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Abstract. Aerosols play an important role in the Earth system, but their impact on cloud properties and the
resulting radiative forcing of climate remains highly uncertain. The large temporal and spatial variability of a
number of aerosol properties and the choice of different “preindustrial” reference years prevent a concise under-
standing of their impacts on clouds and radiation. In this study, we characterize the spatial patterns and long-term
evolution of lower tropospheric aerosols (in terms of regimes) by clustering multiple instead of single aerosol
properties from preindustrial times to the year 2050 under three different Shared Socioeconomic Pathway (SSP)
scenarios. The clustering is based on a combination of statistic-based machine learning algorithms and output
from emissions-driven global aerosol model simulations, which do not consider the effects of climate change.
Our analysis suggests that in comparison with the present-day case, lower tropospheric aerosol regimes during
preindustrial times are mostly represented by regimes of comparatively clean conditions, where marked differ-
ences between the years 1750 and 1850 emerge due to the growing influence of agriculture and other anthro-
pogenic activities in 1850. Key aspects of the spatial distribution and extent of the aerosol regimes identified in
year 2050 differ compared to preindustrial and present-day conditions, with significant variations resulting from
the emission scenario investigated. In 2050, the low-emission SSP1-1.9 scenario is the only scenario where the
spatial distribution and extent of the aerosol regimes very closely resemble preindustrial conditions, where the
similarity is greater compared to 1850 than 1750. The aerosol regimes for 2050 under SSP3-7.0 closely resemble
present-day conditions, but there are some notable regional differences: developed countries tend to shift towards
cleaner conditions in future, while the opposite is the case for developing countries. The aerosol regimes for 2050
under SSP2-4.5 represent an intermediate stage between preindustrial times and present-day conditions. Further
analysis indicates a north–south difference in the clean background regime during preindustrial times and close
resemblance of preindustrial aerosol conditions in the marine regime to present-day conditions in the Southern
Hemispheric ocean. Not considering the effects of climate change is expected to cause uncertainties in the size
and extent of the identified aerosol regimes but not the general regime patterns. This is due to a dominating
influence of emissions rather than climate change in most cases. The approach and findings of this study can be
used for designing targeted measurements of different preindustrial-like conditions and for tailored air pollution
mitigation measures in specific regions.
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1 Introduction

Aerosols play an important role in the Earth’s climate
through direct scattering and absorption of solar and ter-
restrial radiation (termed aerosol–radiation interactions) and
through indirect effects due to modifications of cloud mi-
crophysical and radiative properties (termed aerosol–cloud
interactions) (Boucher et al., 2013). Aerosols influence the
climate system in different ways and show a large spatial
and temporal variability due to the large variety of aerosol
species, mixing states, residence times, and size ranges in
the atmosphere (e.g. Lauer and Hendricks, 2006; Mann et
al., 2010; Pringle et al., 2010; Sessions et al., 2015). Aerosols
also affect air quality, human health, visibility, and regional
and global temperature and precipitation patterns, where
many of these interactions between aerosols, air quality, and
climate remain uncertain (Kulmala et al., 2011; Myhre et
al., 2017; Bellouin et al., 2020).

In order to reduce uncertainties in aerosol–climate inter-
actions, it is vital to gain better knowledge of the temporal
and spatial evolution of aerosols over time. The preindustrial
period is considered a baseline for radiative forcing calcu-
lations, but different definitions can be found in the litera-
ture using the year 1750 or 1850. Quantifying preindustrial
aerosol conditions is essential for evaluating the magnitude
of radiative forcing caused by anthropogenic aerosols (An-
dreae, 2007). Carslaw et al. (2013) investigated uncertain-
ties in present-day aerosol indirect radiative forcing resulting
from aerosol–cloud interactions and demonstrated that 45 %
of the variance in the magnitude of the aerosol indirect forc-
ing is explained by natural emissions, while only 34 % is ex-
plained by anthropogenic emissions. Therefore, it is impor-
tant to obtain precise information about preindustrial aerosol
conditions. Gryspeerdt et al. (2023) demonstrated that the
uncertainty in aerosol–cloud radiative forcing is driven by
clean aerosol conditions and suggested constraining aerosol
properties in clean conditions as an important goal for future
observational studies. Efforts have been made to identify re-
gions on Earth with aerosol properties similar to those during
the preindustrial period. Based on modelling studies, such
preindustrial aerosol conditions (defined as an overall pic-
ture of aerosol properties at that time) can be found mostly
over present-day oceanic regions in the Southern Hemisphere
(Andreae, 2007; Carslaw et al., 2013; Hamilton et al., 2014;
McCoy et al., 2020). Hence, aerosol measurements over the
remote southern oceans can be used to constrain aerosol ra-
diative forcing uncertainties (Schmale et al., 2019; Regayre
et al., 2020). On the other hand, aerosols also play an impor-
tant role in future climate projections (IPCC, 2021a; Quaas
et al., 2022). Andreae et al. (2005) suggest that the strong
cooling effect induced by aerosols in the past and present cli-
mate could decrease in the future, depending on the temporal
and spatial evolution of aerosol emissions. Xu et al. (2018)
studied the importance of aerosol scenarios in predicting fu-
ture heat extremes and demonstrated that aerosols are more

important than greenhouse gases in controlling extreme heat
statistics over Northern Hemisphere extra-tropical land areas
and the duration of heat extremes in the tropics. A further
modelling study by Zhao et al. (2019) suggests that future
anthropogenic aerosol changes can significantly affect future
heatwave predictions. H. Li et al. (2022) estimated future
PM2.5 mass concentrations (aggregated mass of particles less
than 2.5 µm in diameter) by applying a random forest regres-
sion method to global atmospheric chemistry model results
and CMIP6 multi-model climate projections. Their study
suggests that under low- and medium-emission Shared So-
cioeconomic Pathway (SSP) scenarios (SSP1-2.6 and SSP2-
4.5) PM2.5 mass concentration decreases by about 40 % in
East Asia, 20 %–35 % in South Asia, and 15 %–25 % in Eu-
rope and North America in 2100 compared to present-day
conditions and that the changes are mainly due to the emis-
sion reductions. Only in a high-end radiative forcing scenario
(SSP5-8.5) is there a comparable contribution of changes in
climate and emissions to future PM2.5 changes over many re-
gions on Earth (e.g. East Asia, South Asia, Europe and North
America). Overall, it is therefore essential to classify aerosol
properties and hence characterize aerosol conditions under
different future emission scenarios compared with preindus-
trial and present-day conditions.

Here we use the output of the global aerosol–chemistry–
climate model EMAC (ECHAM/MESSy Atmospheric
Chemistry) equipped with the aerosol microphysical sub-
module MADE3 (the third generation of the Modal Aerosol
Dynamics model for Europe adapted for global applications)
together with statistic-based clustering algorithms to charac-
terize similarities and differences in aerosol properties from
preindustrial times to the present day and the future (year
2050). In contrast to previous studies that primarily inves-
tigated preindustrial aerosol conditions based on a single
parameter – cloud condensation nuclei (CCN) – within the
context of aerosol–cloud interaction (e.g. Andreae, 2007;
Hamilton et al., 2014), the method proposed here combines
multiple aerosol properties and targets different time peri-
ods. The aerosol properties considered in our study are de-
rived from EMAC-MADE3 model-simulated quantities and
include mass concentrations of black carbon (BC), particu-
late organic matter (POM), mineral dust, sea salt, aerosol sul-
fate, ammonium, nitrate, and particle number concentrations
in the Aitken and accumulation modes. Analysing all of these
variables individually across different time periods would
result in numerous different aerosol distribution patterns,
which makes it impossible to draw universal conclusions. In
this context, clustering of the multivariate aerosol data pro-
vides us with an aggregated and condensed picture of aerosol
regimes and their evolution. In our previous study (J. Li et
al., 2022; hereafter referred to as L22), we successfully de-
fined present-day global aerosol regimes and analysed their
internal characteristics regarding the individual aerosol prop-
erties (e.g. concentrations of specific aerosol species) for
each regime, using the unsupervised machine learning al-
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gorithm k means. The lower tropospheric aerosol regimes,
as identified in L22, comprise a background regime (occur-
ring in polar regions); two oceanic regimes, with the northern
oceanic regime being more polluted than the southern one;
two dust regimes, with one being strongly dust dominated
and the other representing a mixture of dust and other pol-
lutants; two biomass burning or biogenic regimes, with one
comprising fresh aerosol and the other including more aged
particles; and three continental regimes including weakly,
moderately, and enhanced polluted conditions, respectively.
In the present study, we use the approach of L22 for defining
global aerosol regimes (hereafter termed primary classifica-
tion), further extend the procedure to also investigate finer
structures within specific aerosol regimes (hereafter termed
secondary classification), and investigate the temporal evolu-
tion of the regimes from the preindustrial period to the year
2050 with further developed analysis procedures. The goal
of the primary classification is to characterize the variabil-
ity range and relative difference in aerosol properties across
the globe, while the secondary classification is used to char-
acterize each specific regime in more detail. The clustering
method used in L22, however, was designed for a single
time slice and cannot be used for different time periods, as
it would lead to incomparable regimes due to the different
aerosol conditions in different time periods. More specifi-
cally, aerosol conditions during preindustrial times do not
agree with the present-day conditions due to additional con-
tributions from anthropogenic emissions. The k-means algo-
rithm performs the classification based on individual data
variances and using an equal variance criterion for classifi-
cation. Assuming the same number of regimes (k= 9) to be
generated for present-day and preindustrial times, the vari-
ance of preindustrial regimes and their characteristics would
be different from the present-day case due to the different
values in the aerosol datasets. This would lead to an incom-
parability of regimes for different time slices. For the present
study, we therefore additionally include the supervised ran-
dom forest machine learning algorithm (Ho, 1998; Breiman,
2001). As a supervised method, the random forest algorithm
can be trained using data for one specific time slice applied
to all other time slices. In this way, all time slices are anal-
ysed consistently, and the temporal evolution of the aerosol
regimes can be studied. Here we focus only on the lower
troposphere (from the surface to about 700 hPa), where the
aerosol regimes are strongly connected to the emission pat-
terns.

Overall, we aim to address the following questions.
(1) How do aerosol regimes develop over time, from prein-
dustrial times (years 1750 and 1850) to the future (year
2050), under different emission scenarios? (2) Where can
aerosol conditions similar to preindustrial times be found in
the present day and in the future? (3) What is the effect of dif-
ferent emission pathways on the development of the aerosol
regimes? Answering these questions can help to target mea-
surements for specific aerosol conditions (e.g. preindustrial-

like or highly polluted conditions), to supply information to
policy makers (e.g. emission mitigation efforts in specific
scenarios and their expected effects), and to provide impor-
tant hints for subsequent studies relying on information about
the properties and distribution of atmospheric aerosols (e.g.
evaluating environmental impacts of particulate matter).

2 Methodology

2.1 Global model simulations and data

In this study, we investigate the development of global
aerosol regimes based on simulations using a global aerosol–
chemistry–climate model for four climatological time slices
and three future scenarios. These comprise preindustrial
(1750 and 1850), present-day (2015), and future (2050) con-
ditions under three different emission scenarios of the Shared
Socioeconomic Pathways (SSPs; O’Neill et al., 2017; Gid-
den et al., 2019): SSP1-1.9, SSP2-4.5, and SSP3-7.0. SSP1-
1.9 is a low-emission scenario, projecting close to net-zero
carbon dioxide (CO2) emissions by 2050 and a temperature
rise of 1.4 K by the end of the century. SSP2-4.5 is a middle-
of-the-road scenario, with CO2 emissions staying at current
level until 2050 and decreasing afterwards, resulting in a tem-
perature rise of 2.7 K by 2100. SSP3-7.0 is a pessimistic sce-
nario, projecting a doubling of CO2 levels and 3.6 K temper-
ature rise by 2100 (IPCC, 2021b). We investigate both year
1750 and year 1850 preindustrial conditions. The year 1750
is considered the preindustrial reference case by some stud-
ies (e.g. Boucher et al., 2013; Hamilton et al., 2014; Hawkins
et al., 2017; IPCC, 2021a), while other studies (e.g. Carslaw
et al., 2017) argued that the year 1850 should be used as a
preindustrial reference period when considering aerosol ra-
diative forcing because the year 1850 shows marked differ-
ence in terms of aerosol emissions compared to 1750. The
IPCC Sixth Assessment Report (AR6) uses 1750 as a prein-
dustrial reference to assess radiative forcing but uses 1850–
1900 for other aspects, e.g. surface temperature change. The
IPCC Special Report on Global Warming of 1.5 °C (IPCC,
2022) uses the period 1850–1900 as the preindustrial base-
line.

The simulations analysed in this study were performed
as part of an assessment of the global impact of the emis-
sions of the transport sector on aerosol and climate (Righi
et al., 2023) using the ECHAM/MESSy Atmospheric Chem-
istry (EMAC) general circulation model (Jöckel et al., 2010,
2016) equipped with the aerosol microphysical sub-module
MADE3 (Kaiser et al., 2014, 2019). It simulates nine differ-
ent aerosol species: BC, POM, ammonium, sulfate, nitrate,
the sea salt species sodium and chloride, mineral dust, and
aerosol water. These nine species are distributed into three
different mixing states within three size ranges, resulting in a
total of nine aerosol modes for each species. The three mix-
ing states include purely soluble particles, particles mainly
composed of insoluble material and only very thin soluble
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coatings (< 10 % of the total particle mass), and mixed par-
ticles consisting of an insoluble core with a soluble coating.
The three size modes are Aitken, accumulation, and coarse
mode. MADE3 considers particle microphysical changes due
to condensation, coagulation, gas–particle partitioning, and
new particle formation. MADE3 was shown to be able to
properly represent aerosol microphysical processes, with the
simulated aerosol properties showing good agreement with
observations, as demonstrated in previous studies (Kaiser et
al., 2014, 2019; Beer et al., 2020; Righi et al., 2020).

All simulations are performed in the T42L41 resolution,
corresponding to a grid of 2.8°× 2.8° in latitude and lon-
gitude and 41 vertical hybrid σ pressure levels up to 5 hPa.
In this study, we only consider changes in the emissions of
short-lived species (aerosols and aerosol precursor gases) for
the different time slices, while the climate is held constant
at present-day conditions. The time slices are simulated for
a duration of 10 years, and the climatological means of the
10-year simulations are considered for the respective time
slices. Due to the complexity and interactions of microphysi-
cal processes in the global aerosol climate model, it would
be difficult to distinguish the influence of climate change
and emission changes if both would be considered at the
same time, and our major goal is to link the development
of global aerosol regimes through time to the emission pat-
terns. Moreover, L22 demonstrated that emissions are the key
drivers for global aerosol regimes, especially for the lower
troposphere. Additionally, Koffi et al. (2010) showed that
the effect of emission changes on transport-induced ozone
is larger than the effect of climate change, providing a hint
that aerosols could be more influenced by emission than cli-
mate. For this reason, EMAC is applied in nudged mode,
meaning that model dynamics are constrained using ERA-
Interim reanalysis data (Dee et al., 2011), i.e. temperature,
wind divergence and vorticity, and the logarithm of the sur-
face pressure for the time period used to constrain the cli-
mate (2006–2015). The emission data applied for preindus-
trial times, present-day conditions, and future scenarios are
taken from the CMIP6 inventory (Van Marle et al., 2017;
Hoesly et al., 2018; Gidden et al., 2019; Feng et al., 2020), in-
cluding natural and anthropogenic particulate and gas emis-
sions from different sectors such as biomass burning (BB),
agricultural waste burning (AWB), land transport, shipping,
aviation, and other anthropogenic sources. Since the emis-
sions of mineral dust and sea salt are wind driven, they are
calculated online for each model time step using the param-
eterizations by Tegen et al. (2002) and Guelle et al. (2001),
for mineral dust and sea salt, respectively.

The development of aerosol regimes over time is anal-
ysed on a climatological mean basis. Aerosol properties for
the machine learning classification tasks are extracted from
multi-annual average (10-year) simulation data. As in L22,
the clustering algorithm considers seven aerosol properties,
i.e. aerosol mass concentrations of BC; mineral dust; sea salt;
POM; the sum of sulfate, nitrate, and ammonium (SNA); and

number concentrations of aerosol particles in Aitken mode
and accumulation mode. To characterize aerosol regimes
in the lower troposphere, the simulated mass and number
concentrations are vertically integrated between the terrain-
following hybrid sigma pressure levels 41 (corresponding to
the surface) and 33 (corresponding to an altitude range from
the ground to about 700 hPa).

2.2 Description of machine learning classification
methods in general

In this study, we apply two statistic-based machine learning
algorithms that compare and evaluate the similarity and dif-
ferences among different datasets, i.e. unsupervised k-means
clustering and supervised random forest classification.

The k-means algorithm (MacQueen, 1967; Hartigan and
Wong, 1979) is an unsupervised machine learning clustering
algorithm that has been applied in several recent atmospheric
modelling studies (e.g. Borge et al., 2022; L22; Raudsepp
and Maljutenko, 2022). Unsupervised methods require no
prior classification knowledge, but they need labelling and
also require an evaluation of the results after the classifica-
tion. The k-means algorithm can divide an input dataset into
a predefined number of clusters using an equal variance cri-
terion. The k-means algorithm is based on the calculation
of Euclidean distance (Spencer, 2013), which computes the
distance between two samples in a multi-dimensional space
(with the number of dimensions equal to the number of vari-
ables). The k-means algorithm can perform clustering for a
predefined number of clusters but does not provide informa-
tion about the optimal number of clusters to be used. Many
classification evaluation metrics (e.g. Rousseeuw, 1987; Tib-
shirani et al., 2001) can support the selection of an optimal
number, but there is no general solution for all cases. The
input dataset should be standardized for k-means classifica-
tion to overcome the problem of input variable values span-
ning different orders of magnitude, which leads to input vari-
ables not being equally weighted (see L22 for details). The
choice of an appropriate scaling method depends on the input
dataset and on the application (Milligan and Cooper, 1988).

Random forest is a supervised machine learning method.
A detailed description of random forest classification can be
found in Ho (1998) and Breiman (2001). Briefly, random for-
est requires a pre-existing classification of the input data in
order to learn decision rules. Random forest uses an ensem-
ble learning technique that performs the classification by cre-
ating an ensemble of decision trees: the so-called “forest”.
The majority of votes from all decisions is considered the
final output. Compared to a single decision tree, this type
of ensemble classification improves performance and avoids
the tendency of a single tree to overfit its training dataset
(Hastie et al., 2008). Decision trees (Quinlan, 1986, 1987)
are the basis of a random forest. Each decision tree is built us-
ing a unique subset of samples randomly collected from the
training data. A decision tree simulates intelligent behaviour
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and has the ability to learn. The decision tree is built with
a tree structure, including a root node, decision nodes, and
leaf nodes. All nodes are connected with branches. The paths
from the root node to the leaf nodes are controlled by deci-
sion rules. Decision nodes contain decisive questions, yes or
no answers to these questions lead the decision path to differ-
ent branches. Depending on how the respective sequences of
questions were answered in the decision trees and how the re-
spective branches reach the leaf nodes, a set of class labels is
generated. Random forest is among the best supervised learn-
ing algorithms in terms of accuracy and performance (Liaw
and Wiener, 2002) and has been widely used in aerosols stud-
ies (e.g. Wei et al., 2010; Christopoulos et al., 2018; Choi
et al., 2021; Kianian et al., 2021; Lee et al., 2021; Yu et
al., 2022).

2.3 Analysis and applied classification approach

The analysis and classification approach applied in this study
is based on the k-means algorithm as in L22 and further ex-
tended by the random forest algorithm. The latter is required
due to the equal variance criterion implemented in the k-
means algorithm (Hartigan and Wong, 1979), which would
divide the datasets based on their individual variances and
would therefore lead to the identification of incomparable
regimes across the different time periods when performing
k-means classification for each time period independently.
Furthermore, applying k means to a combined dataset of all
the different time periods would lead to comparable regimes
across all time periods, but the classification results change
whenever a new time period or scenario is considered. To
overcome these limitations, we developed a two-step ap-
proach using a combination of k means and random forest,
which is outlined schematically in Fig. 1. First, we choose
present-day (REF-2015) as our reference time period and ap-
ply the L22 procedures to this reference time. Next, we apply
the random forest classification rules learnt from REF-2015
and apply these rules to all other time periods in order to gen-
erate comparable and consistent aerosol regimes. This in turn
allows us to identify present-day and future aerosol regimes
that have a high probability of featuring aerosol conditions
that are similar to those during the preindustrial period.

Present-day conditions are selected as our reference for the
following reasons. First, our simulations are constrained by
the present-day climate, meaning that the simulation for the
present-day case are likely more accurate than simulations
of other time slices. Second, present-day emissions are more
reliable than those for past and future conditions. Third, the
preindustrial cases are not fully representative of present-day
aerosol conditions; thus, when using the preindustrial case as
a reference, the regime classification for the present day and
2050 might be incomplete. The global aerosol classification
for present-day conditions (REF-2015) follows exactly the
same procedures as shown in L22, including aerosol prop-
erties standardization, k-means classification, and evaluation

for the choice of the final number of regimes. The values
of the REF-2015 input aerosol properties are standardized
before applying k means in order to be equally weighted
by the algorithm. We use the most suitable standardization
method for global aerosol classification, which is based on
sample mean and sample standard deviation. More specifi-
cally, each aerosol property is standardized by subtracting its
sample mean and dividing the difference by its sample stan-
dard deviation. The k-means classification is conducted for a
range of defined numbers of regimes. The choice of the op-
timal number of aerosol regimes is based on two evaluation
metrics (the sum of squared errors and the silhouette coef-
ficient). The L22 procedure applied to the REF-2015 data
generates a sample dataset containing the values of the con-
sidered aerosol properties and the assigned regime index for
each individual model grid point (a dataset of 8192 points re-
sulting from 128 longitude and 64 latitude grid points). This
dataset is considered the “ground truth” for the following ma-
chine learning processes and serves as the training dataset for
the supervised machine learning with the random forest clas-
sifier in the second step of our procedure.

The random forest classifier has the ability to learn how
to make decisions for specific aerosol regimes based on the
training data generated for REF-2015 using k means. The
input properties for all other time slices are standardized
consistently using their corresponding REF-2015 standard-
ization parameters (mean and standard deviation) to create
consistent inputs for the random forest algorithm. A cross-
validation process is applied to the random forest learning by
selecting 80 % of the REF-2015 data points, which the algo-
rithm uses to learn the aerosol classification decision rules.
The evaluation is conducted for the remaining 20 % of REF-
2015 data points, which are excluded from the learning pro-
cess, by comparing aerosol regime labels generated by the
random forest decision rules to the original k-means classi-
fication. The resulting accuracy of the random forest classi-
fier ranges between 94.5 % and 98.8 % and is therefore well
suited for the analysis conducted in this study. The accuracy
of the random forest algorithm is also evaluated by compar-
ing the internal properties of the aerosol regimes in REF-
2015 generated by k means and those of the other time slices
generated by random forest (Sect. 3.1). The above proce-
dures are applied for both the primary and secondary classi-
fication. The classification of the full global dataset (primary
classification) can identify aerosol regimes that are character-
ized by marked difference in aerosol properties on a global
scale. In detail, the global data span a wide range of values
and aerosol properties, which are distributed quite heteroge-
neously over the globe. Due to this large variability in the
global dataset, the primary classification identifies regimes
with clear difference, e.g. regimes containing high local val-
ues for specific aerosol species and regimes where the val-
ues of aerosol properties are close to their global minimum
(hereafter termed clean aerosol regimes); however, it can-
not further distinguish differences within the clean regimes.
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Figure 1. Workflow of applied machine learning classification procedures. Blue ovals represent the input data. Red ovals show the output
data. Rectangles represent procedures to analyse the data. Diamonds represent decision rules. Arrows show the sequence of analysis.

We therefore conduct a secondary classification to investigate
fine structures within clean aerosol regimes, using the same
procedure as for the primary classification but applied to a
subset of the data representative of a specific primary aerosol
regime. With the secondary classification we zoom into a
specific aerosol regime and can identify further detailed dif-
ferences within it. The secondary classification is of special
importance for the analysis of preindustrial regimes or fu-
ture regimes under low-pollution scenarios, such as SSP1-
1.9, where clean aerosol regimes dominate.

3 Results and discussion

3.1 Primary classification of aerosol regimes and their
properties

Before discussing the development of primary classification
aerosol regimes over time, it is important to distinguish the
regime differences caused by numerical artefacts of the al-
gorithm from the real regime changes in the model simula-
tions. First, we need to evaluate whether the aerosol regimes
identified across the other time periods by the random for-
est algorithm agree with the present-day ones as classified
by k means (i.e. the “ground truth” for random forest learn-
ing). The comparison of aerosol properties for the identi-
fied primary classification aerosol regimes across time pe-

riods (Fig. S1 in the Supplement) shows that similar inter-
nal aerosol properties are derived for each identified aerosol
regime from primary classification between REF-2015 and
the preindustrial and future time periods. This suggests that
random forest correctly learns the classification criteria and
is well suited for this study. One minor discrepancy between
the two algorithms is the classification of the dust-dominated
regimes: the data distributions of the dust-dominated level 1
regime in the preindustrial and in SSP1-1.9 is character-
ized by many outliers compared with the distribution in
REF-2015, which should instead be assigned to the dust-
dominated level 2 regime. This discrepancy is due to the
fact that k means is based on the Euclidean distance and
is therefore more sensitive to the large values of a distribu-
tion, while random forest is less sensitive to them as it pre-
dicts classes in a tree structure. This discrepancy suggests
that it would be more appropriate to discuss the two dust-
dominated regimes as a single one. Considering also that the
dust-dominated level 2 regime is small in terms of sample
size, the differences between these two regimes should not
be over-emphasized.

In the following, we first discuss the identified present-
day primary classification aerosol regimes (Fig. 2) and their
properties (Fig. 3), and we then discuss these for the prein-
dustrial cases and the future. Figure 3 shows comprehensive
and integrated information on the present-day regime charac-
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teristics in terms of individual aerosol properties as classified
by k means. In our approach, these k-means classification re-
sults also serve as a learning criterion for the random forest
classification for other time periods. The different colours in
Fig. 3 represent the different aerosol properties considered in
this study. The y axis shows their standardized values, with a
higher (lower) standardized value corresponding to a higher
(lower) aerosol mass and number concentration (i.e. the stan-
dardization process normalizes values of different aerosol
properties to the same order of magnitude, while conserv-
ing the underlying distribution of these aerosol properties).
The standardized values are also used to define the different
pollution levels in the continental and dust-dominated clus-
ters. The random forest algorithm learns from value ranges
and the relative importance of the considered aerosol proper-
ties for each regime (regime characteristic), and it then maps
the preindustrial and 2050 aerosol properties to the identi-
fied regimes. The same regime identified during preindustrial
times and 2050 represents the same conditions as the present-
day regime (evaluated in the Fig. S1). We recall that the sim-
ulations analysed here only consider the impact of changing
emissions, while the impact of climate change is neglected.
This might affect the size and extent of preindustrial and fu-
ture regimes to a certain extent, but it should not change the
classification substantially since previous studies suggested
a distinctively larger importance of emission changes than
climate change for the evolution of the lower tropospheric
aerosol (see detailed discussions in Sect. 4). Figures 2a and 3
show that there is a background regime in the polar regions
(regime 0), where all aerosol properties show lower values
than the other regimes. The marine regime (regime 4) is dom-
inated by an enhancement in sea salt, while all other aerosol
properties show only low values. Regimes 5 and 7 are dust-
dominated regimes located over the Sahara. Regime 6 can be
related to biomass burning activity and biogenic emissions
in forest regions and savannas of South America and Africa
and the respective downwind areas. In addition, regime 6 is
characterized by a clear enhancement in POM, BC, and par-
ticle number concentration in the accumulation mode, which
is typical of this emission source. Four different continental
regimes are identified, which are characterized by different
levels of aerosol due to anthropogenic influences (Regime 1,
3, 8, and 2, hereafter referred to continental level 1 to level 4
regimes, respectively, in increasing order of anthropogenic
influences).

The aerosol regimes in preindustrial times (Fig. 2b, c)
are mostly characterized by three clean primary classifica-
tion aerosol regimes (background, marine, and continental
level 1) covering the whole globe. The spatial extent of the
background regime in preindustrial times is considerably
larger than for present-day conditions, covering large parts
of the continents in both hemispheres. The dust-dominated
(regimes 5 and 7) and the biomass burning and biogenic
regimes (regime 6) over Africa exist throughout all time pe-
riods, although the spatial extent of the biomass burning and

biogenic regime over Africa in preindustrial times and in
SSP1-1.9 is smaller than during the present day. This in-
dicates that the spatial extent of biomass burning and bio-
genic regime in preindustrial times can be considered a nat-
ural emission baseline, with the anthropogenic contributions
under present-day conditions amplifying the biomass burn-
ing and biogenic regime to cover a larger area. The biomass
burning regime over South America, however, is not present
in preindustrial times, suggesting a non-agricultural anthro-
pogenic origin of the biomass burning activity in this region.
Differences between the primary continental level 1 regimes
emerge between the two preindustrial time periods (PI-1750
and PI-1850) due to the growing influence of agriculture and
other anthropogenic activities between these two time peri-
ods. For example, North America, Europe, and northern Asia
belong to the background regime (regime 0) in PI-1750 but
shift to continental level 1 (regime 1) in PI-1850 with im-
plications for the choice of a representative year for prein-
dustrial conditions when calculating aerosol radiative forcing
(e.g. Carslaw et al., 2017; IPCC, 2022).

Key aspects of the spatial distribution and extent of the
primary classification aerosol regimes in the future differ
compared to preindustrial and present-day conditions, with
significant variations across the three SSP scenarios inves-
tigated here. SSP1-1.9 is the scenario under which the pri-
mary classification aerosol regimes are most similar to 1750
or 1850. Under the low-emission (SSP1-1.9, Fig. 2d) and
moderate-emission (SSP2-4.5, Fig. 2e) scenarios, the shift
towards preindustrial conditions is evident globally, suggest-
ing a general reduction in aerosol and aerosol precursor emis-
sions in line with the underlying assumptions in these scenar-
ios (van Vuuren et al., 2017; Fricko et al., 2017). The spatial
extent of continental level 2 to level 4 regimes (regimes 3,
8, and 2) is reduced under the SSP2-4.5 scenario, and these
regimes disappear almost completely under SSP1-1.9. The
low-emission SSP1-1.9 scenario is the only scenario where
the spatial distribution and extent of the primary classifi-
cation aerosol regimes very closely resemble preindustrial
conditions, where the agreement is larger for PI-1850 than
PI-1750, with the exception of India, which still belongs
to the continental level 3 regime (regime 8). The scenario
with most similarities with the present-day primary classi-
fication aerosol regime distribution is SSP3-7.0 (Fig. 2f);
however, there are some key differences between SSP3-7.0
and REF-2015. Parts of western Europe, for example, shift
from the continental level 1 regime (regime 1) to the back-
ground regime (regime 0), which can be interpreted as a con-
sequence of emission reduction policies adopted by devel-
oped countries in this scenario (Fujimori et al., 2017). Devel-
oping countries like China and India, on the contrary, are still
characterized by high levels of pollution in 2050, resulting in
an increase in the extent of the continental level 3 and level
4 regimes (regime 8 and regime 2, respectively). Our results
suggest that SSP2-4.5 and SSP3-7.0 are less likely to feature
preindustrial conditions than SSP1-1.9, although preindus-
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Figure 2. Present-day (a), preindustrial (b–c), and future (d–f) aerosol regimes from primary classification. The aerosol properties of each
present-day regime are shown in Fig. 3.

Figure 3. Internal aerosol properties of the primary classification aerosol regimes shown in Fig. 2. The boxes mark the range of data between
the 25 % and 75 % quantiles, referring to the interquartile range (IQR). The whiskers indicate the minimum and maximum value within the
1.5× IQR distance from the box. Data beyond the whiskers are displayed as dots. The raw input values are standardized by removing the
sample mean and dividing by the sample standard deviation. This standardization procedure preserves the data distribution and only changes
the data values. The standardized value 0 represents the global average of each aerosol property. The negative (positive) standardized values
describe data below (above) global average expressed as factors of their global standard deviation.
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trial conditions can be expected in these scenarios for specific
regions, like the ones covered by the background regime, ma-
rine regime, and continental level 1 regime (Fig. 2e, f). It
needs to be noted that the impact of climate change is not
considered here, and the possible influence of climate change
effects on the present results is discussed in Sect. 4.

Our results show that close-to-preindustrial conditions ex-
ist under present-day conditions and under SSP1-1.9 to a
greater spatial extent and that preindustrial times show more
diverse conditions than previous studies suggested. Possible
reasons for these differences are discussed in the following.
(1) Many previous studies identified preindustrial-like con-
ditions based on CCN concentration. Andreae (2007) sug-
gested that by turning off anthropogenic emissions, the sim-
ulated CCN concentration over the continents would agree
with that over the southern oceans, with the CCN concen-
tration ranging from 50 to 200 cm−3. Hamilton et al. (2014)
used model simulations to identify present-day atmospheric
conditions that resemble PI by estimating the occurrence of
days with similar CCN concentrations between 1750 and
2000, suggesting that 90 % of unperturbed regions occur in
the Southern Hemisphere. In contrast to these studies, we
consider aggregated information from multiple aerosol prop-
erties (BC, mineral dust, sea salt, POM, ammonium, sul-
fate, nitrate, particle number in the Aitken mode, and par-
ticle number in the accumulation mode). However, as CCN
concentrations are strongly related to some of these aerosol
properties, our results can be qualitatively compared to those
from previous CCN-related studies. (2) We are evaluating
multi-annual-mean aerosol properties, while other studies
considered seasonal (Andreae, 2007) and daily variations
(Hamilton et al., 2014), which could lead to larger differ-
ences between preindustrial and present-day conditions than
the differences we find using multi-annual means. Therefore,
previous studies might have identified a smaller extent of
preindustrial-like conditions than our study because more re-
gions are considered to be different when using daily and
seasonal data. (3) Our results are based on machine learn-
ing algorithms, which allow us to identify and characterize
the complex relationships and patterns within the data based
on similarities and differences in the global distribution of a
multitude of aerosol properties, which is a major methodical
difference from the previous studies.

The above results from the primary classification show the
ability of the algorithm to extract a clear and condensed pic-
ture of the global distribution of aerosol conditions for differ-
ent time periods and regions. However, there are still features
that cannot be captured at the spatial scale of the primary
classification. For example, in the L22 study, which used a
higher spatial model resolution (i.e. T63, corresponding to
1.9°× 1.9° in latitude and longitude) for the input dataset,
the k-means algorithm could identify a north–south hemi-
spheric difference for the marine regime with a higher level
of pollution in the Northern Hemisphere, but this difference
is not evident in the present study, which uses a lower resolu-

tion (T42, 2.8°× 2.8°). Such differences, however, would be
key information for constraining aerosol forcing uncertain-
ties (e.g. Carslaw et al., 2013; Hamilton et al., 2014; Regayre
et al., 2020). The absence of this north–south contrast sug-
gests that our primary classifications are spatially too coarse
and that a finer spatial clustering is required. This is achieved
by means of a secondary classification, mostly targeting the
regimes with low levels of aerosol identified by the primary
classification.

3.2 Secondary classification of aerosol regimes and
their properties

For the secondary classification shown in Figs. 4 to 6 we
target the following primary classification aerosol regimes:
(1) the background regime, (2) the marine regime, and (3) the
continental level 1 regime. These regimes are characterized
by aerosol properties with much lower values than the other
regimes (Fig. 2) and are therefore particularly important in
preindustrial times and in the SSP1-1.9 scenario, where they
cover most of the areas of the globe. The aim of the sec-
ondary classification is to zoom into these specific primary
regimes to identify further differences and similarities within
these regimes. We refer to the regimes characterized by the
secondary classification as “sub-regimes” and aim to answer
the following question: where do preindustrial-like aerosol
conditions most probably occur at present day and in the dif-
ferent future scenarios?

The sub-regime distributions of the background regime
(Fig. 4) reveal that preindustrial-like aerosol conditions over
the polar regions in both hemispheres can also be found in
the present-day case and that aerosol conditions of large parts
of the continents in the Northern Hemisphere during prein-
dustrial times can still be found under present-day condi-
tions, this is only true at very high northern latitudes (i.e. the
border between continents and the Arctic Ocean). The sec-
ondary classification identifies five sub-regimes within the
present-day background regime: one with enhanced sea salt
over the oceans (sub-regime 0_0), one in the Arctic with the
second-lowest aerosol values (sub-regime 0_1), one in the
Antarctic with the lowest aerosol values (sub-regime 0_2),
a dust-enhanced one at the southern edge of Australia (sub-
regime 0_3), and one over the continental boundaries of the
Northern Hemisphere with the highest aerosol values (sub-
regime 0_4). During preindustrial times, the North Pole re-
gion shows higher aerosol values than the South Pole re-
gion, consistent with the present-day case. A possible expla-
nation for this difference could be the influence of long-range
transport of pollutants to the Arctic and new particle for-
mation being favoured under the very clean conditions over
the Antarctic. The Antarctic sub-regime has the same extent
in the preindustrial and present-day cases, while the North
Pole region sub-regime is larger than under present-day con-
ditions. Other continental regions belong to the sub-regime
with the highest aerosol values. The sub-regime distribution
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for SSP3-7.0 (Fig. 4f) closely resembles the present-day con-
ditions, while the results for SSP1-1.9 (Fig. 4d) are similar to
the preindustrial PI-1850 patterns. SSP2-4.5 (Fig. 4e) shows
an intermediate stage between SSP3-7.0 and SSP1-1.9.

Over the oceans, preindustrial-like conditions can only
be found in the Southern Hemisphere (Fig. 5), as also
pointed out by several previous studies and measurement
campaigns (e.g. Andreae, 2007; Carslaw et al., 2013; Hamil-
ton et al., 2014; McCoy et al., 2020). The present-day ma-
rine regime is further classified into three sub-regimes. The
secondary classification (Fig. 5c) further identifies the differ-
ent aerosol sub-regimes between the Northern Hemisphere
(sub-regime 4_2) and the Southern Hemisphere oceans (sub-
regime 4_0), with lower aerosol values in sub-regime 4_2
than 4_1. The marine regime contains a further sub-regime
showing an enhancement in mineral dust, black carbon, and
POM at the outflow of the African continent (sub-regime
4_1) (Fig. 5d). This suggests that these sub-regimes are to
a certain extent influenced by their neighbouring primary
regimes as a result of long-range atmospheric transport pro-
cesses. In preindustrial times and at 2050 in the SSP-1.9 sce-
nario, the oceans are mostly classified into the sub-regimes
4_0, while only small regions in the tropics are identified
as sub-regime 4_2. The reason for this could be that aerosol
conditions over the continents of the Northern Hemisphere
in preindustrial times were not polluted enough to be able
to influence the Northern Hemisphere oceans to a sufficient
degree for this to be recognized by the applied classification
rules. The sub-regime 4_1 at the African outflow is consistent
with the present-day case. The distribution of sub-regimes of
the marine regime is highly consistent between PI-1750 and
PI-1850. The sub-regime distribution of SSP3-7.0 is almost
identical to the present-day case, and SSP2-4.5 represents an
intermediate stage between preindustrial times and present-
day conditions.

The sub-regimes of the continental level 1 regime also
show locations where preindustrial-like conditions can be
found in the present-day case (Fig. 6). The present-day con-
tinental level 1 regime contains a sub-regime 1_3 with dust
enhancement; a sub-regime 1_2 with enhanced sea salt; a
SNA-enhanced sub-regime 1_1, which is found at a latitu-
dinal band across the oceans south of the Eurasian continent;
a sub-regime 1_4 next to the primary biogenic regime; and
a sub-regime 1_0 at northern regions. In the preindustrial
times, the regime shows a similar sub-regime structure to that
for present-day conditions, but small differences occur. The
present-day sub-regime 1_1 is not found during the preindus-
trial times, and it seems to be replaced by the cleaner sub-
regime 1_2. During preindustrial times, the dust-enhanced
sub-regime 1_3 has a larger spatial extent than in the present-
day case, while the biogenic- and biomass-burning-enhanced
sub-regime 1_4 also includes southeastern China and parts
of India, which are the most polluted regions in the present-
day case. The sub-regime 1_0 during preindustrial times cor-
responds to present-day conditions in a few parts of North

America and on the Eurasian continent. Similar to the results
for other secondary classification regimes, SSP3-7.0 closely
resembles the present-day aerosol conditions, and SSP1-1.9
resembles PI-1850. SSP2-4.5 corresponds to an intermediate
condition between preindustrial times and present-day con-
ditions.

3.3 Regional focus and emission analysis

The goal of this section is to explain prominent features of
the temporal development by means of analysing the devel-
opment of the emissions in selected regions. The results dis-
cussed in the previous sections allowed us to identify six rep-
resentative regions within three groups (biogenic, most pol-
luted region, and developed countries) (Fig. 7a). Each group
contains two regions that belong to the same aerosol regime
under present-day conditions but follow different pathways
in terms of their aerosol regime evolution from preindustrial
times to the future. In this section we investigate which emis-
sion precursor gas or emission components contribute to the
regime development of selected example regions by com-
paring the anthropogenic and biomass burning emissions of
aerosols and precursor gases in the different time periods and
scenarios for these regions (Fig. 7b–g). We consider three
emission sectors (open burning, the sum of anthropogenic
non-transport sectors, and the transport sector) and the sum
of these sectors. The transport sector includes land trans-
port, shipping, and aviation, with most of the emissions be-
ing due to land transport. We consider four key species: NH3
(mostly driven by agricultural activities), SO2 and NOx (typ-
ical pollutants from fossil fuel combustion and both impor-
tant for secondary aerosol formation), and BC (representative
of the emissions from all kinds of combustion processes, in-
cluding open burning). Most of the emission-related anthro-
pogenic aerosol changes will be addressed by the analysis of
these species, which are representative of secondary aerosol
formed from precursor gases and for primary aerosols. This
type of analysis is possible because the simulations only con-
sider emission-driven changes and neglect climate change ef-
fects on the analysed aerosol properties. The open burning
sector comprises agricultural waste burning on fields, forest
burning, grassland burning, and peat burning (Van Marle et
al., 2017). The total emissions of each species are normal-
ized with respect to their present-day total in each region,
such that values of the total emissions larger (smaller) than 1
indicate an emission increase (decrease) with respect to the
present day.

Region R1a (over South America) and R1b (over central
Africa) are both identified as biogenic and biomass burn-
ing regimes under present-day conditions. While R1b be-
longs to the biogenic and biomass burning regime at all
time periods, R1a belongs to continental level 1 regime dur-
ing preindustrial times and seems to develop into the bio-
genic and biomass burning regime only in the present-day
case (Fig. 2). This behaviour can be explained by the emis-
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Figure 4. Results of the secondary classification for the background regime. The sub-regime distribution is shown for present-day (a),
preindustrial (b–c) and future (d–f) values. The aerosol properties for each regime of the present-day case are shown on the bottom left. Note
that the standardized values here should not be directly compared with Fig. 3 and with other secondary classification results. The standardized
0 value of the secondary classifications represents the sample average of the target primary regime. The negative (positive) values describe
data below (above) the sample average expressed as factors of their sample standard deviation. Recall that the extent of the primary target
regime (background) varies from case to case. Hence, the areas outside the target regime (white) also vary.

Figure 5. The same as in Fig. 4 but for the marine regime.
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Figure 6. The same as in Fig. 4 but for the continental level 1 regime.

sion analysis (Fig. 7b, c). Preindustrial emissions for R1a are
very low (less than ∼ 1 % of present-day values), while total
preindustrial emissions for R1b are about 50 %–90 % of the
present-day value (depending on the species). This dramatic
change in R1a between preindustrial and present-day condi-
tions points to a strong influence of human activities on the
open burning emissions, e.g. due to deforestation. This also
explains why the classification algorithm assigns R1a to a
continental level 1 regime in the preindustrial time. In SSP1-
1.9 the emissions in R1a amount to about 25 %–70 % of the
present-day value. The assignment of R1a to the continental
level 1 regime under SSP1-1.9 therefore suggests that reduc-
ing∼ 50 % of present-day emissions in R1a could reverse the
direction of aerosol regime development in this region. R1a
is barely influenced by open burning emissions in preindus-
trial times, while this sector is a constant emission source in
R1b over the different time periods.

The southeast Asian regions R2a and R2b develop into the
most polluted aerosol regimes on Earth in the present-day
case. Both regions belong to the continental level 1 regime in
preindustrial times but develop differently in terms of their
future regimes (Fig. 2), which can be explained by their
slightly different emission pathways in the future scenarios
(Fig. 7d, e). The extremely low emissions during preindus-
trial times compared with the present day result in large
temporal differences in these regions. In 2050, R2a shows
increased emissions of NOx and NH3 under the SSP3-7.0
and SSP2-4.5 scenarios. In R2a NOx emissions increase by

30 % for SSP2-4.5 and by 70 % for SSP3-7.0 compared to
the present-day case. An emission reduction can be seen for
R2a under the clean scenario SSP1-1.9, with the exception of
NH3, which is strongly influenced by agricultural emissions.
In R2b, SSP3-7.0 still shows increases, while SSP2-4.5 and
SSP1-1.9 show decreasing emissions, except for NH3, again
because of the persisting emissions from agriculture. The dif-
ferent pathways of emission changes in R2a and R2b can
explain why R2a remains in the polluted regimes in 2050,
whereas R2b shifts to a clean aerosol regime under SSP1-1.9.
The transport sector has only small contributions for most
species, except for NOx . Compared to R2b, the relative con-
tribution of the transport sector with respect to the total emis-
sions is larger in R2a.

R3a and R3b are representative of developed countries and
are covered by clean aerosol regimes. These regions show a
gradual development from the background to the continen-
tal level 1 regime from past to present and a reverse process
from the present day to the future (Figs. 2 and 6) under differ-
ent degrees of emission reduction. By addressing the consid-
ered time periods, the emission comparisons for both regions
(Fig. 7f and g) show that the emission maxima of NOx , SO2,
and BC occur at present-day conditions, while emissions for
NH3 increase up to 20 % by 2050 under the most pessimistic
SSP3-7.0 scenario. However, as we have not analysed the
full time series, the maximum aerosol emissions could peak
before or after present day. This trend agrees with the tempo-
ral development of the corresponding aerosol regimes. The
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Figure 7. Panel (a) shows the six regions selected for the emission analysis, and panels (b)– (g) show the comparison of emissions for four
species and from different sectors during different time periods and scenarios for each region. The emission amounts of each species are
normalized to their present-day total. Note the different vertical scales in panel (d).

anthropogenic non-transport sector shows the largest contri-
bution to the total emissions in these regions, followed by the
contributions from the transport sector.

4 Limitations, strengths, and potential applications

In order to set the results presented above in the right context,
we discuss the most important limitations, strengths, and po-
tential applications of our analysis in the following.

As already stated in L22, the classification algorithm is
applied to the output of global model simulations and there-
fore cannot capture small-scale patterns (small-scale effects
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of individual pollution sources, e.g. local plumes of spe-
cific roads, power plants, ships, or oil platforms) due to the
model’s coarse resolution (∼ 300 km in this study). There-
fore, the presented results only consider large-scale pat-
terns. In spite of this limitation, a clear advantage of using
model-generated output is the large number of aerosol prop-
erties calculated in a self-consistent manner and the complete
spatio-temporal coverage of the globe for multi-annual time
periods. This, to some extent, compensates for the limita-
tions mentioned above and the uncertainties in global aerosol
models identified by comparing them to observations. Model
simulations can of course be affected by biases visible as de-
viations from measurements. This, however, is less critical in
the context of this study due to the standardization process.
The classification algorithm is based on assessing large-scale
distribution patterns of aerosol properties, and previous stud-
ies showed that these patterns are usually well captured by
global models (Koch et al., 2009; Mann et al., 2014; Aquila
et al., 2011; Koffi et al., 2015; Kaiser et al., 2019; Beer et
al., 2020).

Another limitation specific to this study is related to
the set-up of the model simulations, which considers time-
varying emissions under fixed present-day climatic condi-
tions. Although the intention of this study is purely to investi-
gate the influence of emissions on the development of aerosol
regimes over time, the simulations for the preindustrial times
and the future may not be fully representative of their atmo-
spheric conditions in the real world. Changing emissions and
climate simultaneously is technically possible and would not
affect the algorithm skills, but it would hamper the separa-
tion of their respective impacts, further complicating the in-
terpretation of results and the applicability of the proposed
method. The question is how this assumption could influ-
ence the results presented in this study. Previous studies show
that climate change could affect dimethyl sulfide (DMS) pro-
duction (Bopp et al., 2003; Zhao et al., 2024), mineral dust
(Kok et al., 2023), sea salt (Struthers et al., 2013), and PM2.5
and aerosol optical depth (IPCC, 2022). These influences of
climate change on natural emissions are not considered in
our study, with the intention to clearly attribute the differ-
ences within the time slices and scenarios to the underlying
emissions. Nevertheless, the influence of climate change on
aerosols could be important, and further studies are needed to
investigate the relevance of this effect on the patterns of the
identified aerosol regimes. However, previous studies sug-
gested a stronger influence of emission changes on aerosols
than climate change. Lacressonnière et al. (2017) investi-
gated PM mass concentrations over Europe in a+2 °C warm-
ing world and demonstrated that the decrease in PM mass
concentrations over Europe is mainly associated with emis-
sion reductions. Cholakian et al. (2019) investigated climatic
drivers and their effect on PM10 components in Europe and
the Mediterranean Sea and demonstrated that anthropogenic
emission changes overshadow changes caused by climate
for both regions. H. Li et al. (2022) evaluated the contribu-

tions of emission changes and climate change to the projec-
tion of PM2.5 in 2100 and suggests that under clean emis-
sion scenarios (SSP1-2.6 and SSP2-4.5), the PM2.5 reduc-
tion in 2100 is due to emission reductions, while for a high-
pollution scenario (SSP5-8.5) an approximately equal con-
tribution of emission changes and climate change to PM2.5
mass concentrations for specific world regions (e.g. South
America, Asia) was identified. These studies support the va-
lidity of our conclusions drawn for preindustrial times and
under the two clean emission scenarios for 2050. However,
our results for the regimes in 2050 under SSP3-7.0 may be
subject to uncertainties due to neglected climate change ef-
fects, although here we focus on the year 2050, when the cli-
mate change effects in scenarios of high pollution are smaller
than in 2100 (e.g. Fig. SPM.8 in IPCC, 2021a), and the high-
emission scenario SSP3-7.0, which we address in this study,
is cleaner than the SSP5-8.5 scenario investigated by H. Li et
al. (2022). In summary, the effect of climate change is sug-
gested to be less important than the emission changes for the
aerosol regimes investigated in our study. The missing cli-
mate change effects might still result in uncertainties in the
size and extent of the regimes but will likely not change their
general patterns. Hence, the major conclusions of this study
are unlikely to change when climate change is considered.
The investigation of the influence of both climate and emis-
sion changes on the temporal development of aerosol regimes
may nevertheless be the subject of a future study.

Another factor that needs to be considered is that all of
our conclusions are driven by simulations using the adopted
emission inventories. As stated above, these emission inven-
tories might miss important emission phenomena, especially
those occurring on small spatial and short temporal scales.
However, on the climatological timescales analysed in this
study, these limitations are not expected to change the con-
clusions. On the other hand, since we analyse long-term
mean conditions, the analysis cannot capture the fact that
some areas may be subject to temporary pollution events (e.g.
due to wildfires). Caution is required when using biomass
burning and biogenic emission datasets. A reliable repre-
sentation of biomass burning and biogenic emissions during
preindustrial times is not available (e.g. Marlon et al., 2016),
and future climate-driven changes are unlikely to be prop-
erly represented in the CMIP6 emission inventory used to
drive the simulations analysed here. This uncertainty might
affect our conclusions regarding biomass burning and bio-
genic regimes in terms of their size and extent during prein-
dustrial times and in the future.

This study uses an innovative way to assess and integrate
information from multiple aerosol properties. Unlike the tra-
ditional single-variable model assessments, which consider
only one specific aerosol property for different time slices,
we condense information from seven key aerosol properties
into a single parameter (the regime index) and then assess
the development of this parameter through time. In this way
we identify regimes in the present-day lower troposphere
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with distinct characteristics (e.g. clean, dust-dominated, pol-
luted). Moreover, using the present-day regime characteris-
tics as a reference, we can compare the present-day case
with other time slices to identify similarities and differences.
If these comparisons among time slices were conducted for
each aerosol property individually, the diverse and complex
patterns for different aerosol properties would complicate the
interpretation and make it more difficult to derive key infor-
mation and draw general conclusions.

The analysis procedures developed in this study and the
presented results are unique and have a large application
potential. This combination of unsupervised and supervised
machine learning methods is valuable for comparing consis-
tent patterns across different datasets without knowing the a
priori classification criteria. The application of this method is
not limited to global aerosol simulations but can be applied
to different modelling and measurement (such as satellite)
datasets regardless of their resolution and spatial coverage.
The clear and concise depiction of the spatial extent and dis-
tribution of aerosol regimes for different time periods and
emission scenarios is particularly useful. First, previous cam-
paigns targeting preindustrial aerosol conditions took place
mainly over the southern oceans. Our results point to addi-
tional areas with aerosol conditions similar to those at prein-
dustrial times (such as the background regime, the biogenic
regime in central Africa, and the continental level 1 regime)
that may be taken into consideration. Second, the representa-
tion of aerosol conditions for present-day and different future
scenarios, derived from a complex dataset, provides insights
for policy and decision makers into possible future develop-
ments of atmospheric pollution. Third, the classification of
aerosol conditions into regimes provides important hints for
subsequent studies relying on information about the proper-
ties and distribution of atmospheric aerosols. For example,
these regimes can be used as input for assessing the ageing
of aircraft engines dependent on atmospheric environmen-
tal conditions. Many aerosol components (e.g. sea salt, min-
eral dust, black carbon, sulfate) induce highly relevant engine
ageing processes, for instance through corrosion or abrasion
(Ellis et al., 2021). Hence, detailed knowledge of aerosol
characteristics in specific regions is an important prerequi-
site for robust engine life cycle modelling. Our study ad-
dresses aerosol climatological conditions in a similar manner
to the IPCC when defining climate reference regions (Itur-
bide et al., 2020). Iturbide et al. (2020) defined 46 land and
16 ocean regions to represent consistent and climatically co-
herent regional climate features based on observational and
model-simulated temperature and precipitation data in order
to provide climatological information for a broad spectrum of
IPCC users. Similarly, different communities (e.g. industry,
policy, research) might benefit from the aggregated aerosol
information provided in our study.

5 Summary and outlook

This study investigated multiple aerosol properties simulated
with the global aerosol model EMAC and the aerosol sub-
model MADE3 for different time periods, i.e. from prein-
dustrial times to 2050, under three different emission sce-
narios (SSP3-7.0, SSP2-4.5, and SSP1-1.9). The simulations
considered varying emission conditions for the different time
periods, but the climate was constrained by present-day re-
analyses. The comparison of similarities and differences in
aerosols properties over time was investigated by means of
classifying aerosol regimes based on seven aerosol proper-
ties, including aerosol mass concentrations of BC; mineral
dust; sea salt; POM; and the sum of sulfate, nitrate, and am-
monium (SNA), and number concentrations of aerosol par-
ticles in the Aitken and accumulation modes. The analyses
were based on two statistical machine learning algorithms
(a combination of k means and random forest). The investi-
gations were conducted based on a primary classification of
aerosol regimes and a secondary classification of more de-
tailed structures in selected regimes of the primary classifi-
cation. The results led to the following new findings about
aerosol patterns and their evolution.

The machine learning classification based on the present-
day dataset (2015) (Figs. 2a and 3) identified eight aerosol
regimes in the primary classification step: background, ma-
rine, biogenic and biomass burning, two dust-dominated
regimes that we combined into one, and four continental
regimes with different levels of aerosol burden (level 1 to
level 4 characterized by increasing aerosol burden from level
to level). During preindustrial times (years 1750 and 1850),
clean aerosol regimes (background, marine, and continen-
tal level 1) dominate, except for mineral dust regimes in
northern Africa and biomass burning and biogenic regimes
in central southern Africa. The aerosol regimes for 2050 un-
der SSP3-7.0 closely resemble present-day conditions, but
there are some notable regional differences: developed coun-
tries tend to shift towards cleaner regimes in future, while
the opposite is the case for developing countries. The aerosol
regimes for 2050 under SSP2-4.5 and SSP1-1.9 develop to-
wards cleaner aerosol conditions with respect to the present-
day case, whereas SSP1-1.9 has the highest probability of
resembling preindustrial conditions and is more similar to
PI-1850 than PI-1750. SSP2-4.5 mostly corresponds to an in-
termediate state between present-day and preindustrial times.

A secondary classification was conducted in order to char-
acterize the clean aerosol regimes in more detail (Figs. 4–6).
The results suggested that present-day northern polar regions
show a higher level of aerosol pollution than the southern po-
lar regions, and this tendency is also evident in the preindus-
trial times. Present-day marine regimes show a north–south
contrast, while preindustrial marine regimes mostly represent
cleaner marine conditions found over the present-day south-
ern oceans.
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12742 J. Li et al.: Dominant patterns of aerosol regimes from preindustrial times to the future

An analysis of the emissions of black carbon and several
aerosol precursor gases was performed targeting six example
regions for three groups (biogenic, most polluted regions and
developed countries) for different time periods. The example
regions within a specific group belong to the same regime un-
der present-day conditions but follow different pathways in
terms of their evolution over time. The results suggested that
(i) the absence of the biogenic and biomass burning regime
over South America during preindustrial times could result
from preindustrial NOx and BC emissions accounting for
less than ∼ 10 % and NH3 and SO2 accounting for less than
∼ 1 % of present-day emissions, although this conclusion
is highly uncertain; (ii) the behaviour of the most polluted
present-day regime in India, showing a slower transition to-
wards less polluted conditions than the corresponding regime
in southeastern China in 2050 for SSP1-1.9 and SSP2-4.5,
could be due to different emission reduction policies; and
(iii) in developed countries emission reductions could ex-
plain a shift towards preindustrial-like conditions in 2050 for
all scenarios.

For the applicability of the methods discussed in this work,
a few caveats and limitations need to be considered. First,
the global aerosol simulations are capable of capturing large-
scale aerosol distribution patterns but are not able to resolve
small-scale and localized processes. Therefore, the results
consider solely large-scale patterns. Second, the atmospheric
aerosol for preindustrial and future conditions is simulated
by varying the emissions for the respective time period but
with a fixed present-day climate. Neglecting the effects of
climate change is expected to cause uncertainties in the size
and extent of the identified regimes (especially for polluted
regimes under SSP3-7.0 scenario), but the major conclusions
drawn in this study will likely be unaffected, due to a dom-
inating influence of emissions rather than climate change as
suggested by previous studies. The consideration of both cli-
mate and emission changes for the corresponding time peri-
ods could be the subject of a follow-up study, which may also
address the sensitivity of our results to the input model data
considered in the clustering. Here we focused on simulation
data from the EMAC model, but the same approach could be
applied, for example, to the CMIP6 model output, although
it may need to be adapted to the availability of the aerosol
properties used to drive the machine learning algorithms.

The results presented in this study can provide impor-
tant insights for different communities (e.g. industry, pol-
icy, research). For instance, our findings can be used for the
planning of targeted measurements for specific aerosol con-
ditions (e.g. preindustrial-like, most polluted, biogenic and
biomass burning); for supplying information to policy mak-
ers for tailored air pollution mitigation measures in specific
regions; for model inter-comparisons (e.g. AeroCom, Gliß et
al., 2021; AerChemMIP, Collins et al., 2017); and for applied
studies, for instance, the life cycle modelling of aircraft en-
gines, where information on atmospheric aerosol properties
are required as an essential input. The method we outlined

here could also be applied to analyse the development of up-
per tropospheric aerosol regimes over time. This region is of
particular interest for many areas of research, such as avia-
tion climate impacts and volcanic emissions.
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