

Supplement of

Constraining light dependency in modeled emissions through comparison to observed biogenic volatile organic compound (BVOC) concentrations in a southeastern US forest

Namrata Shanmukh Panji et al.

Correspondence to: Namrata Shanmukh Panji (namratapanji@vt.edu) and Gabriel Isaacman-VanWertz (ivw@vt.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Emission Factors for VFRL

Table S1. Emission factors for grid cell at standard conditions.

Catagorias	Emission Factor $(nmol.m^{-2}.s^{-1})$	
Categories		
isoprene	15.16	
MBO	0.46	
pinenes	0.27	
ocimenes	0.22	
carene	0.20	
limonene	0.21	
cymene	0.03	
camphor	0.05	
b-caryophyllene	0.07	
longifolene	0.04	
methanol	1.60	
acetone	0.40	
acetaldehyde and ethanol	0.70	
formic acid; acetic acid; pyruvic acid	0.40	
ethene; ethane	1.27	
methacrolein	0.10	
linalool	0.20	
other VOC	0.04	
СО	1	

Tree Species composition at VFRL

Species	Grid Fraction	Туре
Quercus alba	0.2364	Broadleaf tree
Pinus virginiana	0.2006	Needleleaf tree
Quercus falcata	0.1186	Broadleaf tree
Acer rubrum	0.1146	Broadleaf tree
Liriodendron tulipifera	0.1026	Broadleaf tree
Carya	0.0453	Broadleaf tree
Fagus grandifolia	0.0443	Broadleaf tree
Quercus rubra	0.0389	Broadleaf tree
Pinus taeda	0.0277	Needleleaf tree
Liquidambar styraciflua	0.02	Broadleaf tree
Nyssa sylvatica	0.0178	Broadleaf tree
Quercus marilandica	0.0104	Broadleaf tree
Cornus florida	0.008	Broadleaf tree
Juniperus virginiana	0.0047	Needleleaf tree
Quercus prinus	0.0025	Broadleaf tree
Sassafras albidum	0.0018	Broadleaf tree
Platanus occidentalis	0.0018	Broadleaf tree
Populus deltoides	0.0015	Broadleaf tree
Carpinus caroliniana	0.0012	Broadleaf tree
Quercus stellata	0.0008	Broadleaf tree
Ilex opaca	0.0002	Broadleaf tree
Castanea pumila	0.0001	Broadleaf tree

Table S2. Tree species composition at VFRL with the fraction of the grid occupied by the corresponding species.

Figure S2. A snapshot of α -pinene concentrations (in ppb) for January, July, and September of 2020 using the monthly LDF as shown in Figure 6. The Pearson correlation coefficient values of the adjusted and default modeled (refer to Table 1) concentrations against the observed concentrations are reported as R_{AdjustedLDF} and R_{DefaultLDF}.

Rates of reaction for additional BVOCs added to MCMv3.3.1.

Table S3. Rates of reaction of BVOCs added to MCMv3.3.1 where k_{OH-i} and k_{O3-i} . are the second order reaction rates of compound emphi with OH and O₃ in cm³.molecule⁻¹.s⁻¹

Compound (<i>i</i>)	k _{O3} -i	k _{OH-i}	References	
	$(cm^3.molecule^{-1}.s^{-1})$	$(cm^3.molecule^{-1}.s^{-1})$		
β -phellandrene	4.77×10^{-17}	$1.68 imes 10^{-10}$	Shorees et al. (1991)	
Camphene	5.10×10^{-19}	5.30×10^{-11}	Gaona-Colmán et al. (2017)	
Tricyclene	None	3.54×10^{-12}	US EPA (2024)	
β -Thujene	1.13×10^{-17}	6.09×10^{-11}	US EPA (2024)	
α -Fenchene	1.13×10^{-17}	5.96× 10 ⁻¹¹	US EPA (2024)	
Sabinene	8.60×10^{-17}	$1.17 imes 10^{-10}$	Atkinson et al. (1990b, a)	
α -Cymene	None	8.54×10^{-12}	US EPA (2024)	
γ -terpinene	1.40×10^{-16}	$1.77 imes 10^{-10}$	Atkinson et al. (1990b)	
α -Cedrene	2.78×10^{-17}	6.70×10^{-11}	Shu and Atkinson (1994, 1995)	
β -cedrene	1.70×10^{-16}	6.53× 10 ⁻¹¹	Richters et al. (2015)	

Figure S3. Monthly variation of LDF for α -fenchene, β -phellandrene, β -thujene, camphene, tricyclene and γ -terpinene estimated by maximizing the correlation between observed concentrations and those estimated by MEGANv3.2 and F0AM at VFRL. The blue markers represent the adjusted LDF values, the red line represents the LDF used by default in MEGANv3.2. The blue and red solid lines present the LDF values and the dashed lines represent the corresponding Pearson correlation coefficients.

Figure S4. Variation of the Pearson correlation coefficient between modeled and measured concentration with LDF for α -pinene, limonene, β -phellandrene, camphene, tricyclene, β -thujene, α -fenchene, sabinene, and γ -terpinene at VFRL. The red lines represent winter (Dec, Jan, Feb), blue lines spring (Mar, Apr, May), green lines summer (Jun, Jul, Aug), and orange lines fall (Sep, Oct, Nov) months.

Seasonal LDFs for all BVOCs simulated.

Compound	Winter (DJF)	Spring (MAM)	Summer (JJA)	Fall (SON)
α -pinene	0	0	0	0
limonene	0	0.23	0.97	0.76
β -phellandrene	0.42	0	0.44	0.71
camphene	0	0	0	0
tricyclene	0	0.33	0	0
β -thujene	0.78	0.31	0.97	1
α -fenchene	0	0	0	0
sabinene	0	0.24	1	1
γ -terpinene		0.15	0.90	0.93

Table S4. Seasonal variation of Light-dependent Factors for α -pinene, limonene, β -phellandrene, camphene, tricyclene, β -thujene, α -fenchene, sabinene, and γ -terpinene at VFRL.

Comparison of Ozone Concentrations at VFRL and EPA Albemarle High School Station.

Figure S5. Ozone measured at the Virginia Forest Research Laboratory (VFRL) at different heights from the ground (1, 9, 20, 30, 40 m) and at the EPA monitoring station in Albemarle, VA: (a) average diurnal for all data June through November of 2019, and (b) Sample five-day period showing similar day-to-day variability.

Figure S6. Simulated concentrations of isoprene (in ppb) over 5 days in July, 2020 with the ozone used in our model (Baseline O_3 denoted by a black line) and at elevated ozone levels (Baseline + 10ppb O_3 and Baseline + 20ppb O_3 denoted by red and blue lines respectively).