

Supplement of

An investigation into atmospheric nitrous acid (HONO) processes in South Korea

Kiyeon Kim et al.

Correspondence to: Kyung Man Han (kmhan@gist.ac.kr) and Chul Han Song (chsong@gist.ac.kr)

The copyright of individual parts of the supplement might differ from the article licence.

(d) wind speed (WS) at 10m above the surface; and (e) wind direction (WD) at 10m above the
surface during period of the KORUS-AQ campaign.

Fig. S2. (a) Diurnal variations of observed HONO (black open circles, left y-axis), modeled HONO to NO₂ ratio (blue line, right y-axis), and observed HONO to NO₂ ratio (red line, right y-axis) and (b) their scatter-plots between the observed HONO and the modeled ratio of HONO

11 to NO₂ (blue circles), and observed HONO to NO₂ (red circles) at the Olympic Park station

32 during the period of the KORUS-AQ campaign.

Fig. S3. Incremental ratio of (a) gas phase reactions; (b) biomass burning emissions; (c) traffic emissions and (d) soil emissions; (e) heterogeneous reactions on the aerosol surfaces, (f) heterogeneous reactions on the leaf surfaces, and (g) heterogeneous reactions on the building surfaces; and (h) renoxification on HONO mixing ratios (unit: dimensionless).

Fig. S4. Comparison of diurnal variations of the mixing ratios of (a) O_3 , and (b) $PM_{2.5}$. Both

are averaged for 320 AIR KOREA monitoring stations during the period of the KORUS-AQ
 campaign. The black open circles, black lines, and red lines represent observed values and

values from the CTRL and EXP8 simulations, respectively.

Fig. S5. Spatial distributions of the differences levels of (a) HONO, (b) OH, (c) HO₂, and (d)
 PM_{2.5} between the EXP8 and CTRL simulations in South Korea during the period of the

45 PM_{2.5} between the EXF46 KORUS-AQ campaign.

47	Table S1. Detection limits and uncertainties of instruments for observed HONO, NO ₂ , O ₃ , and
48	PM _{2.5} at Olympic Park station, Korea.

Species	Instruments	Detection limit	Uncertainty	Time resolution
HONO	Monitor for Aerosols and Gases in Ambient Air (MARGA, model ADI 2080)	0.02ppbv	±20%	1 hour
NO ₂	Ecotech gas sensor, EC8941	0.5ppbv	±10%	1 hour
03	Ecotech gas sensor, EC9810	0.5ppbv	±5%	1 hour
PM _{2.5}	Thermo Fisher Scientific, FH62C14	$4\mu g/m^3$	±10%	1 hour

50	Table S2. Statistical analysis of modeled and observed meteorological parameters at the
51	Olympic Park station during the period of the KORUS-AQ campaign.

Parameter	Observed mean	Modeled mean	R	RMSE	MB	IOA
RH (%)	55.81	53.33	0.85	11.95	-2.48	0.92
T (°C)	21.27	20.28	0.93	1.96	-0.99	0.96
Pressure (hPa)	1001.38	999.62	0.98	2.01	-1.77	0.95
WS (m s^{-1})	2.14	2.65	0.47	1.30	0.51	0.66
WD (°)	202.71	196.01	0.53	88.87	-6.70	0.75