

Supplement of

Investigating the differences in calculating global mean surface CO_2 abundance: the impact of analysis methodologies and site selection

Zhendong Wu et al.

Correspondence to: Zhendong Wu (zhendong.wu@nateko.lu.se) and Alex Vermeulen (alex.vermeulen@icos-ri.eu)

The copyright of individual parts of the supplement might differ from the article licence.

1 S1. The WDCGG global analysis method

2 The WDCGG method consists of seven separate steps. The full documentation can be found in Tsutsumi et al.3 (2009).

4 Step 1: Station selection based on traceability to the WMO standard scale

- 5 In order to avoid the potential biases that can be introduced by using different concentration scales, WDCGG only 6 uses data from stations that report results traceable to the most recent CO₂ scale from the GAW Central Calibration
- 7 Laboratories (CCL) assigned for that parameter. The current scale is the WMO standard scale WMO-CO2-X2019.

8 Step 2: Integration of parallel data from the same station

- 9 The WDCGG method uses continuous (hourly averaged) observations as these better represent the average
- 10 concentrations compared to the flask-air samples taking during daytime once per two weeks. For remote stations
- 11 where both flask and continuous data exist, NOAA found offsets between continuous and flask based monthly
- 12 averages of 0.16-0.35 ppm (Tans et al., 1990), in less remote areas this difference can be expected to be larger.
- 13 For selected stations flask data are used for gap filling when continuous data is lacking.

14 Step 3: Selection of stations suitable for global analysis

- All of station data are normalized against the South Pole and averaged for the whole observation period. The normalized and averaged data points are plotted against latitude, and a curve is fitted by using a nearest-neighbour local-quadratic regression. The stations with normalized data locate outside the 3 standard deviations of the latitudinal fitted curve are excluded from the selection. This selection procedure is repeated until all stations in the selection locating within the 3 standard deviations of the latitudinal fitted curve. This procedure results in 139
- 20 stations remaining, which have a reasonable latitudinal scatter range (Fig. 1).

21 Step 4: Abstraction of a station's average seasonal variation expressed by the Fourier harmonics

- The average seasonal variation is obtained from the longest continuous segment of data by using three Fourier harmonics. Here is loop procedure where the following processes a-d are repeated until neither the long-term trend nor the average seasonal variation changes: a). de-trend original data, b). apply the harmonics to obtain seasonality, c). de-seasonality from original data to obtain long-term trend, d) smooth the long-term trend by using low-pass filter (a cut-off frequency of 0.48 cycle / year). After reaching this condition the average seasonal variation is determined and subtracted from the full data which leaves us with deseasonalized data that still can contain gaps.
- 29 Step 5: Interpolation of data gaps
- 30 The gaps of the deseasonalized data are filled by linear interpolation. Subsequently, the CO₂ time series without
- 31 gaps is the sum of the interpolated trend and the average seasonality.

32 Step 6: Extrapolation for synchronization of data period

- 33 Extrapolate the long-term trend to the synchronization period and then add the average seasonal variation to obtain
- 34 the synchronized data. This is an optional step that is excluded in this analysis.

35 Step 7: Calculation of the zonal and global mean mole fractions, trends, and growth rates.

36 Global and hemispheric means, trends and growth rates are calculated by area-weighted averaging the zonal means

37 over each latitudinal band (30°). The growth rate is determined by taking the first derivative of the long-term

38 trend.

39 S2. The CTE station network

40 290 stations are evaluated in the CTE inversion, the observations come from the ObsPack data product (Schuldt

41 et al., 2022). The measurement methods at the stations include surface-based, shipboard-based, tower-based and

42 aircraft-based. In this study, we only focus on data derived from the first three measurement types (i.e. aircraft-

43 based measurements are excluded), and in total 230 out of 290 stations are selected (Fig. 1). For the stations that

- 44 have both surface-based and tower-based measurements, we used the tower-based measurements for analysis. For
- 45 the stations that have tower-based measurements, we selected the highest measurement.

46 S3. Calculation of atmospheric CO₂ mass

47 CTE simulates 3D CO_2 mole fraction with 25 levels in the vertical direction. The CO_2 mass at each level of the 48 atmosphere can be calculated as a function of air mass and CO_2 concentration by weight.

49
$$m_{CO_2} = C w_{CO_2} * m_{air}$$
 (S1)

where m_{CO_2} is the mass of the CO₂, kg. Cw_{CO_2} is the CO₂ concentration by weight, w %. m_{air} is the mass of the air, kg. CO₂ concentration by weight is obtained by the formula below:

52
$$Cw_{CO_2} = Cv_{CO_2} * \frac{M_{CO_2}}{M_{air}}$$
 (S2)

53 where Cv_{CO_2} is the mole fraction of CO₂ in air, mol / mol. According to the ideal gas assumption, equal volume

of gases at same temperature and pressure contains equal number of moles regardless of chemical nature of gases,

55 i.e. the CO₂ concentration by mole equals the CO₂ concentration by volume. M_{CO_2} is the CO₂ molar mass

- 56 (44.009 g/mol). M_{air} is the average molar mass of dry air (28.9647 g / mol).
- 57 Pressure is the force applied perpendicular to the surface of an object, therefore, air pressure can be expressed by:

58
$$p_{air} = \frac{F_{air}}{S}$$
 (S3)

where p_{air} is the pressure of air, Pa or N / m². In this case, p_{air} is the difference of air pressure between adjacent level boundaries, e.g. air pressure at level 1 is $p_1 - p_2$. F_{air} is the magnitude of the normal force of air or gravity of air, N or kg m / s². The gravity of air at each level can be estimated by:

$$62 F_{air} = m_{air} * g (S4)$$

- 63 where g is the gravitational field strength, about 9.81 m / s² or N / kg.
- S is the area of the surface, m². Here S is the area of grid cell at each level, increasing with geopotential height
- 65 (gph). It is calculated as a function of latitude and longitude on earth's surface, radius of the earth (*R*), and *gph*.

66
$$S = 2 * \pi * (R + gph)^2 * |\sin(lat1) - \sin(lat2)| * \frac{|lon1 - lon2|}{360}$$
 (S5)

67 Where, lat1, lat2, lon1 and lon2 are the boundary of grid cell. R = 6378.1370 km, here we use the equatorial

radius which is the distance from earth's center to the equator.

69 Hence the mass of the air in Eq. 1 can be estimated by:

$$70 mtextbf{m}_{air} = \frac{p_{air} * S}{g} mtextbf{(S6)}$$

71 S4. File list

72 73 74 75	All code necessary to calculate the global mean surface CO ₂ mole fraction and Atmospheric CO ₂ mass is freely available on ICOS Carbon Portal as a zipped archive (GAW_code.zip) [https://doi.org/10.18160/Q788-9081], when unzipped, the code include: • fit_filter_gfit.ipynb
76	Apply the GFIT method to GAW observations (139 stations), CTE observations (230 stations), CTE
77	model output at stations (230 stations) and CTE model output (full global)
78	• cal_zonal_global_co2_gaw_gfit.ipynb
79	Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using
80	output from GAW(GFIT)
81	• cal_zonal_global_co2_gaw_wdcgg.ipynb
82	Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using
83	output from GAW(WDCGG)
84	• cal_zonal_global_co2_ctracker_obs.ipynb
85	Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using
86	output from CTE_obs(GFIT)
87	• cal_zonal_global_co2_ctracker_model_sample.ipynb
88	Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using
89	output from CTE_output(GFIT)
90	• cal_zonal_global_co2_ctracker_model_global.ipynb
91	Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using
92	output from CTE_global(GFIT)
93	• cal_co2mass_co2ppm_cte_global.ipynb
94	Calculate global co2 mole fraction and global atmospheric co2 mass, using the 3D co2 output from CTE
95	model
96	• compare_co2_co2rate.ipynb
97	Statistically compare the co2 mole fraction and its growth rate among different data sources and analysis
98	methods
99	• plot_results.ipynb
100	The script is used to analyze and plot the results in the paper.
101	In order to run the jupyter notebooks, it needs to download the data (GAW_data.zip)
102	[https://doi.org/10.18160/Q788-9081] and change the data path in jupyter notebooks to where the data is unzipped.
103	The key results with CSV format are accessible on ICOS Carbon Portal as a zipped archive (GAW_results.zip)
104	[https://doi.org/10.18160/Q788-9081], when unzipped, the data include:
105	• Global monthly and annual surface CO ₂ mole fraction and its growth rate for 1980-2020 derived from
106	the GAW observations by using the GFIT method, i.e. GAW (GFIT).

107	Global mean:			
108	df_co2_annual_global_NH_SH_gaw_GFIT.csv			
109	df_co2_monthly_global_NH_SH_gaw_GFIT.csv			
110	df_co2rate_annual_global_NH_SH_gaw_GFIT.csv			
111	df_co2rate_monthly_global_NH_SH_gaw_GFIT.csv			
112	Their uncertainty basing on bootstrap method:			
113	bootstats_co2_annual_global_gaw_GFIT.csv			
114	bootstats_co2_monthly_global_gaw_GFIT.csv			
115	bootstats_co2rate_annual_global_gaw_GFIT.csv			
116	bootstats_co2rate_monthly_global_gaw_GFIT.csv			
117	• Global monthly and annual surface CO ₂ mole fraction and its growth rate for 1980-2020 derived from			
118	the GAW observations by using the WDCGG method without extrapolation, i.e. GAW (WDCGG).			
119	Global mean:			
120	df_co2_annual_global_NH_SH_gaw_wdcgg.csv			
121	df_co2_monthly_global_NH_SH_gaw_wdcgg.csv			
122	df_co2rate_annual_global_NH_SH_gaw_wdcgg.csv			
123	df_co2rate_monthly_global_NH_SH_gaw_wdcgg.csv			
124	Their uncertainty basing on bootstrap method:			
125	bootstats_co2_annual_global_gaw_wdcgg.csv			
126	bootstats_co2_monthly_global_gaw_wdcgg.csv			
127	bootstats_co2rate_annual_global_gaw_wdcgg.csv			
128	bootstats_co2rate_monthly_global_gaw_wdcgg.csv			
129	• Global monthly and annual surface CO ₂ mole fraction and its growth rate for 1980-2020 derived from			
130	the observations at the CTE 230 stations by using GFIT method, i.e. CTE_obs (GFIT).			
131	Global mean:			
132	co2obs_co2_annual_global_NH_SH_ct2021_obs.csv			
133	co2obs_co2_monthly_global_NH_SH_ct2021_obs.csv			
134	co2obs_co2rate_annual_global_NH_SH_ct2021_obs.csv			
135	co2obs_co2rate_monthly_global_NH_SH_ct2021_obs.csv			
136	Their uncertainty basing on bootstrap method:			
137	bootstats_co2_annual_global_cal_ct2021_obs.csv			
138	bootstats_co2_monthly_global_cal_ct2021_obs.csv			
139	bootstats_co2rate_annual_global_cal_ct2021_obs.csv			
140	bootstats_co2rate_monthly_global_cal_ct2021_obs.csv			
141	• Global monthly and annual surface CO ₂ mole fraction and its growth rate for 2001-2020 derived from			
142	the CTE model output sampling at the CTE 230 stations by using GFIT method, i.e. CTE_output (GFIT).			
143	Global mean:			
144	co2model_co2_annual_global_NH_SH_ct2021_modelsample.csv			
145	co2model_co2_monthly_global_NH_SH_ct2021_modelsample.csv			
146	co2model_co2rate_annual_global_NH_SH_ct2021_modelsample.csv			

147	co2model_co2rate_monthly_global_NH_SH_ct2021_modelsample.csv			
148	Their uncertainty basing on bootstrap method:			
149		bootstats_co2_annual_global_cal_ct2021_modelsample.csv		
150		bootstats_co2_monthly_global_cal_ct2021_modelsample.csv		
151		bootstats_co2rate_annual_global_cal_ct2021_modelsample.csv		
152		bootstats_co2rate_monthly_global_cal_ct2021_modelsample.csv		
153	•	Global monthly and annual surface CO ₂ mole fraction and its growth rate for 2001-2020 derived from		
154		the CTE model output covers full global (averaged over the first three levels, 0 to 0.35 km Alt.) by using		
155		GFIT method, i.e. CTE_global (GFIT)		
156		co2_annual_global_cte2021(level1-3)_GFIT.csv		
157		co2_monthly_global_cte2021(level1-3)_GFIT.csv		
158		co2rate_annual_global_cte2021(level1-3)_GFIT.csv		
159		co2rate_monthly_global_cte2021(level1-3)_GFIT.csv		
160	•	Global monthly and annual surface CO_2 mole fraction for 2001-2020 derived from the CTE model output		
161		covers full global with different heights (i.e. level1-3 and level1-25).		
162		cte2021(lv1-3)_co2_2000_2020_annual.csv		
163		cte2021(lv1-3)_co2_2000_2020_monthly.csv		
164		cte2021(lv1-25)_co2_2000_2020_annual.csv		
165		cte2021(lv1-25)_co2_2000_2020_monthly.csv		
166	•	Global monthly and annual atmospheric CO_2 mass (up to ~200 km) for 2000-2020 derived from the CTE		
167		model output by using the method described in S3.		
168		cte2021_co2mass_2000_2020_monthly.csv		
169		cte2021_co2mass_2000_2020_annual.csv		
170				
171				
172				

174Figure S1. Pair-wise statistical metrics assess the agreement of monthly global and local CO2 mole fraction175(ppm) and its G_{ATM} (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the176period 1980-2020. Panel (a) presents the Mean Error (ME) quantifying the difference for each pair,177focusing on CO2 mole fraction, while panel (b) does the same for G_{ATM} . The significance levels of paired t-178test for ME are indicated as follows: * p<0.1, ** p<0.05, *** p<0.01. Panel (c) and (d) present the Root</td>179Mean Squared Error (RMSE) for CO2 mole fraction and G_{ATM} , respectively. Panel (e) and (f) present the180Pearson Correlation Coefficient (r) for CO2 mole fraction and G_{ATM} , respectively.

Figure S2. Pair-wise statistical metrics assess the agreement of annual global and local CO₂ mole fraction (ppm) and its G_{ATM} (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the period 2001-2020. Panel (a) presents the Mean Error (ME) quantifying the difference for each pair, focusing on CO₂ mole fraction, while panel (b) does the same for G_{ATM} . The significance levels of paired ttest for ME are indicated as follows: * p<0.1, ** p<0.05, *** p<0.01. Panel (c) and (d) present the Root Mean Squared Error (RMSE) for CO₂ mole fraction and G_{ATM} , respectively. Panel (e) and (f) present the Pearson Correlation Coefficient (r) for CO₂ mole fraction and G_{ATM} , respectively.

190

193Figure S3. Pair-wise statistical metrics assess the agreement of annual global and local CO2 mole fraction194(ppm) and its G_{ATM} (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the195period 1980-2020. Panel (a) presents the Mean Error (ME) quantifying the difference for each pair,196focusing on CO2 mole fraction, while panel (b) does the same for G_{ATM} . The significance levels of paired t-197test for ME are indicated as follows: * p<0.1, ** p<0.05, *** p<0.01. Panel (c) and (d) present the Root</td>198Mean Squared Error (RMSE) for CO2 mole fraction and G_{ATM} , respectively. Panel (e) and (f) present the199Pearson Correlation Coefficient (r) for CO2 mole fraction and G_{ATM} , respectively.

Figure S4. shows the trends of global CO₂ mole fraction for the GAW network (red line), the CTE network (green line) and the NOAA network (black line) during the whole period 1980-2020. The cycles show the annual CO₂ mole fraction, respectively.

Figure S5. Globally averaged CO₂ mole fraction (a) and its G_{ATM} (b) from 1980 to 2020. In panel (a), the red line shows the mean CO₂ mole fraction, black lines show the mean CO₂ mole fraction over 10 years, the grey area shows the uncertainty derived from the 200 bootstrap networks. Similarly, panel (b) shows the G_{ATM} instead of the mole fraction. The CO₂ and its G_{ATM} results are derived from the GAW observations from 139 stations by using GFIT method.

213

Figure S6. Annual absolute change and interannual variability of global CO₂ mole fraction derived from different data (CTE model, GAW observation and NOAA observation) and analysis methods (GFIT method, WDCGG method and NOAA method) for 2000-2020. Panel (a) shows the annual absolute change which is the difference between annal mean. Averages over 2001-2010 and 2011-2020 are also shown. Panel

218 (b) shows the IAV which is calculated as the anomaly departure from a quadratic trend.

Figure S7. Atmospheric CO₂ mass derived from CTE output. Panel (a) shows the global monthly CO₂ mass in atmosphere (from surface up to 200 km altitude). Panel (b) shows the zonal (5°) average of monthly CO₂ mass. Panel (c) shows accumulated CO₂ mass with altitudes from 2001 to 2020, the dots mark CTE vertical level altitudes and lines are the linear interpolation between the altitudes.

Figure S8. The relationship between the uncertainty of the global CO₂ growth rate and the number of observation sites. The relationship is estimated using CTE_global (all global grids excluding ocean grids) with different resolutions (1x1, 2x2, 3x3, 4x4, 5x5, and 10x10 degrees) to estimate the uncertainty of the global CO₂ growth rate. The bootstrap method mentioned in the main text is used to estimate the uncertainty, and the results are represented as blue dots. The red dashed line shows the linear interpolation between the experimental results, while the black line shows an exponential curve fitting.

235
236
236
236
237
238
239
239
239
230
230
230
231
231
232
232
233
233
234
234
235
235
235
236
237
237
238
237
238
238
238
239
239
239
230
230
231
231
232
232
233
234
235
235
235
236
237
237
238
237
238
237
238
237
238
238
237
238
238
238
239
238
239
238
239
239
239
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230
230

²³⁸ local extrema, which aid in identifying the start of CO₂ growth rate increase/decrease.

2	2	0
7	5	9

GAW (WDCGG+) vs GAW (WDCGG), 1984-2020					
	Annual		Monthly		
Statistic	CO_2	G _{ATM}	CO_2	G _{ATM}	
r	0.999	0.994	0.999	0.992	
RMSE	0.130	0.062	0.180	0.076	
MAE	0.115	0.037	0.151	0.042	
ME	0.096***	-0.011	0.096***	-0.011***	

240 Note paired t-test significance level for ME: * p<0.1, ** p<0.05, *** p<0.01

Table S1. Statistic metrics assessing the agreement of the global CO_2 mole fraction (CO_2 , ppm) and its G_{ATM}

(ppm yr⁻¹) from GAW (WDCGG) and GAW (WDCGG+) during common period 1984-2020. GAW
 (WDCGG) is GAW observations (139 sites) analysed by using the WDCGG method without extrapolation.

(WDCGG) is GAW observations (139 sites) analysed by using the WDCGG method without extrapolation.
 GAW (WDCGG+) is GAW observations (139 sites) analysed by using the WDCGG method with

extrapolation. The statistical metrics include: Pearson Correlation Coefficient (r), which ranges from -1 to

246 1, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Error (ME). The negative

247 values in ME means the GAW (WDCGG) has higher values, vice versa.

El Niño 1987-1988					
	Trough (G _{ATM} starts increasing)		Peak (G _{ATM} starts decreasing)		
Date	Decimal year	Days of year	Decimal year	Days of year	
CTE	1985.791635	289	1987.041665	15	
GAW	1985.874965	319	1986.958295	350	
NOAA	1985.874965	319	1987.124995	46	
El Niño 1997-1998					
СТЕ	1996.208325	76	1997.624975	228	
GAW	1996.291655	106	1997.624975	228	
NOAA	1996.374985	137	1997.708305	259	
El Niño 2014-2016					
CTE	2013.458315	167	2015.208325	76	
GAW	2013.374985	137	2015.374985	137	
NOAA	2013.541645	198	2015.374985	137	

Table S2. displays the estimates of CO₂ growth rate increase/decrease for the three strong El Niño events (i.e 1987-

- 249 1988, 1997-1998 and 2014-2016). These estimates are calculated from the smoothed trend of CO₂ growth rate based on
- 250 CTE, GAW and NOAA networks (Fig. S9).

251

252 **References**

Schuldt, K., Mund, J., and Luijkx, I.: Multi-laboratory compilation of atmospheric carbon dioxide data for the
 period 1957–2021; obspack_co2_1_GLOBALVIEWplus_v8. 0_2022-08-27, NOAA Global Monitoring
 Laboratory, http://doi.org/10.25925/20220808, 2022.

256 Tans, P. P., Thoning, K. W., Elliott, W. P., and Conway, T. J.: Error estimates of background atmospheric CO2 patterns 257 from weekly flask samples, J. Geophys. Res. Atmos., 95, 14063-14070, 258 https://doi.org/10.1029/JD095iD09p14063, 1990.

Tsutsumi, Y., Mori, K., Hirahara, T., Ikegami, M., and Conway, T. J.: Technical Report of Global Analysis
Method for Major Greenhouse Gases by the World Data Center for Greenhouse Gases (WMO/TD-No. 1473).
GAW Report No. 184. Geneva, WMO,, 1-23, https://library.wmo.int/index.php?lvl=notice_display&id=12631,
2009.