailer with little or no smoke detection by the mon-
itors. To illustrate this, we compare three case studies. Look-
ing again at the smoke event of 11 February 2022 shown in
Fig. S10, smoke reaching the trailer from 0.97 to 3.5 km fires
resulted in a 20 min maximum PM2.5 mass of 62.8 µg m−3

and a CO concentration of 1.3 ppm at 13:30. On 12 Febru-
ary 2022 (Fig. S11a and b in the Supplement), smoke from
burns of units at distances 6.9 to 7.4 km from the trailer
caused increases in the 20 min PM2.5 mass concentration to
60 µg m−3 and CO to 0.9 ppm at 13:50, whereas, on the night
of 4 April 2022 until the morning of 5 April 2022 (Fig. S11c
and d in the Supplement), smoke from fires 6.1 and 6.3 km
from the trailer caused increases in the 20 min PM2.5 mass
concentration to 319 µg m−3 and CO to 3.0 ppm at 01:10 over
a longer smoke-monitoring period. The much higher PM2.5
mass concentrations measured on 4 April 2022 suggest that
the trailer received a more direct smoke hit on that day than
on 11 or 12 February 2022, despite the fire being closer on
11 February and having a very similar distance to the one de-
tected on 12 February. This can also be attributed to the much
lower nighttime PBL on 4 April, which was 9.8 m and caused
all HYSPLIT trajectories to overlap as shown in Fig. 11d.
Emissions from a smoldering fire with very little buoyant en-
ergy were most likely trapped in this shallow layer, leading
to high concentration measurements. During the daytime on
11 and 12 February, higher PBLs of 1645 and 1305 m, re-
spectively, favored more vertical dispersion of smoke.
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3.5.3 Smoke not detected although regions of burning
identified

On certain days, based on the wind data and the information
presented in the fire management report, it appears likely that
smoke from the fires at the base would reach specific mon-
itoring sites. However, in these instances, such as the situ-
ation on 15 February 2022 shown in Fig. 7, no significant
smoke peaks were detected. To explain this outcome, two
HYSPLIT forward-trajectory simulations were run. The sim-
ulations showed that, if the fire starts at 10:00, the smoke will
not intercept the monitor, but if it starts at 11:00, the smoke
at higher altitudes has a slight chance of reaching the moni-
tor. Overall, regardless of the wind direction favoring smoke
transport to the monitors, other factors like dispersion and
smoke plume behavior such as lofting play a significant role
in the transport process.

3.6 Using multiple monitoring sites to increase chances
of measuring smoke and studying smoke evolution

There are distinct advantages to setting up multiple measur-
ing sites and studying smoke over an extended period. First,
this helps to capture more smoke events, as seen during the
2022 study in comparison with that in 2021, when a single
trailer was used. It minimizes issues with predicting down-
wind locations and is not affected by uncertainty in planned
burning locations and times. Second, it reduces the labor and
time required to relocate a single trailer and set it up several
times throughout a prescribed burning period when burning
occurs over different regions. Third, it provides a high spa-
tial resolution, and occasionally smoke from the same fire
is detected at several sites, which can be useful for studying
smoke chemical evolution with higher certainty than stud-
ies of multiple plumes of varying ages measured on different
days.

An example of the same fire detected at several sites is
shown in Fig. 8. On 9 May 2022, all of T1291, T1292, Main
Trailer, and T1293 detected an off-base fire taking place ap-
proximately 18 km north-northeast of the base, as shown in
Fig. 8a. T1291, the trailer closest to the fire, measured PM2.5
mass and CO peaks at 15:10. The time series of species mea-
sured in the various trailers is shown in Fig. 8. Subsequent
peaks in PM2.5 mass, CO, BC, and O3 concentrations were
recorded at T1292 at 15:50, then at Main Trailer at 16:30, and
finally at T1293, the trailer furthest from the fire, at 18:10 lo-
cal time. For O3, note the O3 enhancement (1O3) superim-
posed onto the diurnal O3 trend. The ages of the smoke de-
tected based on wind vector analysis were 266, 296, 330, and
480 min for the various trailers. The difference in smoke age
is close to the difference in peak arrival times, with maximum
PM2.5 mass concentrations observed at 15:02, 15:53, 16:25,
and 18:16 at T1291, T1292, T1293, and T Main, respectively.
The differences in peak concentrations can be due to a num-
ber of factors, including changes in fire emissions with time,

the extent of plume dilutions with distance from the fire, and
changes in which portions of the plume were measured due
to changes in winds. Wind vectors are shown at the top of
the plots in Fig. 8. Wind direction and speed varied during
the period when the plumes were recorded; the wind direc-
tion was between 52 and 86° from 11:00 till 14:00, and the
speeds were between 1.3 and 3.1 m s−1 on 9 May 2022. A
shift in wind direction to 348° at a speed of 1.8 m s−1 hap-
pened at 15:00. Then, the wind direction fluctuated between
11 and 44° before the wind speed decreased to 0 m s−1 at
20:00 and remained calm until the morning of 10 May 2022.
Normalizing these plume data by a stable smoke tracer, such
as CO, can account for some of these factors when compar-
ing the emissions and evolution of various plume properties.

3.7 Interpretation of measurements to characterize
smoke emission and evolution

3.7.1 PM2.5 emissions

We used the NEMRs to study the emissions of PM2.5 species
and their evolution in the various measured smoke plumes.
The NEMRs determined from the linear regression slopes of
PM2.5 species (mass concentration, BC concentration, BrC
absorption, and CO, with their backgrounds subtracted) and
the correlation values (r2) for all of the smoke events are
summarized in Table 1. PM2.5 mass-concentration NEMRs
from other studies are summarized in Table S11 in the Sup-
plement.

The NEMR of fresh smoke near a fire is interpreted as
an emission ratio (ER), assuming that the smoke has under-
gone limited chemical and/or physical changes. ERs based
on NEMRs are used widely (Liu et al., 2017b; Collier et
al., 2016; Burling et al., 2011; Gkatzelis et al., 2024). They
are compiled in reviews and emission inventories for ambi-
ent (Andreae, 2019; Prichard et al., 2020) and laboratory fire
studies (Yokelson et al., 2013) and for evaluating or making
model predictions (Xiu et al., 2022; Jaffe et al., 2022).

By focusing on fresh smoke (age less than 1 h), the
emission ratios (ERs) of the prescribed fires can be es-
timated and compared to those from other studies. The
PM2.5 mass concentration ER ranged between 0.04 and
0.18 µg m−3 ppb−1 and is shown in Fig. 9. These ERs are
comparable to other prescribed fires measured at both ground
level (Alves et al., 2010; Desservettaz et al., 2017; Ko-
rontzi et al., 2003; Balachandran et al., 2013) and aloft
in airborne studies (Sinha et al., 2003; May et al., 2014;
Gkatzelis et al., 2024; Travis et al., 2023) that span a
large range of burning conditions and fuels (details are
provided in Table S11). The mean PM2.5 mass concen-
tration ER for our data is 0.117± 0.045 µg m−3 ppb−1,
and those of these other prescribed fire studies are
0.098± 0.034 µg m−3 ppb−1 for ground-based measure-
ments and 0.188± 0.154 µg m−3 ppb−1 for airborne mea-
surements. There is substantial and similar variability in
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Table 1. The PM2.5 mass, BC, and BrC NEMRs relative to CO (based on regression slopes) and the coefficients of determination (r2) in the
column to the right of each NEMR for the smoke events identified in this study∗.

Smoke event NEMR PM2.5 mass r2 NEMR PM2.5 BC r2 NEMR PM2.5 BrC r2 Age estimated Age estimated
date and trailer (µg m−3 ppb−1) (µg m−3 ppb−1) (µg m−3 Mm−1) by wind vector by HYSPLIT
(m/dd/yy) (min) (min)

3/23/21 T Main 0.125 0.66 0.010 0.74 0.257 0.59 108 40
4/06/21 T Main 0.097 0.90 0.012 0.96 0.187 0.82 75 130
4/07/21 T Main 0.160 0.90 0.012 0.93 0.367 0.86 14 10
4/08/21 T Main 0.105 0.90 0.005 0.84 0.199 0.85 162 40
4/14/21 T Main 0.146 0.72 0.015 0.76 0.324 0.61 44 20
4/20/21 T Main 0.080 0.74 0.011 0.83 0.151 0.63 5 10
4/21/21 T Main 0.107 0.75 0.009 0.90 0.133 0.70 330 190
4/30/21 T Main 0.141 0.94 0.007 0.95 0.319 0.87 – –
2/11/22 T Main 0.054 0.93 0.022 0.95 0.567 0.95 8 10
2/12/22 T Main 0.066 0.82 0.018 0.96 0.514 0.93 60 50
2/13/22 T Main 0.053 0.81 0.016 0.83 0.613 0.85 26 20
2/13/22 T Main 0.042 0.86 0.014 0.89 0.689 0.85 30 20
2/26/22 T Main 0.207 0.88 0.018 0.98 0.690 0.97 130 110
2/27/22 T Main 0.119 0.70 0.010 0.87 0.334 0.91 – –
3/01/22 T Main 0.166 0.81 0.016 0.91 0.586 0.94 92 270
3/02/22 T Main 0.129 0.75 0.020 0.87 0.608 0.87 60 40
3/04/22 T Main 0.209 0.69 0.005 0.53 0.167 0.92 – 160
3/04/22 T Main 0.121 0.89 0.012 0.98 0.454 0.97 – 40
3/07/22 T Main 0.122 0.82 0.009 0.96 0.405 0.96 224 –
3/07/22 T Main 0.170 0.66 0.012 0.97 0.338 0.89 – 10
3/14/22 T Main 0.138 0.82 0.010 0.93 0.575 0.88 – 20
3/25/22 T Main 0.090 0.78 0.009 0.86 0.375 0.91 5 10
3/29/22 T Main 0.121 0.68 0.008 0.68 0.420 0.76 5 10
4/04/22 T Main 0.129 0.90 0.009 0.96 0.551 0.92 168 130
4/25/22 T Main 0.283 0.83 0.022 0.91 1.382 0.77 169 90
5/09/22 T Main 0.237 0.96 0.008 0.94 0.324 0.94 330 150
3/21/22 T 1293 0.188 0.98 – – – – 89 20
3/25/22 T 1293 0.158 0.93 – – – – 45 30
3/26/22 T 1293 0.148 0.97 – – – – 5 10
3/27/22 T 1293 0.176 0.84 – – – – 5 10
3/28/22 T 1293 0.129 0.81 – – – – – 60
3/29/22 T 1293 0.093 0.87 – – – – – 210
4/05/22 T 1293 0.277 0.91 0.016 0.78 0.280 0.47 – 360
4/21/22 T 1293 0.466 0.98 0.024 0.83 1.55 0.48 78 –
4/23/22 T 1293 0.121 0.59 0.013 0.80 0.317 0.33 28 10
4/23/22 T 1293 0.165 0.97 0.014 0.96 0.354 0.94 48 10
4/24/22 T 1293 0.248 0.90 – – – – 63 40
4/26/22 T 1293 0.182 0.96 – – – – 106 –
5/09/22 T 1293 0.238 0.99 0.012 0.98 0.321 0.94 480 210
5/10/22 T 1293 0.112 0.92 0.008 0.83 0.406 0.78 474 160
5/11/22 T 1293 0.168 0.77 – – – – 5 10
5/12/22 T 1293 0.119 0.94 – – – – 5 10
5/09/22 T 1291 0.265 0.98 – – – – 296 160

∗ The table lists all events where both PM2.5 mass and CO concentration were both available. In some cases BC and BrC data was not available and left as blank values (–).
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Figure 7. Case study of missing smoke at the monitoring site despite expectations according to wind direction. (a) Time series of species
measured at the main trailer. The time resolution is 20 min for CO, PM2.5 mass, BC, and BrC. The wind vectors depict hourly data sourced
from the RAWS, with the direction of the arrow indicating wind direction and the length of the arrow indicating wind speed. The data
from the PCSG school are hourly averages. (b, c) HYSPLIT forward trajectories starting from the two prescribed fires on the base on
15 February 2022 at 10:00 and 11:00, respectively. The red dots are fires detected by FIRMS on the same day (satellite overpasses occurred
on 15 February 2022 at 12:54, 13:49, 14:32, and 14:36).

the ground-based measurements of prescribed fire ERs in
this study relative to other studies. More recent airborne-
measured prescribed fires have reported substantially higher
ERs (Fig. 9). Smoke transported for 10 min from the Black-
water river state forest prescribed fire reported by Gkatzelis
et al. (2024) had an ER of 0.462 µg m−3 ppb−1 (Gkatzelis
et al., 2024), and Travis et al. (2023) reported a range
of 0.188–0.433 µg m−3 ppb−1 for 22 prescribed fires stud-
ied and grouped into four categories based on fuel type
(Travis et al., 2023). Figure 9 also shows comparisons
with wildfires reported in other studies (Liu et al., 2017b;
Collier et al., 2016; Palm et al., 2020; Gkatzelis et al.,
2024). Wildfire PM2.5 mass ERs are significantly higher
than the ERs for prescribed fires in this work, with ER
ranges between 0.04 and 0.43 µg m−3 ppb−1 and a mean
of 0.264± 0.091 µg m−3 ppb−1 for wildfires, and the dif-
ference is statistically significant (the two-tailed p value is

< 0.0001). Lower PM2.5 mass ERs from smaller prescribed
fires have been noted in other studies (Liu et al., 2017b)
and support the utilization of prescribed burning as a land
management tool to limit wildfires. However, differences in
altitude at which the measurements were made may have
some effect on the ERs. Selimovic et al. (2019) noted that
the PM2.5 / CO in ground-level smoke was about half of that
observed from aloft, which was apparently due to a reduc-
tion in aerosol mass from evaporation of semivolatile aerosol
particle components resulting from higher surface temper-
atures compared to aloft. Pagonis et al. (2023) also found
airborne OA NEMRs to be a factor of 2 higher than ground-
based NEMRs, giving the same interpretation (Pagonis et al.,
2023). When comparing ERs of prescribed fires in ground
and airborne studies of prescribed fires, shown in Fig. 9, the
mean of airborne studies is a factor of ∼ 1.9 higher than
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Figure 8. Case study of sequential smoke detection at four monitoring trailers. (a) Map of the fort showing historical satellite data from the
FIRMS website observed for 9 May 2022 (satellite overpasses occurred on 9 May 2022 at 12:38, 13:54, and 14:42 local time) and the average
wind vector from 13:00 to 16:00 local time. Time series showing 20 min data on the (b) PM2.5 mass concentration, (c) CO concentration, (d)
O3 concentration, and (e) BC concentration for the main trailer, T1291, T1292, and T1293. Note that no CO instrument operated at T1292
and that there were no BC data for T1291.

ground-based studies, and the difference is statistically sig-
nificant (the p value is 0.025).

This analysis assumes no significant changes in PM2.5
mass for smoke less than 1 h old. We have seen that smoke
detected in the afternoon can have enhanced O3 concentra-
tions, which may also lead to secondary aerosol formation.
Smoke plumes with enhanced O3 are identified in the ERs
shown in Fig. 9 and indicate no bias within the range of ERs
recorded, suggesting that possible secondary aerosol forma-
tion within the first hour following emissions does not con-
tribute to ER variability. We did not find evidence either of
ERs depending on the time of day. No difference was seen
between ERs for fires that started on the same day of mea-
surement (i.e., all detected after 09:00 and before 17:00) and
those detected at night after 17:00 or early in the morning,
corresponding to fires that started on the day before the mea-

surement but were still estimated to correspond to smoke less
than 1 h old.

We also determined the ERs for BC and BrC. The
BC ERs were in the range 0.008–0.022 µg m−3 ppb−1

with a mean value of 0.014± 0.004 µg m−3 ppb−1 and are
within the range of NEMRs reported in other studies;
0.006 µg m−3 ppb−1 for prescribed burns in southern African
savanna forests (Sinha et al., 2003), 0.020 µg m−3 ppb−1 for
rBC (refractory BC) for prescribed burns of California cha-
parral forests (Akagi et al., 2012), 0.022 µg m−3 ppb−1 for
chaparral forests (May et al., 2014), 0.006 µg m−3 ppb−1

for fires in montane ecosystems (May et al., 2014), 0.018
for coastal plain ecosystems in South Carolina (May et al.,
2014), and 0.004 µg m−3 ppb−1 for large wildfires over the
western USA measured during the Fire Influence on Re-
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Figure 9. Boxplot of PM2.5 mass NEMRs of smoke events of es-
timated age ≤ 1 h in this study in comparison to other studies. The
blue symbols are smoke plumes with observed O3 enhancements.
The horizontal line inside the box represents the median of the data.
The top line of the box represents the third quartile (Q3), and the
bottom line represents the first quartile (Q1). The colored circles
represent data outliers. “P.F.” is prescribed fires, and “W.F.” is wild-
fires. Some of the emission ratios reported in the literature and in-
cluded in the plot correspond to 1OA/1CO since OA tends to dom-
inate 1PM2.5 mass concentrations (see Table S10).

gional to Global Environments Experiment (FIREX) cam-
paign (Gkatzelis et al., 2024).

The BrC ERs of fresh smoke events ranged from 0.151
to 0.689 Mm−1 ppb−1, with a mean± standard deviation
of 0.442± 0.157 Mm−1 ppb−1. There are limited published
data on BrC ERs and NEMRs from prescribed fires, and
the measurement techniques of BrC vary between the stud-
ies. Liu et al. (2016) reported aircraft measurements of BrC
at 365 nm inferred from PSAP absorption coefficients mea-
sured at two wavelengths (470 and 532 nm), with an ER
of 0.223± 0.053 Mm−1 ppb−1 for fresh agricultural fires
in the southeastern USA, which is lower than our mean
but falls within the range of values we observed. For
large wildfires measured over the western USA, Zeng et
al. (2022) found for photoacoustic spectroscopy (PAS) mea-
surements of BrC at a wavelength of 405 nm, the ER was
0.131± 0.001 Mm−1 ppbv−1 in plumes < 2 h old. These val-
ues are in the range we recorded, but the BrC ERs for the
prescribed fires of this study are more variable.

3.7.2 NEMRs of all smoke events and their change with
smoke age

Here we assess the overall variability in NEMRs for
PM2.5 mass concentrations, BC mass concentrations, BrC
absorption coefficients, and AAEs from all the smoke
events (including ages less than 1 h) and assess possi-
ble trends with smoke plume age. In this analysis, the

observed changes with age are a combination of vari-
ability in the emissions and evolution of aerosol since
this is not a Lagrangian experiment, meaning that we
are not continuously tracking a specific air mass contain-
ing smoke particles over time. PM2.5 mass-concentration
NEMRs varied between 0.04 and 0.47 µg m−3 ppb−1 for all
the reported events, with a mean± standard deviation of
0.155± 0.076 µg m−3 ppb−1 (median 0.138 µg m−3 ppb−1).
BC NEMRs ranged from 0.005 to 0.024 µg m−3 ppb−1 with
a mean value of 0.013± 0.005 µg m−3 ppb−1. BrC NEMRs
(1BrC / 1CO) ranged from 0.133 to 1.550 Mm−1 ppb−1.
(Note that the data collected on 21 April 2022 at trailer 1293
are an outlier with exceptionally high ERs for the PM2.5 mass
concentration and BrC absorption coefficient. The ER for BC
mass concentration, while elevated, falls within the observed
range. This event corresponds to smoke from an identified
prescribed fire at the fort and has a relatively low 1CO of
66.1 ppb, which is unexpected given the burn’s proximity and
the wind speed on that day, causing ERs to be significantly
higher. The HYSPLIT back-trajectory from the measuring
site does not intersect with the fire but passes close to it. Al-
though the FRP reported by FIRMS does not differ from that
of other fires and there is no significant difference in vege-
tation type or fuel moisture, the most likely explanation for
this event is that the smoke passing through the measurement
site was not a direct hit but was from the diluted boundary of
the plume, which may have undergone photochemical pro-
cessing, leading to higher PM2.5, BrC, and O3 NEMRs.) The
NEMRs are given in Table 1 for all smoke event data and are
plotted in Fig. 10 as functions of the estimated smoke age de-
termined from the wind vector and HYSPLIT analysis. From
these plots we assess whether there is any systematic evolu-
tion of the PM2.5 mass, BC, and BrC.

Changes in PM2.5 mass-concentration NEMRs with
smoke age: Fig. 10a shows a substantial variability of PM2.5
mass NEMRs at all ages, with no significant statistical dif-
ference or clear trend. However, NEMRs tend to be lower
for fresh smoke events (≤ 1 h old) than more aged plumes,
which is possibly due to secondary aerosol formation. Con-
sidering only smoke plumes in which O3 enhancements
were observed (i.e., smoke measured between 12:00 and
18:00), PM2.5 mass-concentration NEMRs consistently in-
crease with physical age (r2

= 0.65), which is possible evi-
dence of secondary aerosol formation driven by photochem-
istry.

A range of results for changes in PM2.5 mass-
concentration NEMRs in wildland fires has been observed in
other studies, including systematic increases, little change,
or decreases with smoke age. To the best of our knowledge,
no ground-based studies have been conducted on the evo-
lution of smoke from prescribed fires, but frequent airborne
studies have investigated prescribed and wildland smoke ag-
ing because of the ability to spatially characterize a single
plume. While studying two prescribed fires in South Car-
olina, May et al. (2015) observed no statistically significant
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Figure 10. (a) PM2.5 mass, (b) BC, and (c) BrC NEMRs of all the studied smoke events as a function of age estimated using average wind
vector and HYSPLIT analysis. Smoke plumes with observed O3 enhancements are identified. Linear regression coefficients of determination
(r2) for all data and for just O3 enhancement periods are identified. The exponential fit equation for PM2.5 mass NEMRs for O3 enhancement
periods is shown in panel (a).

Figure 11. Average AAE values for (a) total light absorption (BC+BrC) and (b) BrC species for all smoke events for which aethalometer
data are available. Smoke plumes with observed O3 enhancements are identified.

net change in OA NEMRs near the source and downwind
for smoke transported for ≤ 1.5 h. One of the two fires was
studied for longer, and the results showed downwind OA
NEMRs over 2 to 5 h of transport that were significantly
lower than the NEMRs at the source, suggesting a net loss
of emitted OA. For wildfires, Collier et al. (2016) found
increases, little change, and decreases with smoke age in
different wildfire plumes measured in Oregon. For the se-
lected large wildfires in the western USA in summer, Palm
et al. (2020) reported that the OA NEMRs remained almost
constant at a value of ∼ 0.25 µg m−3 ppb−1 as the plume
aged from 20–50 min to 6 h. In their analysis of the data
of wildland fires studied during the FIREX-AQ campaign in
2019, Pagonis et al. (2023) reported that the OA NEMRs in-
creased from 0.2 to 0.3 g g−1 in 3 h (Pagonis et al., 2023).

While Garofalo et al. (2019) found no significant change in
NEMRs between 0.5 and 8 h transport of smoke from 20
western wildfires, they concluded that there was secondary
OA formation through oxidation-driven condensation, but
this was balanced by dilution-driven evaporation. Gkatzelis
et al. (2024) reported NEMRs of some plumes that were
more than 1 h old and that are shown in Table S11 with their
corresponding physical ages. For the same fire (William’s
Flat), the NEMR was 0.331 µg m−3 ppb−1 at a physical age
of 15 min, which increased to 0.524 µg m−3 ppb−1 at 102 min
(Gkatzelis et al., 2024). A similar increase for the Castle fire
was seen when the reported NEMRs were 0.204, 0.244, and
0.463 µg m−3 ppb−1 at 25, 27, and 153 min, respectively. For
another fire (Horsefly), the NEMR was 0.398 µg m−3 ppb−1

at a physical age of 65 min and remained at a similar value
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of 0.391 µg m−3 ppb−1 at 104 min. On average, the mean
NEMR for plumes of a physical age of less than 1 h, as
reported in their study, was 0.218± 0.110. This value is
lower than that of plumes older than 1 h, which had a mean
value of 0.391± 0.131 (Gkatzelis et al., 2024). Overall, we
find no trends in our data when considering all the detected
smoke plumes, but for periods of expected photochemical ac-
tivity we observe consistent evidence of aerosol formation
with plume age, which might be attributed to the optically
thin smoke that allows photochemistry throughout the plume
compared to large optically thick wildfires and that leads to
more complex photochemistry within the plume (Decker et
al., 2021a).

We examined other factors that may contribute to
the variability of PM2.5 mass NEMRs. No signif-
icant difference was observed between on-base and
off-base sources of smoke. The mean PM2.5 mass
NEMR of smoke originating from outside the base
is 0.208 (range 0.112–0.277 µg m−3 ppb−1) compared to
0.147 µg m−3 ppb−1 (range 0.042–0.466 µg m−3 ppb−1) for
on-base burning, which is not statistically different (the
two-tailed p value is 0.076). A preliminary assessment
using Google Earth satellite imagery and the Landscape
Fire and Resources Management Planning Tool (LAND-
FIRE, https://www.landfire.gov/, last access: 5 May 2024)
does not show any visible differences in vegetation be-
tween the forested areas burned on and off the base. Ad-
ditionally, no further information regarding the fuel types
in the off-base lands could be obtained. Just like no de-
tected differences being observed between day and night
PM2.5 mass concentration ERs, there was no significant dif-
ference (the p value is 0.169) between smoke plumes of
all ages measured during the day corresponding to fires oc-
curring within a few hours of starting the burn (after 09:00
and before 17:00) (mean NEMR= 0.178 µg m−3 ppb−1) and
those monitored at night and early in the morning corre-
sponding to fires starting the day before (after 17:00) (mean
NEMR= 0.137 µg m−3 ppb−1), in contrast to an observed
trend of PM2.5 mass NEMRs with age for smoke with O3
enhancement. This may suggest little nighttime secondary
aerosol formation (Brown et al., 2013), but a more focused
analysis is needed to better assess possible evidence of sec-
ondary aerosol formation. No correlation was observed be-
tween PM2.5 mass NEMRs and relative humidity (r2

= 0.08)
or fuel moisture data (r2

= 0.04) for the smoke events in this
study (Fig. S13 in the Supplement). A weak positive corre-
lation between air temperature and PM2.5 mass NEMRs was
observed, with an r2 of 0.14 for all smoke events and an r2 of
0.44 for fresh smoke events. Many factors could cause vari-
ability in PM2.5 mass NEMRs, but no single factor could be
identified when all the data from this study are grouped to-
gether.

Changes in BC and BrC NEMRs with smoke age: BC and
BrC NEMRs and age are shown in Fig. 10b and c with peri-
ods of O3 enhancements identified. No trend in BC NEMRs

with age is observed, as expected, since BC is primarily emit-
ted and largely nonvolatile. The lack of a trend supports this
analysis approach, and all the BC measured in events largely
reflects the BC variability in emissions relative to CO. BrC
NEMRs are also highly variable and have no trend with age
for all the data or just the periods of O3 enhancements. Since
BrC can be both primary and secondary, is semivolatile, and
undergoes photo-bleaching, a range of results on BrC evo-
lution has been observed in past studies (Zhong and Jang,
2014; Saleh et al., 2013; Liu et al., 2016). Like BC, a simi-
lar large variability, with no trend, in BrC NEMRs with ages
up to 8 h has been observed for wildfires in the western USA
(Zeng et al., 2022; Sullivan et al., 2022; Palm et al., 2020),
whereas in some cases consistent loss (bleaching) of BrC
has been reported (Forrister et al., 2015). Optical properties
of absorptive aerosol spectral properties characterized by the
AAE are shown in Fig. 11 as a function of age. Total absorp-
tion AAE values from the two trailers with seven-wavelength
aethalometers (i.e., BC+BrC measured by aethalometers)
varied between 1.31 and 3.32 (mean±SD of 1.89± 0.23)
and between 3.19 and 7.43 (mean= 5.00± 0.89) for BrC
only. AAEs have no trend with age for either fresh smoke
plumes or periods of O3 enhancement. While our total AAE
values are similar (Zeng et al., 2022; Strand et al., 2016;
Marsavin et al., 2023) or sometimes lower (Liu et al., 2016;
Forrister et al., 2015) than those in other biomass burning
studies, it is indicative of the presence of BrC in the smoke
plumes studied. As for the BrC AAEs, our reported values
are significantly higher than those reported for western wild-
fires, where BrC determined from the PAS had an AAE of
2.07± 1.01 (Zeng et al., 2022), indicating differences in the
BrC optical properties or with instrumentation, which needs
further investigation. Selimovic et al. (2019) showed that duff
has the highest AAE of 7.13 (calculated from absorption data
at 401 and 870 nm) when burned, and it is typically con-
sumed more in wildfires than in prescribed fires. However,
the variability in optical properties is influenced more by the
differential consumption of individual components than by
the dominant tree species in the ecosystem (Selimovic et al.,
2019).

4 Conclusions

We describe a ground-based observational study for char-
acterizing smoke from prescribed fires based on continu-
ous monitoring at multiple sites for an extended period in
a regularly burned region. We focus on burning within a
large military fort in the southeastern USA and identify the
sources of the smoke to determine whether it was within
or outside the fort and study emissions and evolution of
the smoke species. The method was successful in captur-
ing a significant number of smoke events (64) monitored
on 42 d and linked to 45 fires across two burning seasons.
The source and age for each smoke plume detected were
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estimated. This allowed us to match 95 % of the identified
events to their corresponding source and to calculate the
estimated transport time of smoke from the source to the
monitors. These data were used to characterize the emis-
sions and evolution of key smoke parameters through cal-
culation of normalized excess mixing ratios (NEMRs), with
CO as the conserved co-emitted species. Overall, PM2.5
mass-concentration NEMRs (1PM2.5 mass / 1CO) ranged
between 0.04 and 0.47 µg m−3 ppb−1, with a study mean of
0.155± 0.076 µg m−3 ppb−1 (median 0.138 µg m−3 ppb−1).
For plumes less than 1 h old, the PM2.5 mass-concentration
NEMRs were interpreted as a characteristic of the fire emis-
sions. The emission ratios for the fires of this study ranged
between 0.042 and 0.176 µg m−3 ppb−1, with a mean of
0.117± 0.045 µg m−3 ppb−1 (median 0.121 µg m−3 ppb−1).
These emission estimates are in the range reported in other
ground-based studies for a range of fires and fuels but are
lower than what has been reported for wildfire smoke mea-
sured from aircraft at higher altitudes. BC and BrC NEMRs
and emission ratios are also reported. An analysis of PM2.5
mass and BrC NEMRs changes with smoke age showed no
consistent trends for all the combined smoke plumes. How-
ever, the PM2.5 mass NEMRs did increase with age for
smoke detected in the afternoon in plumes where O3 en-
hancements were observed, indicating the formation of O3
and secondary aerosol. This was not observed for the BrC
NEMRs. This data set will be used to assess models predict-
ing the impact of prescribed fires on air quality to enhance
the use of prescribed burning in land management practices
by minimizing impacts on populations.

Data availability. The data are available in a publicly accessible
repository on Zenodo at https://doi.org/10.5281/zenodo.11222295
(El Asmar, 2024).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-12749-2024-supplement.

Author contributions. REA and RJW wrote the paper. RJW,
LGH, DJT, and MTO designed the experiment. REA and DJT col-
lected the data. REA, ZL, DJT, and RJW analyzed the data. REA
and ZL worked on the HYSPLIT analysis. All the authors reviewed
and provided comments on the paper.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-

ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank the Fort Moore authorities for
hosting the field study and the members of the Natural Resources
Management Branch for sharing information about the burns.

Financial support. This research has been supported by the
United States Army Corps of Engineers (contract no. W912HQ-
20-C-0019) and the Strategic Environmental Research and Devel-
opment Program (project no. RC20-1047).

Review statement. This paper was edited by Sergey A. Nizko-
rodov and reviewed by two anonymous referees.

References

Afrin, S. and Garcia-Menendez, F.: The Influence of Prescribed
Fire on Fine Particulate Matter Pollution in the Southeast-
ern United States, Geophys. Res. Lett., 47, e2020GL088988,
https://doi.org/10.1029/2020GL088988, 2020.

Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokel-
son, R. J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J.
H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace
gases and particles emitted by a chaparral fire in California, At-
mos. Chem. Phys., 12, 1397–1421, https://doi.org/10.5194/acp-
12-1397-2012, 2012.

Akagi, S. K., Burling, I. R., Mendoza, A., Johnson, T. J., Cameron,
M., Griffith, D. W. T., Paton-Walsh, C., Weise, D. R., Reardon,
J., and Yokelson, R. J.: Field measurements of trace gases emit-
ted by prescribed fires in southeastern US pine forests using
an open-path FTIR system, Atmos. Chem. Phys., 14, 199–215,
https://doi.org/10.5194/acp-14-199-2014, 2014.

Alves, C. A., Gonçalves, C., Pio, C. A., Mirante, F., Ca-
seiro, A., Tarelho, L., Freitas, M. C., and Viegas, D. X.:
Smoke emissions from biomass burning in a Mediter-
ranean shrubland, Atmos. Environ., 44, 3024–3033,
https://doi.org/10.1016/j.atmosenv.2010.05.010, 2010.

Andreae, M. O.: Emission of trace gases and aerosols from biomass
burning – an updated assessment, Atmos. Chem. Phys., 19,
8523–8546, https://doi.org/10.5194/acp-19-8523-2019, 2019.

Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R.
C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy,
B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G.
A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G., Schwede,
D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community
Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1:
system updates and evaluation, Geosci. Model Dev., 14, 2867–
2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021.

Aurell, J. and Gullett, B. K.: Effects of UAS Rotor
Wash on Air Quality Measurements, Drones, 8, 73,
https://doi.org/10.3390/drones8030073, 2024.

Aurell, J., Gullett, B., Holder, A., Kiros, F., Mitchell, W.,
Watts, A., and Ottmar, R.: Wildland fire emission sam-
pling at Fishlake National Forest, Utah using an un-

Atmos. Chem. Phys., 24, 12749–12773, 2024 https://doi.org/10.5194/acp-24-12749-2024

https://doi.org/10.5281/zenodo.11222295
https://doi.org/10.5194/acp-24-12749-2024-supplement
https://doi.org/10.1029/2020GL088988
https://doi.org/10.5194/acp-12-1397-2012
https://doi.org/10.5194/acp-12-1397-2012
https://doi.org/10.5194/acp-14-199-2014
https://doi.org/10.1016/j.atmosenv.2010.05.010
https://doi.org/10.5194/acp-19-8523-2019
https://doi.org/10.5194/gmd-14-2867-2021
https://doi.org/10.3390/drones8030073


R. El Asmar et al.: A multi-site passive approach to studying emissions and evolution 12769

manned aircraft system, Atmos. Environ., 247, 118193,
https://doi.org/10.1016/j.atmosenv.2021.118193, 2021.

Balachandran, S., Pachon, J. E., Lee, S., Oakes, M. M., Ras-
togi, N., Shi, W., Tagaris, E., Yan, B., Davis, A., Zhang, X.,
Weber, R. J., Mulholland, J. A., Bergin, M. H., Zheng, M.,
and Russell, A. G.: Particulate and gas sampling of prescribed
fires in South Georgia, USA, Atmos. Environ., 81, 125–135,
https://doi.org/10.1016/j.atmosenv.2013.08.014, 2013.

Bell, M. L.: Ozone and Short-term Mortality in 95 US
Urban Communities, 1987–2000, JAMA, 292, 2372,
https://doi.org/10.1001/jama.292.19.2372, 2004.

Bond, T. C., Anderson, T. L., and Campbell, D.: Calibration and
Intercomparison of Filter-Based Measurements of Visible Light
Absorption by Aerosols, Aerosol Sci. Technol., 30, 582–600,
https://doi.org/10.1080/027868299304435, 1999.

Borchers-Arriagada, N., Bowman, D. M. J. S., Price, O., Palmer,
A. J., Samson, S., Clarke, H., Sepulveda, G., and Johnston, F.
H.: Smoke health costs and the calculus for wildfires fuel man-
agement: a modelling study, Lancet Planet. Heal., 5, e608–e619,
https://doi.org/10.1016/S2542-5196(21)00198-4, 2021.

Brown, S. S., Dubé, W. P., Bahreini, R., Middlebrook, A. M., Brock,
C. A., Warneke, C., de Gouw, J. A., Washenfelder, R. A., At-
las, E., Peischl, J., Ryerson, T. B., Holloway, J. S., Schwarz,
J. P., Spackman, R., Trainer, M., Parrish, D. D., Fehshen-
feld, F. C., and Ravishankara, A. R.: Biogenic VOC oxidation
and organic aerosol formation in an urban nocturnal boundary
layer: aircraft vertical profiles in Houston, TX, Atmos. Chem.
Phys., 13, 11317–11337, https://doi.org/10.5194/acp-13-11317-
2013, 2013.

Burling, I. R., Yokelson, R. J., Akagi, S. K., Urbanski, S. P.,
Wold, C. E., Griffith, D. W. T., Johnson, T. J., Reardon, J.,
and Weise, D. R.: Airborne and ground-based measurements
of the trace gases and particles emitted by prescribed fires
in the United States, Atmos. Chem. Phys., 11, 12197–12216,
https://doi.org/10.5194/acp-11-12197-2011, 2011.

Christopher, S. A., Chou, J., Welch, R. M., Kliche, D. V., and
Connors, V. S.: Satellite investigations of fire, smoke, and Car-
bon Monoxide during April 1994 MAPS mission: Case studies
over tropical Asia, J. Geophys. Res.-Atmos., 103, 19327–19336,
https://doi.org/10.1029/97JD01813, 1998.

Collier, S., Zhou, S., Onasch, T. B., Jaffe, D. A., Kleinman, L., Sed-
lacek, A. J., Briggs, N. L., Hee, J., Fortner, E., Shilling, J. E.,
Worsnop, D., Yokelson, R. J., Parworth, C., Ge, X., Xu, J., But-
terfield, Z., Chand, D., Dubey, M. K., Pekour, M. S., Springston,
S., and Zhang, Q.: Regional Influence of Aerosol Emissions
from Wildfires Driven by Combustion Efficiency: Insights from
the BBOP Campaign, Environ. Sci. Technol., 50, 8613–8622,
https://doi.org/10.1021/acs.est.6b01617, 2016.

Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day,
D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher,
J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny,
T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Wein-
heimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging
on organic aerosol from open biomass burning smoke in aircraft
and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064,
https://doi.org/10.5194/acp-11-12049-2011, 2011.

Decker, Z. C. J., Robinson, M. A., Barsanti, K. C., Bourgeois, I.,
Coggon, M. M., DiGangi, J. P., Diskin, G. S., Flocke, F. M.,
Franchin, A., Fredrickson, C. D., Gkatzelis, G. I., Hall, S. R.,

Halliday, H., Holmes, C. D., Huey, L. G., Lee, Y. R., Lindaas,
J., Middlebrook, A. M., Montzka, D. D., Moore, R., Neuman, J.
A., Nowak, J. B., Palm, B. B., Peischl, J., Piel, F., Rickly, P. S.,
Rollins, A. W., Ryerson, T. B., Schwantes, R. H., Sekimoto, K.,
Thornhill, L., Thornton, J. A., Tyndall, G. S., Ullmann, K., Van
Rooy, P., Veres, P. R., Warneke, C., Washenfelder, R. A., Wein-
heimer, A. J., Wiggins, E., Winstead, E., Wisthaler, A., Wom-
ack, C., and Brown, S. S.: Nighttime and daytime dark oxidation
chemistry in wildfire plumes: an observation and model analy-
sis of FIREX-AQ aircraft data, Atmos. Chem. Phys., 21, 16293–
16317, https://doi.org/10.5194/acp-21-16293-2021, 2021a.

Decker, Z. C. J., Wang, S., Bourgeois, I., Campuzano Jost, P., Cog-
gon, M. M., DiGangi, J. P., Diskin, G. S., Flocke, F. M., Franchin,
A., Fredrickson, C. D., Gkatzelis, G. I., Hall, S. R., Halliday,
H., Hayden, K., Holmes, C. D., Huey, L. G., Jimenez, J. L.,
Lee, Y. R., Lindaas, J., Middlebrook, A. M., Montzka, D. D.,
Neuman, J. A., Nowak, J. B., Pagonis, D., Palm, B. B., Peis-
chl, J., Piel, F., Rickly, P. S., Robinson, M. A., Rollins, A. W.,
Ryerson, T. B., Sekimoto, K., Thornton, J. A., Tyndall, G. S.,
Ullmann, K., Veres, P. R., Warneke, C., Washenfelder, R. A.,
Weinheimer, A. J., Wisthaler, A., Womack, C., and Brown, S.
S.: Novel Analysis to Quantify Plume Crosswind Heterogeneity
Applied to Biomass Burning Smoke, Environ. Sci. Technol., 55,
15646–15657, https://doi.org/10.1021/acs.est.1c03803, 2021b.

Deng, A., Stauffer, D., Gaudet, B., Dudhia, J., Hacker, J., Bruyere,
C., Wu, W., Vandenberghe, F., Liu, Y., and Bourgeois, A.: Up-
date on WRF-ARW end-to-end multi-scale FDDA system, 10th
Annual WRF Users’ Workshop, 23 June, Boulder, CO, 2009.

Desservettaz, M., Paton-Walsh, C., Griffith, D. W. T., Ket-
tlewell, G., Keywood, M. D., Vanderschoot, M. V., Ward,
J., Mallet, M. D., Milic, A., Miljevic, B., Ristovski, Z. D.,
Howard, D., Edwards, G. C., and Atkinson, B.: Emission
factors of trace gases and particles from tropical savanna
fires in Australia, J. Geophys. Res.-Atmos., 122, 6059–6074,
https://doi.org/10.1002/2016JD025925, 2017.

El Asmar, R.: A Multi-site Passive Approach for Studying the Emis-
sions and Evolution of Smoke from Prescribed Fires, Zenodo
[data set], https://doi.org/10.5281/zenodo.11222295, 2024.

Fiddler, M. N., Thompson, C., Pokhrel, R. P., Majluf, F., Cana-
garatna, M., Fortner, E. C., Daube, C., Roscioli, J. R., Yacov-
itch, T. I., Herndon, S. C., and Bililign, S.: Emission Factors
From Wildfires in the Western US: An Investigation of Burn-
ing State, Ground Versus Air, and Diurnal Dependencies During
the FIREX-AQ 2019 Campaign, J. Geophys. Res.-Atmos., 129,
e2022JD038460, https://doi.org/10.1029/2022JD038460, 2024.

Fleming, L. T., Lin, P., Roberts, J. M., Selimovic, V., Yokel-
son, R., Laskin, J., Laskin, A., and Nizkorodov, S. A.: Molec-
ular composition and photochemical lifetimes of brown car-
bon chromophores in biomass burning organic aerosol, Atmos.
Chem. Phys., 20, 1105–1129, https://doi.org/10.5194/acp-20-
1105-2020, 2020.

Forrister, H., Liu, J., Scheuer, E., Dibb, J., Ziemba, L., Thorn-
hill, K. L., Anderson, B., Diskin, G., Perring, A. E., Schwarz,
J. P., Campuzano-Jost, P., Day, D. A., Palm, B. B., Jimenez,
J. L., Nenes, A., and Weber, R. J.: Evolution of brown car-
bon in wildfire plumes, Geophys. Res. Lett., 42, 4623–4630,
https://doi.org/10.1002/2015GL063897, 2015.

Gao, H. and Jaffe, D. A.: Comparison of ultraviolet absorbance
and NO-chemiluminescence for ozone measurement in wildfire

https://doi.org/10.5194/acp-24-12749-2024 Atmos. Chem. Phys., 24, 12749–12773, 2024

https://doi.org/10.1016/j.atmosenv.2021.118193
https://doi.org/10.1016/j.atmosenv.2013.08.014
https://doi.org/10.1001/jama.292.19.2372
https://doi.org/10.1080/027868299304435
https://doi.org/10.1016/S2542-5196(21)00198-4
https://doi.org/10.5194/acp-13-11317-2013
https://doi.org/10.5194/acp-13-11317-2013
https://doi.org/10.5194/acp-11-12197-2011
https://doi.org/10.1029/97JD01813
https://doi.org/10.1021/acs.est.6b01617
https://doi.org/10.5194/acp-11-12049-2011
https://doi.org/10.5194/acp-21-16293-2021
https://doi.org/10.1021/acs.est.1c03803
https://doi.org/10.1002/2016JD025925
https://doi.org/10.5281/zenodo.11222295
https://doi.org/10.1029/2022JD038460
https://doi.org/10.5194/acp-20-1105-2020
https://doi.org/10.5194/acp-20-1105-2020
https://doi.org/10.1002/2015GL063897


12770 R. El Asmar et al.: A multi-site passive approach to studying emissions and evolution

plumes at the Mount Bachelor Observatory, Atmos. Environ.,
166, 224–233, https://doi.org/10.1016/j.atmosenv.2017.07.007,
2017.

Garcia, A., Santa-Helena, E., De Falco, A., de Paula Ribeiro, J.,
Gioda, A., and Gioda, C. R.: Toxicological Effects of Fine Par-
ticulate Matter (PM2.5): Health Risks and Associated Systemic
Injuries – Systematic Review, Water, Air, Soil Pollut., 234, 346,
https://doi.org/10.1007/s11270-023-06278-9, 2023.

Garofalo, L. A., Pothier, M. A., Levin, E. J. T., Campos, T., Krei-
denweis, S. M., and Farmer, D. K.: Emission and Evolution
of Submicron Organic Aerosol in Smoke from Wildfires in the
Western United States, ACS Earth Sp. Chem., 3, 1237–1247,
https://doi.org/10.1021/acsearthspacechem.9b00125, 2019.

Giglio, L., Schroeder, W., Hall, J., and Justice, C.: MODIS Collec-
tion 6 and Collection 6.1 Active Fire Product User’s Guide, Nasa,
Version 1., 64, 2021.

Gkatzelis, G. I., Coggon, M. M., Stockwell, C. E., Hornbrook, R.
S., Allen, H., Apel, E. C., Bela, M. M., Blake, D. R., Bourgeois,
I., Brown, S. S., Campuzano-Jost, P., St. Clair, J. M., Crawford,
J. H., Crounse, J. D., Day, D. A., DiGangi, J. P., Diskin, G. S.,
Fried, A., Gilman, J. B., Guo, H., Hair, J. W., Halliday, H. S.,
Hanisco, T. F., Hannun, R., Hills, A., Huey, L. G., Jimenez, J. L.,
Katich, J. M., Lamplugh, A., Lee, Y. R., Liao, J., Lindaas, J., Mc-
Keen, S. A., Mikoviny, T., Nault, B. A., Neuman, J. A., Nowak,
J. B., Pagonis, D., Peischl, J., Perring, A. E., Piel, F., Rickly, P.
S., Robinson, M. A., Rollins, A. W., Ryerson, T. B., Schuene-
man, M. K., Schwantes, R. H., Schwarz, J. P., Sekimoto, K., Se-
limovic, V., Shingler, T., Tanner, D. J., Tomsche, L., Vasquez, K.
T., Veres, P. R., Washenfelder, R., Weibring, P., Wennberg, P. O.,
Wisthaler, A., Wolfe, G. M., Womack, C. C., Xu, L., Ball, K.,
Yokelson, R. J., and Warneke, C.: Parameterizations of US wild-
fire and prescribed fire emission ratios and emission factors based
on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., 24,
929–956, https://doi.org/10.5194/acp-24-929-2024, 2024.

Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S.,
and Weber, R. J.: Water-Soluble Organic Aerosol material and
the light-absorption characteristics of aqueous extracts measured
over the Southeastern United States, Atmos. Chem. Phys., 10,
5965–5977, https://doi.org/10.5194/acp-10-5965-2010, 2010.

Huang, R., Hu, Y., Russell, A. G., Mulholland, J. A., and Odman, M.
T.: The Impacts of Prescribed Fire on PM2.5 Air Quality and Hu-
man Health: Application to Asthma-Related Emergency Room
Visits in Georgia, USA, Int. J. Environ. Res. Public Heal., 16,
2312, https://doi.org/10.3390/ijerph16132312, 2019.

Ichoku, C. and Kaufman, Y. J.: A method to derive smoke
emission rates from MODIS fire radiative energy measure-
ments, IEEE Trans. Geosci. Remote Sens., 43, 2636–2649,
https://doi.org/10.1109/TGRS.2005.857328, 2005.

Jaffe, D. A., O’Neill, S. M., Larkin, N. K., Holder, A. L., Pe-
terson, D. L., Halofsky, J. E., and Rappold, A. G.: Wild-
fire and prescribed burning impacts on air quality in the
United States, J. Air Waste Manage. Assoc., 70, 583–615,
https://doi.org/10.1080/10962247.2020.1749731, 2020.

Jaffe, D. A., Schnieder, B., and Inouye, D.: Technical note:
Use of PM2.5 to CO ratio as an indicator of wildfire
smoke in urban areas, Atmos. Chem. Phys., 22, 12695–12704,
https://doi.org/10.5194/acp-22-12695-2022, 2022.

Jo, D. S., Park, R. J., Lee, S., Kim, S.-W., and Zhang, X.: A global
simulation of brown carbon: implications for photochemistry

and direct radiative effect, Atmos. Chem. Phys., 16, 3413–3432,
https://doi.org/10.5194/acp-16-3413-2016, 2016.

Kelp, M. M., Carroll, M. C., Liu, T., Yantosca, R. M., Hockenberry,
H. E., and Mickley, L. J.: Prescribed Burns as a Tool to Mit-
igate Future Wildfire Smoke Exposure: Lessons for States and
Rural Environmental Justice Communities, Earth’s Futur., 11,
e2022EF003468, https://doi.org/10.1029/2022EF003468, 2023.

Korontzi, S., Ward, D. E., Susott, R. A., Yokelson, R. J., Jus-
tice, C. O., Hobbs, P. V., Smithwick, E. A. H., and Hao, W.
M.: Seasonal variation and ecosystem dependence of emis-
sion factors for selected trace gases and PM 2.5 for south-
ern African savanna fires, J. Geophys. Res.-Atmos., 108, 4758,
https://doi.org/10.1029/2003JD003730, 2003.

Kuenzer, C., Hecker, C., Zhang, J., Wessling, S., and Wagner,
W.: The potential of multidiurnal MODIS thermal band data
for coal fire detection, Int. J. Remote Sens., 29, 923–944,
https://doi.org/10.1080/01431160701352147, 2008.

Lack, D. A. and Langridge, J. M.: On the attribution
of black and brown carbon light absorption using the
Ångström exponent, Atmos. Chem. Phys., 13, 10535–10543,
https://doi.org/10.5194/acp-13-10535-2013, 2013.

Larkin, N. K., O’Neill, S. M., Solomon, R., Raffuse, S., Strand, T.,
Sullivan, D. C., Krull, C., Rorig, M., Peterson, J., and Ferguson,
S. A.: The BlueSky smoke modeling framework, Int. J. Wildl.
Fire, 18, 906–920, https://doi.org/10.1071/WF07086, 2009.

Larkin, N. K., Raffuse, S. M., Huang, S. M., Pavlovic, N.,
Lahm, P., and Rao, V.: The Comprehensive Fire Information
Reconciled Emissions (CFIRE) inventory: Wildland fire emis-
sions developed for the 2011 and 2014 U.S. National Emis-
sions Inventory, J. Air Waste Manag. Assoc., 70, 1165–1185,
https://doi.org/10.1080/10962247.2020.1802365, 2020.

Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of
Atmospheric Brown Carbon, Chem. Rev., 115, 4335–4382,
https://doi.org/10.1021/cr5006167, 2015.

Lee, J. Y., Daube, C., Fortner, E., Ellsworth, N., May, N. W.,
Tallant, J., Herndon, S., and Pratt, K. A.: Chemical char-
acterization of prescribed burn emissions from a mixed for-
est in Northern Michigan, Environ. Sci. Atmos., 3, 35–48,
https://doi.org/10.1039/D2EA00069E, 2023.

Lee, S., Baumann, K., Schauer, J. J., Sheesley, R. J., Naeher, L.
P., Meinardi, S., Blake, D. R., Edgerton, E. S., Russell, A. G.,
and Clements, M.: Gaseous and Particulate Emissions from Pre-
scribed Burning in Georgia, Environ. Sci. Technol., 39, 9049–
9056, https://doi.org/10.1021/es051583l, 2005.

Lee, S., Kim, H. K., Yan, B., Cobb, C. E., Hennigan, C., Nichols, S.,
Chamber, M., Edgerton, E. S., Jansen, J. J., Hu, Y., Zheng, M.,
Weber, R. J., and Russell, A. G.: Diagnosis of Aged Prescribed
Burning Plumes Impacting an Urban Area, Environ. Sci. Tech-
nol., 42, 1438–1444, https://doi.org/10.1021/es7023059, 2008.

Levy, I., Mihele, C., Lu, G., Narayan, J., Hilker, N., and
Brook, J. R.: Elucidating multipollutant exposure across a
complex metropolitan area by systematic deployment of a
mobile laboratory, Atmos. Chem. Phys., 14, 7173–7193,
https://doi.org/10.5194/acp-14-7173-2014, 2014.

Li, F., Zhang, X., Kondragunta, S., and Lu, X.: An evaluation of
advanced baseline imager fire radiative power based wildfire
emissions using carbon monoxide observed by the Tropospheric
Monitoring Instrument across the conterminous United States,

Atmos. Chem. Phys., 24, 12749–12773, 2024 https://doi.org/10.5194/acp-24-12749-2024

https://doi.org/10.1016/j.atmosenv.2017.07.007
https://doi.org/10.1007/s11270-023-06278-9
https://doi.org/10.1021/acsearthspacechem.9b00125
https://doi.org/10.5194/acp-24-929-2024
https://doi.org/10.5194/acp-10-5965-2010
https://doi.org/10.3390/ijerph16132312
https://doi.org/10.1109/TGRS.2005.857328
https://doi.org/10.1080/10962247.2020.1749731
https://doi.org/10.5194/acp-22-12695-2022
https://doi.org/10.5194/acp-16-3413-2016
https://doi.org/10.1029/2022EF003468
https://doi.org/10.1029/2003JD003730
https://doi.org/10.1080/01431160701352147
https://doi.org/10.5194/acp-13-10535-2013
https://doi.org/10.1071/WF07086
https://doi.org/10.1080/10962247.2020.1802365
https://doi.org/10.1021/cr5006167
https://doi.org/10.1039/D2EA00069E
https://doi.org/10.1021/es051583l
https://doi.org/10.1021/es7023059
https://doi.org/10.5194/acp-14-7173-2014


R. El Asmar et al.: A multi-site passive approach to studying emissions and evolution 12771

Environ. Res. Lett., 15, 094049, https://doi.org/10.1088/1748-
9326/ab9d3a, 2020.

Linn, R. R., Goodrick, S. L., Brambilla, S., Brown, M.
J., Middleton, R. S., O’Brien, J. J., and Hiers, J. K.:
QUIC-fire: A fast-running simulation tool for prescribed
fire planning, Environ. Model. Softw., 125, 104616,
https://doi.org/10.1016/j.envsoft.2019.104616, 2020.

Liu, D., Zhang, Q., Jiang, J., and Chen, D. R.: Perfor-
mance calibration of low-cost and portable particu-
lar matter (PM) sensors, J. Aerosol Sci., 112, 1–10,
https://doi.org/10.1016/j.jaerosci.2017.05.011, 2017.

Liu, J. C., Pereira, G., Uhl, S. A., Bravo, M. A., and Bell, M. L.:
A systematic review of the physical health impacts from non-
occupational exposure to wildfire smoke, Environ. Res., 136,
120–132, https://doi.org/10.1016/j.envres.2014.10.015, 2015.

Liu, T., Marlier, M. E., Karambelas, A., Jain, M., Singh, S., Singh,
M. K., Gautam, R., and Defries, R. S.: Missing emissions from
post-monsoon agricultural fires in northwestern India: Regional
limitations of modis burned area and active fire products, En-
viron. Res. Commun., 1, 011007, https://doi.org/10.1088/2515-
7620/ab056c, 2019.

Liu, X., Zhang, Y., Huey, L. G., Yokelson, R. J., Wang, Y., Jimenez,
J. L., Campuzano-Jost, P., Beyersdorf, A. J., Blake, D. R., Choi,
Y., St. Clair, J. M., Crounse, J. D., Day, D. A., Diskin, G. S.,
Fried, A., Hall, S. R., Hanisco, T. F., King, L. E., Meinardi, S.,
Mikoviny, T., Palm, B. B., Peischl, J., Perring, A. E., Pollack, I.
B., Ryerson, T. B., Sachse, G., Schwarz, J. P., Simpson, I. J., Tan-
ner, D. J., Thornhill, K. L., Ullmann, K., Weber, R. J., Wennberg,
P. O., Wisthaler, A., Wolfe, G. M., and Ziemba, L. D.: Agricul-
tural fires in the southeastern U.S. during SEAC4RS: Emissions
of trace gases and particles and evolution of ozone, reactive nitro-
gen, and organic aerosol, J. Geophys. Res.-Atmos., 121, 7383–
7414, https://doi.org/10.1002/2016JD025040, 2016.

Liu, X., Huey, L. G., Yokelson, R. J., Selimovic, V., Simpson, I. J.,
Müller, M., Jimenez, J. L., Campuzano-Jost, P., Beyersdorf, A. J.,
Blake, D. R., Butterfield, Z., Choi, Y., Crounse, J. D., Day, D. A.,
Diskin, G. S., Dubey, M. K., Fortner, E., Hanisco, T. F., Hu, W.,
King, L. E., Kleinman, L., Meinardi, S., Mikoviny, T., Onasch, T.
B., Palm, B. B., Peischl, J., Pollack, I. B., Ryerson, T. B., Sachse,
G. W., Sedlacek, A. J., Shilling, J. E., Springston, S., St. Clair,
J. M., Tanner, D. J., Teng, A. P., Wennberg, P. O., Wisthaler,
A., and Wolfe, G. M.: Airborne measurements of western U.S.
wildfire emissions: Comparison with prescribed burning and air
quality implications, J. Geophys. Res.-Atmos., 122, 6108–6129,
https://doi.org/10.1002/2016JD026315, 2017.

Liu, Y., Bourgeois, A., Warner, T., Swerdlin, S., and Hacker, J.: Im-
plementation of observation-nudging based FDDA into WRF for
supporting ATEC test operations, WRF/MM5 Users’ Workshop,
NCAR, Boulder, Colorado, USA, June 2005, 27–30, 2005.

Long, R. W., Whitehill, A., Habel, A., Urbanski, S., Halliday, H.,
Colón, M., Kaushik, S., and Landis, M. S.: Comparison of ozone
measurement methods in biomass burning smoke: an evaluation
under field and laboratory conditions, Atmos. Meas. Tech., 14,
1783–1800, https://doi.org/10.5194/amt-14-1783-2021, 2021.

Mallia, D. V., Kochanski, A. K., Urbanski, S. P., Mandel, J., Far-
guell, A., and Krueger, S. K.: Incorporating a Canopy Parame-
terization within a Coupled Fire-Atmosphere Model to Improve
a Smoke Simulation for a Prescribed Burn, Atmosphere, 11, 832,
https://doi.org/10.3390/atmos11080832, 2020.

Mandel, J., Beezley, J. D., and Kochanski, A. K.: Cou-
pled atmosphere-wildland fire modeling with WRF 3.3
and SFIRE 2011, Geosci. Model Dev., 4, 591–610,
https://doi.org/10.5194/gmd-4-591-2011, 2011.

Marsavin, A., van Gageldonk, R., Bernays, N., May, N. W., Jaffe,
D. A., and Fry, J. L.: Optical properties of biomass burning
aerosol during the 2021 Oregon fire season: comparison between
wild and prescribed fires, Environ. Sci. Atmos., 3, 608–626,
https://doi.org/10.1039/D2EA00118G, 2023.

Martin, M. V., Kahn, R. A., and Tosca, M. G.: A global
analysis of wildfire smoke injection heights derived from
space-based multi-angle imaging, Remote Sens., 10, 1609,
https://doi.org/10.3390/rs10101609, 2018.

Martinsson, B. G., Friberg, J., Sandvik, O. S., and Sporre, M.
K.: Five-satellite-sensor study of the rapid decline of wildfire
smoke in the stratosphere, Atmos. Chem. Phys., 22, 3967–3984,
https://doi.org/10.5194/acp-22-3967-2022, 2022.

May, A. A., McMeeking, G. R., Lee, T., Taylor, J. W., Craven, J.
S., Burling, I., Sullivan, A. P., Akagi, S., Collett, J. L., Flynn,
M., Coe, H., Urbanski, S. P., Seinfeld, J. H., Yokelson, R. J.,
and Kreidenweis, S. M.: Aerosol emissions from prescribed
fires in the United States: A synthesis of laboratory and aircraft
measurements, J. Geophys. Res.-Atmos., 119, 11826–11849,
https://doi.org/10.1002/2014JD021848, 2014.

May, A. A., Lee, T., McMeeking, G. R., Akagi, S., Sullivan, A. P.,
Urbanski, S., Yokelson, R. J., and Kreidenweis, S. M.: Obser-
vations and analysis of organic aerosol evolution in some pre-
scribed fire smoke plumes, Atmos. Chem. Phys., 15, 6323–6335,
https://doi.org/10.5194/acp-15-6323-2015, 2015.

Mell, W., Jenkins, M. A., Gould, J., and Cheney, P.: A physics-based
approach to modelling grassland fires, Int. J. Wildl. Fire, 16, 1–
22, https://doi.org/10.1071/WF06002, 2007.

Melvin, M. A.: National Prescribed Fire Use Survey Report,
Coalition of Prescribed Fire Councils and the National As-
sociations of State Foresters, https://www.stateforesters.org/
newsroom-category/publications/ (last access: 15 July 2024),
2018.

Melvin, M. A.: National Prescribed Fire Use Survey Report,
Coalition of Prescribed Fire Councils and the National As-
sociations of State Foresters, https://www.stateforesters.org/
newsroom-category/publications/ (last access: 15 July 2024),
2020.

Melvin, M. A.: National Prescribed Fire Use Survey Report,
Coalition of Prescribed Fire Councils and the National As-
sociations of State Foresters, https://www.stateforesters.org/
newsroom-category/publications/ (last access: 15 July 2024),
2021.

Mildrexler, D. J., Zhao, M., Heinsch, F. A., and Run-
ning, S. W.: A new satellite-based methodology
for continental-scale disturbance detection, Ecol.
Appl., 17, 235–250, https://doi.org/10.1890/1051-
0761(2007)017[0235:ANSMFC]2.0.CO;2, 2007.

Naeher, L. P., Brauer, M., Lipsett, M., Zelikoff, J. T., Simp-
son, C. D., Koenig, J. Q., and Smith, K. R.: Woodsmoke
Health Effects: A Review, Inhal. Toxicol., 19, 67–106,
https://doi.org/10.1080/08958370600985875, 2007.

Nguyen, H. M. and Wooster, M. J.: Advances in the esti-
mation of high Spatio-temporal resolution pan-African top-
down biomass burning emissions made using geostation-

https://doi.org/10.5194/acp-24-12749-2024 Atmos. Chem. Phys., 24, 12749–12773, 2024

https://doi.org/10.1088/1748-9326/ab9d3a
https://doi.org/10.1088/1748-9326/ab9d3a
https://doi.org/10.1016/j.envsoft.2019.104616
https://doi.org/10.1016/j.jaerosci.2017.05.011
https://doi.org/10.1016/j.envres.2014.10.015
https://doi.org/10.1088/2515-7620/ab056c
https://doi.org/10.1088/2515-7620/ab056c
https://doi.org/10.1002/2016JD025040
https://doi.org/10.1002/2016JD026315
https://doi.org/10.5194/amt-14-1783-2021
https://doi.org/10.3390/atmos11080832
https://doi.org/10.5194/gmd-4-591-2011
https://doi.org/10.1039/D2EA00118G
https://doi.org/10.3390/rs10101609
https://doi.org/10.5194/acp-22-3967-2022
https://doi.org/10.1002/2014JD021848
https://doi.org/10.5194/acp-15-6323-2015
https://doi.org/10.1071/WF06002
https://www.stateforesters.org/newsroom-category/publications/
https://www.stateforesters.org/newsroom-category/publications/
https://www.stateforesters.org/newsroom-category/publications/
https://www.stateforesters.org/newsroom-category/publications/
https://www.stateforesters.org/newsroom-category/publications/
https://www.stateforesters.org/newsroom-category/publications/
https://doi.org/10.1890/1051-0761(2007)017[0235:ANSMFC]2.0.CO;2
https://doi.org/10.1890/1051-0761(2007)017[0235:ANSMFC]2.0.CO;2
https://doi.org/10.1080/08958370600985875


12772 R. El Asmar et al.: A multi-site passive approach to studying emissions and evolution

ary fire radiative power (FRP) and MAIAC aerosol opti-
cal depth (AOD) data, Remote Sens. Environ., 248, 111971,
https://doi.org/10.1016/j.rse.2020.111971, 2020.

O’Dell, K., Hornbrook, R. S., Permar, W., Levin, E. J. T., Garo-
falo, L. A., Apel, E. C., Blake, N. J., Jarnot, A., Pothier, M.
A., Farmer, D. K., Hu, L., Campos, T., Ford, B., Pierce, J. R.,
and Fischer, E. V.: Correction to Hazardous Air Pollutants in
Fresh and Aged Western US Wildfire Smoke and Implications
for Long-Term Exposure, Environ. Sci. Technol., 56, 3304–3304,
https://doi.org/10.1021/acs.est.2c01008, 2022.

Pagonis, D., Selimovic, V., Campuzano-Jost, P., Guo, H., Day, D.
A., Schueneman, M. K., Nault, B. A., Coggon, M. M., DiGangi,
J. P., Diskin, G. S., Fortner, E. C., Gargulinski, E. M., Gkatzelis,
G. I., Hair, J. W., Herndon, S. C., Holmes, C. D., Katich, J. M.,
Nowak, J. B., Perring, A. E., Saide, P., Shingler, T. J., Soja, A. J.,
Thapa, L. H., Warneke, C., Wiggins, E. B., Wisthaler, A., Yacov-
itch, T. I., Yokelson, R. J., and Jimenez, J. L.: Impact of Biomass
Burning Organic Aerosol Volatility on Smoke Concentrations
Downwind of Fires, Environ. Sci. Technol., 57, 17011–17021,
https://doi.org/10.1021/acs.est.3c05017, 2023.

Palm, B. B., Peng, Q., Fredrickson, C. D., Lee, B. H., Garo-
falo, L. A., Pothier, M. A., Kreidenweis, S. M., Farmer, D.
K., Pokhrel, R. P., Shen, Y., Murphy, S. M., Permar, W.,
Hu, L., Campos, T. L., Hall, S. R., Ullmann, K., Zhang, X.,
Flocke, F., Fischer, E. V., and Thornton, J. A.: Quantifica-
tion of organic aerosol and brown carbon evolution in fresh
wildfire plumes, P. Natl. Acad. Sci. USA, 117, 29469–29477,
https://doi.org/10.1073/pnas.2012218117, 2020.

Parrish, D. D., Holloway, J. S., and Fehsenfeld, F. C.: Rou-
tine, Continuous Measurement of Carbon Monoxide with Parts
per Billion Precision, Environ. Sci. Technol., 28, 1615–1618,
https://doi.org/10.1021/es00058a013, 1994.

Patashnick, H. and Rupprecht, E. G.: Continuous PM-10
Measurements Using the Tapered Element Oscillating Mi-
crobalance, J. Air Waste Manag. Assoc., 41, 1079–1083,
https://doi.org/10.1080/10473289.1991.10466903, 1991.

Permar, W., Wang, Q., Selimovic, V., Wielgasz, C., Yokelson, R.
J., Hornbrook, R. S., Hills, A. J., Apel, E. C., Ku, I., Zhou, Y.,
Sive, B. C., Sullivan, A. P., Collett, J. L., Campos, T. L., Palm,
B. B., Peng, Q., Thornton, J. A., Garofalo, L. A., Farmer, D.
K., Kreidenweis, S. M., Levin, E. J. T., DeMott, P. J., Flocke,
F., Fischer, E. V., and Hu, L.: Emissions of Trace Organic
Gases From Western U.S. Wildfires Based on WE-CAN Aircraft
Measurements, J. Geophys. Res.-Atmos., 126, e2020JD033838,
https://doi.org/10.1029/2020JD033838, 2021.

Pratt, K. A., Murphy, S. M., Subramanian, R., DeMott, P. J., Kok,
G. L., Campos, T., Rogers, D. C., Prenni, A. J., Heymsfield,
A. J., Seinfeld, J. H., and Prather, K. A.: Flight-based chemi-
cal characterization of biomass burning aerosols within two pre-
scribed burn smoke plumes, Atmos. Chem. Phys., 11, 12549–
12565, https://doi.org/10.5194/acp-11-12549-2011, 2011.

Prichard, S. J., O’Neill, S. M., Eagle, P., Andreu, A. G., Drye, B.,
Dubowy, J., Urbanski, S., and Strand, T. M.: Wildland fire emis-
sion factors in North America: synthesis of existing data, mea-
surement needs and management applications, Int. J. Wildl. Fire,
29, 132–147, https://doi.org/10.1071/WF19066, 2020.

Reid, C. E., Brauer, M., Johnston, F. H., Jerrett, M., Balmes, J. R.,
and Elliott, C. T.: Critical Review of Health Impacts of Wildfire

Smoke Exposure, Environ. Health Perspect., 124, 1334–1343,
https://doi.org/10.1289/ehp.1409277, 2016.

Saleh, R., Hennigan, C. J., McMeeking, G. R., Chuang, W. K.,
Robinson, E. S., Coe, H., Donahue, N. M., and Robinson, A. L.:
Absorptivity of brown carbon in fresh and photo-chemically aged
biomass-burning emissions, Atmos. Chem. Phys., 13, 7683–
7693, https://doi.org/10.5194/acp-13-7683-2013, 2013.

Schroeder, W. and Giglio, L.: NASA VIIRS Land Science Inves-
tigator Processing System (SIPS) Visible Infrared Imaging Ra-
diometer Suite (VIIRS) 375 m and 750 m Active Fire Products:
Product User’s Guide, Nasa, 1.4, 2–23, 2018.

Selimovic, V., Yokelson, R. J., McMeeking, G. R., and Coefield,
S.: In situ measurements of trace gases, PM, and aerosol optical
properties during the 2017 NW US wildfire smoke event, At-
mos. Chem. Phys., 19, 3905–3926, https://doi.org/10.5194/acp-
19-3905-2019, 2019.

Shamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu,
Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker,
D. M., and Huang, X.-Y.: A Description of the Advanced Re-
search WRF Model Version 4, https://doi.org/10.5065/1DFH-
6P97, 2019.

Singleton, M. P., Thode, A. E., Sánchez Meador, A. J., and Iniguez,
J. M.: Increasing trends in high-severity fire in the southwestern
USA from 1984 to 2015, Forest Ecol. Manag., 433, 709–719,
https://doi.org/10.1016/j.foreco.2018.11.039, 2019.

Sinha, P., Hobbs, P. V., Yokelson, R. J., Bertschi, I. T., Blake,
D. R., Simpson, I. J., Gao, S., Kirchstetter, T. W., and No-
vakov, T.: Emissions of trace gases and particles from savanna
fires in southern Africa, J. Geophys. Res.-Atmos., 108, 8487,
https://doi.org/10.1029/2002JD002325, 2003.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Co-
hen, M. D., and Ngan, F.: NOAA’s HYSPLIT Atmospheric
Transport and Dispersion Modeling System, Bull. Am. Meteo-
rol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-
00110.1, 2015.

Strand, T., Gullett, B., Urbanski, S., O’Neill, S., Potter, B., Aurell,
J., Holder, A., Larkin, N., Moore, M., and Rorig, M.: Grass-
land and forest understorey biomass emissions from prescribed
fires in the south-eastern United States – RxCADRE 2012, Int.
J. Wildl. Fire, 25, 102–113, https://doi.org/10.1071/WF14166,
2016.

Sullivan, A. P., Pokhrel, R. P., Shen, Y., Murphy, S. M., Toohey,
D. W., Campos, T., Lindaas, J., Fischer, E. V., and Collett Jr.,
J. L.: Examination of brown carbon absorption from wildfires
in the western US during the WE-CAN study, Atmos. Chem.
Phys., 22, 13389–13406, https://doi.org/10.5194/acp-22-13389-
2022, 2022.

Travis, K. R., Crawford, J. H., Soja, A. J., Gargulinski, E. M.,
Moore, R. H., Wiggins, E. B., Diskin, G. S., DiGangi, J. P.,
Nowak, J. B., Halliday, H., Yokelson, R. J., McCarty, J. L., Simp-
son, I. J., Blake, D. R., Meinardi, S., Hornbrook, R. S., Apel, E.
C., Hills, A. J., Warneke, C., Coggon, M. M., Rollins, A. W.,
Gilman, J. B., Womack, C. C., Robinson, M. A., Katich, J. M.,
Peischl, J., Gkatzelis, G. I., Bourgeois, I., Rickly, P. S., Lam-
plugh, A., Dibb, J. E., Jimenez, J. L., Campuzano-Jost, P., Day,
D. A., Guo, H., Pagonis, D., Wennberg, P. O., Crounse, J. D.,
Xu, L., Hanisco, T. F., Wolfe, G. M., Liao, J., St. Clair, J. M.,
Nault, B. A., Fried, A., and Perring, A. E.: Emission Factors
for Crop Residue and Prescribed Fires in the Eastern US Dur-

Atmos. Chem. Phys., 24, 12749–12773, 2024 https://doi.org/10.5194/acp-24-12749-2024

https://doi.org/10.1016/j.rse.2020.111971
https://doi.org/10.1021/acs.est.2c01008
https://doi.org/10.1021/acs.est.3c05017
https://doi.org/10.1073/pnas.2012218117
https://doi.org/10.1021/es00058a013
https://doi.org/10.1080/10473289.1991.10466903
https://doi.org/10.1029/2020JD033838
https://doi.org/10.5194/acp-11-12549-2011
https://doi.org/10.1071/WF19066
https://doi.org/10.1289/ehp.1409277
https://doi.org/10.5194/acp-13-7683-2013
https://doi.org/10.5194/acp-19-3905-2019
https://doi.org/10.5194/acp-19-3905-2019
https://doi.org/10.5065/1DFH-6P97
https://doi.org/10.5065/1DFH-6P97
https://doi.org/10.1016/j.foreco.2018.11.039
https://doi.org/10.1029/2002JD002325
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1175/BAMS-D-14-00110.1
https://doi.org/10.1071/WF14166
https://doi.org/10.5194/acp-22-13389-2022
https://doi.org/10.5194/acp-22-13389-2022


R. El Asmar et al.: A multi-site passive approach to studying emissions and evolution 12773

ing FIREX-AQ, J. Geophys. Res.-Atmos., 128, e2023JD039309,
https://doi.org/10.1029/2023JD039309, 2023.

USDA: Wildfire crisis strategy implementation plan: A 10-year
implementation plan, https://www.fs.usda.gov/sites/default/files/
Wildfire-Crisis-Implementation-Plan.pdf/ (last aaccess: 18 July
2024), 2022.

Virkkula, A., Ahlquist, N. C., Covert, D. S., Arnott, W. P., Sheri-
dan, P. J., Quinn, P. K., and Coffman, D. J.: Modification,
calibration and a field test of an instrument for measuring
light absorption by particles, Aerosol Sci. Technol., 39, 68–83,
https://doi.org/10.1080/027868290901963, 2005.

Virkkula, A., Mäkelä, T., Hillamo, R., Yli-Tuomi, T., Hirsikko,
A., Hämeri, K., and Koponen, I. K.: A Simple Procedure for
Correcting Loading Effects of Aethalometer Data, J. Air Waste
Manage. Assoc., 57, 1214–1222, https://doi.org/10.3155/1047-
3289.57.10.1214, 2007.

Wang, J., Yue, Y., Wang, Y., Ichoku, C., Ellison, L., and
Zeng, J.: Mitigating Satellite-Based Fire Sampling Limita-
tions in Deriving Biomass Burning Emission Rates: Appli-
cation to WRF-Chem Model Over the Northern sub-Saharan
African Region, J. Geophys. Res.-Atmos., 123, 507–528,
https://doi.org/10.1002/2017JD026840, 2018.

Warneke, C., Schwarz, J. P., Dibb, J., Kalashnikova, O., Frost, G.,
Al-Saad, J., Brown, S. S., Brewer, W. A., Soja, A., Seidel, F.
C., Washenfelder, R. A., Wiggins, E. B., Moore, R. H., Ander-
son, B. E., Jordan, C., Yacovitch, T. I., Herndon, S. C., Liu,
S., Kuwayama, T., Jaffe, D., Johnston, N., Selimovic, V., Yokel-
son, R., Giles, D. M., Holben, B. N., Goloub, P., Popovici, I.,
Trainer, M., Kumar, A., Pierce, R. B., Fahey, D., Roberts, J., Gar-
gulinski, E. M., Peterson, D. A., Ye, X., Thapa, L. H., Saide,
P. E., Fite, C. H., Holmes, C. D., Wang, S., Coggon, M. M.,
Decker, Z. C. J., Stockwell, C. E., Xu, L., Gkatzelis, G., Aikin,
K., Lefer, B., Kaspari, J., Griffin, D., Zeng, L., Weber, R., Hast-
ings, M., Chai, J., Wolfe, G. M., Hanisco, T. F., Liao, J., Cam-
puzano Jost, P., Guo, H., Jimenez, J. L., and Crawford, J.: Fire
Influence on Regional to Global Environments and Air Quality
(FIREX-AQ), J. Geophys. Res.-Atmos., 128, e2022JD037758,
https://doi.org/10.1029/2022JD037758, 2023.

Wyden, R. and Manchin, J.: National Prescribed Fire Act of 2020,
116th Congress, 2nd Session, U.S. Government Publishing Of-
fice, https://www.govtrack.us/congress/bills/116/s4625/ (last ac-
cess: 10 April 2024) 2020.

Xi, Y., Kshirsagar, A. V., Wade, T. J., Richardson, D. B.,
Brookhart, M. A., Wyatt, L., and Rappold, A. G.: Mor-
tality in US Hemodialysis Patients Following Exposure to
Wildfire Smoke, J. Am. Soc. Nephrol., 31, 1824–1835,
https://doi.org/10.1681/ASN.2019101066, 2020.

Xiu, M., Jayaratne, R., Thai, P., Christensen, B., Zing, I., Liu, X.,
and Morawska, L.: Evaluating the applicability of the ratio of
PM2.5 and carbon monoxide as source signatures, Environ. Pol-
lut., 306, 119278, https://doi.org/10.1016/j.envpol.2022.119278,
2022.

Yan, J., Wang, X., Gong, P., Wang, C., and Cong, Z.:
Review of brown carbon aerosols: Recent progress
and perspectives, Sci. Total Environ., 634, 1475–1485,
https://doi.org/10.1016/j.scitotenv.2018.04.083, 2018.

Yokelson, R. J., Goode, J. G., Ward, D. E., Susott, R. A., Bab-
bitt, R. E., Wade, D. D., Bertschi, I., Griffith, D. W. T.,
and Hao, W. M.: Emissions of formaldehyde, acetic acid,
methanol, and other trace gases from biomass fires in North
Carolina measured by airborne Fourier transform infrared
spectroscopy, J. Geophys. Res.-Atmos., 104, 30109–30125,
https://doi.org/10.1029/1999JD900817, 1999.

Yokelson, R. J., Burling, I. R., Gilman, J. B., Warneke, C., Stock-
well, C. E., de Gouw, J., Akagi, S. K., Urbanski, S. P., Veres,
P., Roberts, J. M., Kuster, W. C., Reardon, J., Griffith, D. W. T.,
Johnson, T. J., Hosseini, S., Miller, J. W., Cocker III, D. R., Jung,
H., and Weise, D. R.: Coupling field and laboratory measure-
ments to estimate the emission factors of identified and uniden-
tified trace gases for prescribed fires, Atmos. Chem. Phys., 13,
89–116, https://doi.org/10.5194/acp-13-89-2013, 2013.

Yu, Y., Zou, W., Jerrett, M., and Meng, Y.-Y.: Acute health
impact of wildfire-related and conventional PM2.5 in the
United States: A narrative review, Environ. Adv., 12, 100179,
https://doi.org/10.1016/j.envadv.2022.100179, 2023.

Zeng, L., Dibb, J., Scheuer, E., Katich, J. M., Schwarz, J. P.,
Bourgeois, I., Peischl, J., Ryerson, T., Warneke, C., Perring,
A. E., Diskin, G. S., DiGangi, J. P., Nowak, J. B., Moore, R.
H., Wiggins, E. B., Pagonis, D., Guo, H., Campuzano-Jost, P.,
Jimenez, J. L., Xu, L., and Weber, R. J.: Characteristics and evo-
lution of brown carbon in western United States wildfires, At-
mos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-
22-8009-2022, 2022.

Zhong, M. and Jang, M.: Dynamic light absorption of
biomass-burning organic carbon photochemically aged un-
der natural sunlight, Atmos. Chem. Phys., 14, 1517–1525,
https://doi.org/10.5194/acp-14-1517-2014, 2014.

https://doi.org/10.5194/acp-24-12749-2024 Atmos. Chem. Phys., 24, 12749–12773, 2024

https://doi.org/10.1029/2023JD039309
https://www.fs.usda.gov/sites/default/files/Wildfire-Crisis-Implementation-Plan.pdf/
https://www.fs.usda.gov/sites/default/files/Wildfire-Crisis-Implementation-Plan.pdf/
https://doi.org/10.1080/027868290901963
https://doi.org/10.3155/1047-3289.57.10.1214
https://doi.org/10.3155/1047-3289.57.10.1214
https://doi.org/10.1002/2017JD026840
https://doi.org/10.1029/2022JD037758
https://www.govtrack.us/congress/bills/116/s4625/
https://doi.org/10.1681/ASN.2019101066
https://doi.org/10.1016/j.envpol.2022.119278
https://doi.org/10.1016/j.scitotenv.2018.04.083
https://doi.org/10.1029/1999JD900817
https://doi.org/10.5194/acp-13-89-2013
https://doi.org/10.1016/j.envadv.2022.100179
https://doi.org/10.5194/acp-22-8009-2022
https://doi.org/10.5194/acp-22-8009-2022
https://doi.org/10.5194/acp-14-1517-2014

	Abstract
	Introduction
	Method
	Site description
	Measuring sites
	Instrumentation
	Tools and analysis methods 
	Normalized excess mixing ratios
	Determining smoke sources and plume age


	Results and discussion
	Assessment of PM2.5 monitors and background concentrations
	Study of fires at Fort Moore during 2021 and 2022
	Determining smoke sources 
	Determining smoke age
	Limitations of the fixed-site method
	Identification of burning regions
	Identifying a specific fire impacting the site when multiple burns are occurring
	Smoke not detected although regions of burning identified

	Using multiple monitoring sites to increase chances of measuring smoke and studying smoke evolution
	Interpretation of measurements to characterize smoke emission and evolution
	PM2.5 emissions
	NEMRs of all smoke events and their change with smoke age


	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

