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S1. The WDCGG global analysis method 1 

The WDCGG method consists of seven separate steps. The full documentation can be found in Tsutsumi et al. 2 

(2009). 3 

Step 1: Station selection based on traceability to the WMO standard scale  4 

In order to avoid the potential biases that can be introduced by using different concentration scales, WDCGG only 5 

uses data from stations that report results traceable to the most recent CO2 scale from the GAW Central Calibration 6 

Laboratories (CCL) assigned for that parameter. The current scale is the WMO standard scale WMO-CO2-X2019. 7 

Step 2: Integration of parallel data from the same station  8 

The WDCGG method uses continuous (hourly averaged) observations as these better represent the average 9 

concentrations compared to the flask-air samples taking during daytime once per two weeks. For remote stations 10 

where both flask and continuous data exist, NOAA found offsets between continuous and flask based monthly 11 

averages of 0.16-0.35 ppm (Tans et al., 1990), in less remote areas this difference can be expected to be larger. 12 

For selected stations flask data are used for gap filling when continuous data is lacking.  13 

Step 3: Selection of stations suitable for global analysis  14 

All of station data are normalized against the South Pole and averaged for the whole observation period. The 15 

normalized and averaged data points are plotted against latitude, and a curve is fitted by using a nearest-neighbour 16 

local-quadratic regression. The stations with normalized data locate outside the 3 standard deviations of the 17 

latitudinal fitted curve are excluded from the selection. This selection procedure is repeated until all stations in 18 

the selection locating within the 3 standard deviations of the latitudinal fitted curve. This procedure results in 139 19 

stations remaining, which have a reasonable latitudinal scatter range (Fig. 1). 20 

Step 4: Abstraction of a station’s average seasonal variation expressed by the Fourier harmonics 21 

The average seasonal variation is obtained from the longest continuous segment of data by using three Fourier 22 

harmonics. Here is loop procedure where the following processes a-d are repeated until neither the long-term trend 23 

nor the average seasonal variation changes: a). de-trend original data, b). apply the harmonics to obtain 24 

seasonality, c). de-seasonality from original data to obtain long-term trend, d) smooth the long-term trend by using 25 

low-pass filter (a cut-off frequency of 0.48 cycle / year). After reaching this condition the average seasonal 26 

variation is determined and subtracted from the full data which leaves us with deseasonalized data that still can 27 

contain gaps. 28 

Step 5: Interpolation of data gaps  29 

The gaps of the deseasonalized data are filled by linear interpolation. Subsequently, the CO2 time series without 30 

gaps is the sum of the interpolated trend and the average seasonality.   31 

Step 6: Extrapolation for synchronization of data period  32 

Extrapolate the long-term trend to the synchronization period and then add the average seasonal variation to obtain 33 

the synchronized data. This is an optional step that is excluded in this analysis. 34 



2 

 

Step 7: Calculation of the zonal and global mean mole fractions, trends, and growth rates. 35 

Global and hemispheric means, trends and growth rates are calculated by area-weighted averaging the zonal means 36 

over each latitudinal band (30°). The growth rate is determined by taking the first derivative of the long-term 37 

trend. 38 

S2. The CTE station network 39 

290 stations are evaluated in the CTE inversion, the observations come from the ObsPack data product (Schuldt 40 

et al., 2022). The measurement methods at the stations include surface-based, shipboard-based, tower-based and 41 

aircraft-based. In this study, we only focus on data derived from the first three measurement types (i.e. aircraft-42 

based measurements are excluded), and in total 230 out of 290 stations are selected (Fig. 1). For the stations that 43 

have both surface-based and tower-based measurements, we used the tower-based measurements for analysis. For 44 

the stations that have tower-based measurements, we selected the highest measurement. 45 

S3. Calculation of atmospheric CO2 mass 46 

CTE simulates 3D CO2 mole fraction with 25 levels in the vertical direction. The CO2 mass at each level of the 47 

atmosphere can be calculated as a function of air mass and CO2 concentration by weight.    48 

𝑚𝐶𝑂2
= 𝐶𝑤𝐶𝑂2

∗  𝑚𝑎𝑖𝑟                                                                                                                                                           (S1) 49 

where 𝑚𝐶𝑂2
 is the mass of the CO2, kg. 𝐶𝑤𝐶𝑂2

 is the CO2 concentration by weight, w %. 𝑚𝑎𝑖𝑟  is the mass of the 50 

air, kg. CO2 concentration by weight is obtained by the formula below: 51 

𝐶𝑤𝐶𝑂2
= 𝐶𝑣𝐶𝑂2

∗  
𝑀𝐶𝑂2

𝑀𝑎𝑖𝑟

                                                                                                                                                       (S2)  52 

where 𝐶𝑣𝐶𝑂2
 is the mole fraction of CO2 in air, mol / mol. According to the ideal gas assumption, equal volume 53 

of gases at same temperature and pressure contains equal number of moles regardless of chemical nature of gases, 54 

i.e. the CO2 concentration by mole equals the CO2 concentration by volume. 𝑀𝐶𝑂2
 is the CO2 molar mass 55 

(44.009 g/mol). 𝑀𝑎𝑖𝑟  is the average molar mass of dry air (28.9647 g / mol). 56 

Pressure is the force applied perpendicular to the surface of an object, therefore, air pressure can be expressed by:  57 

𝑝𝑎𝑖𝑟 =  
𝐹𝑎𝑖𝑟

𝑆
                                                                                                                                                                             (S3) 58 

where 𝑝𝑎𝑖𝑟  is the pressure of air, Pa or N / m2. In this case, 𝑝𝑎𝑖𝑟  is the difference of air pressure between adjacent 59 

level boundaries, e.g. air pressure at level 1 is 𝑝1 − 𝑝2. 𝐹𝑎𝑖𝑟  is the magnitude of the normal force of air or gravity 60 

of air, N or kg m / s². The gravity of air at each level can be estimated by: 61 

𝐹𝑎𝑖𝑟 =  𝑚𝑎𝑖𝑟 ∗ 𝑔                                                                                                                                                                     (S4) 62 

where 𝑔 is the gravitational field strength, about 9.81 m / s2 or N / kg. 63 

𝑆 is the area of the surface, m2. Here 𝑆 is the area of grid cell at each level, increasing with geopotential height 64 

(gph). It is calculated as a function of latitude and longitude on earth's surface, radius of the earth (𝑅), and 𝑔𝑝ℎ.   65 

𝑆 = 2 ∗ 𝜋 ∗ (𝑅 + 𝑔𝑝ℎ)2 ∗ |sin(𝑙𝑎𝑡1) − sin(𝑙𝑎𝑡2)| ∗
|𝑙𝑜𝑛1 − 𝑙𝑜𝑛2|

360
                                                                       (S5) 66 

Where, 𝑙𝑎𝑡1, 𝑙𝑎𝑡2, 𝑙𝑜𝑛1and 𝑙𝑜𝑛2 are the boundary of grid cell. 𝑅 = 6378.1370 km, here we use the equatorial 67 

radius which is the distance from earth’s center to the equator. 68 

https://en.wikipedia.org/wiki/Normal_force
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Hence the mass of the air in Eq. 1 can be estimated by: 69 

𝑚𝑎𝑖𝑟 =  
𝑝𝑎𝑖𝑟 ∗ 𝑆

𝑔
                                                                                                                                                                    (S6) 70 

S4. File list 71 

All code necessary to calculate the global mean surface CO2 mole fraction and Atmospheric CO2 mass is freely 72 

available on ICOS Carbon Portal as a zipped archive (GAW_code.zip) [https://doi.org/10.18160/Q788-9081], 73 

when unzipped, the code include: 74 

• fit_filter_gfit.ipynb 75 

Apply the GFIT method to GAW observations (139 stations), CTE observations (230 stations), CTE 76 

model output at stations (230 stations) and CTE model output (full global) 77 

• cal_zonal_global_co2_gaw_gfit.ipynb 78 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using 79 

output from GAW(GFIT) 80 

• cal_zonal_global_co2_gaw_wdcgg.ipynb 81 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using 82 

output from GAW(WDCGG) 83 

• cal_zonal_global_co2_ctracker_obs.ipynb 84 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using 85 

output from CTE_obs(GFIT) 86 

• cal_zonal_global_co2_ctracker_model_sample.ipynb 87 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using 88 

output from CTE_output(GFIT) 89 

• cal_zonal_global_co2_ctracker_model_global.ipynb 90 

Calculate global co2 mole fraction average and its growth rate, and estimate their uncertainty, using 91 

output from CTE_global(GFIT) 92 

• cal_co2mass_co2ppm_cte_global.ipynb 93 

Calculate global co2 mole fraction and global atmospheric co2 mass, using the 3D co2 output from CTE 94 

model 95 

• compare_co2_co2rate.ipynb 96 

Statistically compare the co2 mole fraction and its growth rate among different data sources and analysis 97 

methods 98 

• plot_results.ipynb 99 

The script is used to analyze and plot the results in the paper. 100 

In order to run the jupyter notebooks, it needs to download the data (GAW_data.zip) 101 

[https://doi.org/10.18160/Q788-9081] and change the data path in jupyter notebooks to where the data is unzipped. 102 

The key results with CSV format are accessible on ICOS Carbon Portal as a zipped archive (GAW_results.zip) 103 

[https://doi.org/10.18160/Q788-9081], when unzipped, the data include: 104 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 1980-2020 derived from 105 

the GAW observations by using the GFIT method, i.e. GAW (GFIT). 106 

https://doi.org/10.18160/Q788-9081
https://doi.org/10.18160/Q788-9081
https://doi.org/10.18160/Q788-9081
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Global mean: 107 

df_co2_annual_global_NH_SH_gaw_GFIT.csv 108 

df_co2_monthly_global_NH_SH_gaw_GFIT.csv 109 

df_co2rate_annual_global_NH_SH_gaw_GFIT.csv 110 

df_co2rate_monthly_global_NH_SH_gaw_GFIT.csv 111 

Their uncertainty basing on bootstrap method:  112 

bootstats_co2_annual_global_gaw_GFIT.csv 113 

bootstats_co2_monthly_global_gaw_GFIT.csv 114 

bootstats_co2rate_annual_global_gaw_GFIT.csv 115 

bootstats_co2rate_monthly_global_gaw_GFIT.csv 116 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 1980-2020 derived from 117 

the GAW observations by using the WDCGG method without extrapolation, i.e. GAW (WDCGG). 118 

Global mean: 119 

df_co2_annual_global_NH_SH_gaw_wdcgg.csv 120 

df_co2_monthly_global_NH_SH_gaw_wdcgg.csv 121 

df_co2rate_annual_global_NH_SH_gaw_wdcgg.csv 122 

df_co2rate_monthly_global_NH_SH_gaw_wdcgg.csv 123 

Their uncertainty basing on bootstrap method:  124 

bootstats_co2_annual_global_gaw_wdcgg.csv 125 

bootstats_co2_monthly_global_gaw_wdcgg.csv 126 

bootstats_co2rate_annual_global_gaw_wdcgg.csv 127 

bootstats_co2rate_monthly_global_gaw_wdcgg.csv 128 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 1980-2020 derived from 129 

the observations at the CTE 230 stations by using GFIT method, i.e. CTE_obs (GFIT). 130 

Global mean: 131 

co2obs_co2_annual_global_NH_SH_ct2021_obs.csv 132 

co2obs_co2_monthly_global_NH_SH_ct2021_obs.csv 133 

co2obs_co2rate_annual_global_NH_SH_ct2021_obs.csv 134 

co2obs_co2rate_monthly_global_NH_SH_ct2021_obs.csv 135 

Their uncertainty basing on bootstrap method:  136 

bootstats_co2_annual_global_cal_ct2021_obs.csv 137 

bootstats_co2_monthly_global_cal_ct2021_obs.csv 138 

bootstats_co2rate_annual_global_cal_ct2021_obs.csv 139 

bootstats_co2rate_monthly_global_cal_ct2021_obs.csv 140 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 2001-2020 derived from 141 

the CTE model output sampling at the CTE 230 stations by using GFIT method, i.e. CTE_output (GFIT). 142 

Global mean: 143 

co2model_co2_annual_global_NH_SH_ct2021_modelsample.csv 144 

co2model_co2_monthly_global_NH_SH_ct2021_modelsample.csv 145 

co2model_co2rate_annual_global_NH_SH_ct2021_modelsample.csv 146 
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co2model_co2rate_monthly_global_NH_SH_ct2021_modelsample.csv 147 

Their uncertainty basing on bootstrap method:  148 

bootstats_co2_annual_global_cal_ct2021_modelsample.csv 149 

bootstats_co2_monthly_global_cal_ct2021_modelsample.csv 150 

bootstats_co2rate_annual_global_cal_ct2021_modelsample.csv 151 

bootstats_co2rate_monthly_global_cal_ct2021_modelsample.csv 152 

• Global monthly and annual surface CO2 mole fraction and its growth rate for 2001-2020 derived from 153 

the CTE model output covers full global (averaged over the first three levels, 0 to 0.35 km Alt.) by using 154 

GFIT method, i.e. CTE_global (GFIT) 155 

co2_annual_global_cte2021(level1-3)_GFIT.csv 156 

co2_monthly_global_cte2021(level1-3)_GFIT.csv 157 

co2rate_annual_global_cte2021(level1-3)_GFIT.csv 158 

co2rate_monthly_global_cte2021(level1-3)_GFIT.csv 159 

• Global monthly and annual surface CO2 mole fraction for 2001-2020 derived from the CTE model output 160 

covers full global with different heights (i.e. level1-3 and level1-25). 161 

cte2021(lv1-3)_co2_2000_2020_annual.csv 162 

cte2021(lv1-3)_co2_2000_2020_monthly.csv 163 

cte2021(lv1-25)_co2_2000_2020_annual.csv 164 

cte2021(lv1-25)_co2_2000_2020_monthly.csv 165 

• Global monthly and annual atmospheric CO2 mass (up to ~200 km) for 2000-2020 derived from the CTE 166 

model output by using the method described in S3. 167 

cte2021_co2mass_2000_2020_monthly.csv 168 

cte2021_co2mass_2000_2020_annual.csv 169 

 170 

 171 

 172 



6 

 

 173 
Figure S1. Pair-wise statistical metrics assess the agreement of monthly global and local CO2 mole fraction 174 

(ppm) and its GATM (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the 175 

period 1980-2020. Panel (a) presents the Mean Error (ME) quantifying the difference for each pair, 176 

focusing on CO2 mole fraction, while panel (b) does the same for GATM. The significance levels of paired t-177 

test for ME are indicated as follows: * p<0.1, ** p<0.05, *** p<0.01. Panel (c) and (d) present the Root 178 

Mean Squared Error (RMSE) for CO2 mole fraction and GATM, respectively. Panel (e) and (f) present the 179 

Pearson Correlation Coefficient (r) for CO2 mole fraction and GATM, respectively. 180 
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 181 

Figure S2. Pair-wise statistical metrics assess the agreement of annual global and local CO2 mole fraction 182 

(ppm) and its GATM (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the 183 

period 2001-2020. Panel (a) presents the Mean Error (ME) quantifying the difference for each pair, 184 

focusing on CO2 mole fraction, while panel (b) does the same for GATM. The significance levels of paired t-185 

test for ME are indicated as follows: * p<0.1, ** p<0.05, *** p<0.01. Panel (c) and (d) present the Root 186 

Mean Squared Error (RMSE) for CO2 mole fraction and GATM, respectively. Panel (e) and (f) present the 187 

Pearson Correlation Coefficient (r) for CO2 mole fraction and GATM, respectively. 188 

 189 

 190 

 191 
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 192 

Figure S3. Pair-wise statistical metrics assess the agreement of annual global and local CO2 mole fraction 193 

(ppm) and its GATM (ppm yr-1) across various networks and methodologies (see Table 1 and Fig. 4) for the 194 

period 1980-2020. Panel (a) presents the Mean Error (ME) quantifying the difference for each pair, 195 

focusing on CO2 mole fraction, while panel (b) does the same for GATM. The significance levels of paired t-196 

test for ME are indicated as follows: * p<0.1, ** p<0.05, *** p<0.01. Panel (c) and (d) present the Root 197 

Mean Squared Error (RMSE) for CO2 mole fraction and GATM, respectively. Panel (e) and (f) present the 198 

Pearson Correlation Coefficient (r) for CO2 mole fraction and GATM, respectively. 199 

 200 
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 201 

Figure S4. shows the trends of global CO2 mole fraction for the GAW network (red line), the CTE network 202 

(green line) and the NOAA network (black line) during the whole period 1980-2020. The cycles show the 203 

annual CO2 mole fraction, respectively. 204 

 205 
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 206 

Figure S5. Globally averaged CO2 mole fraction (a) and its GATM (b) from 1980 to 2020. In panel (a), the 207 

red line shows the mean CO2 mole fraction, black lines show the mean CO2 mole fraction over 10 years, the 208 

grey area shows the uncertainty derived from the 200 bootstrap networks. Similarly, panel (b) shows the 209 

GATM instead of the mole fraction. The CO2 and its GATM results are derived from the GAW observations 210 

from 139 stations by using GFIT method. 211 

 212 
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 213 

Figure S6. Annual absolute change and interannual variability of global CO2 mole fraction derived from 214 

different data (CTE model, GAW observation and NOAA observation) and analysis methods (GFIT 215 

method, WDCGG method and NOAA method) for 2000-2020. Panel (a) shows the annual absolute change 216 

which is the difference between annal mean. Averages over 2001-2010 and 2011-2020 are also shown. Panel 217 

(b) shows the IAV which is calculated as the anomaly departure from a quadratic trend. 218 

 219 
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 220 

Figure S7. Atmospheric CO2 mass derived from CTE output. Panel (a) shows the global monthly CO2 mass 221 

in atmosphere (from surface up to 200 km altitude). Panel (b) shows the zonal (5°) average of monthly CO2 222 

mass. Panel (c) shows accumulated CO2 mass with altitudes from 2001 to 2020, the dots mark CTE vertical 223 

level altitudes and lines are the linear interpolation between the altitudes.       224 

 225 

 226 
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 227 

Figure S8. The relationship between the uncertainty of the global CO2 growth rate and the number of 228 

observation sites. The relationship is estimated using CTE_global (all global grids excluding ocean grids) 229 

with different resolutions (1x1, 2x2, 3x3, 4x4, 5x5, and 10x10 degrees) to estimate the uncertainty of the 230 

global CO2 growth rate. The bootstrap method mentioned in the main text is used to estimate the 231 

uncertainty, and the results are represented as blue dots. The red dashed line shows the linear interpolation 232 

between the experimental results, while the black line shows an exponential curve fitting.  233 

 234 

 235 
Figure S9. presents the smoothed trend of CO2 growth rate for each month during 1980-2020. The trends 236 

(depicted in Figure 6b) are smoothed by using a Gaussian filter (with sigma=1.96). The dots represent the 237 

local extrema, which aid in identifying the start of CO2 growth rate increase/decrease. 238 

 239 

 GAW (WDCGG+) vs GAW (WDCGG), 1984-2020 

 Annual Monthly 

Statistic CO2 GATM CO2 GATM 

r 0.999 0.994 0.999 0.992 

RMSE 0.130 0.062 0.180 0.076 

MAE 0.115 0.037 0.151 0.042 

ME 0.096*** -0.011 0.096*** -0.011*** 

Note paired t-test significance level for ME: * p<0.1, ** p<0.05, *** p<0.01 240 

Table S1. Statistic metrics assessing the agreement of the global CO2 mole fraction (CO2, ppm) and its GATM 241 

(ppm yr-1) from GAW (WDCGG) and GAW (WDCGG+) during common period 1984-2020. GAW 242 

(WDCGG) is GAW observations (139 sites) analysed by using the WDCGG method without extrapolation. 243 

GAW (WDCGG+) is GAW observations (139 sites) analysed by using the WDCGG method with 244 

extrapolation. The statistical metrics include: Pearson Correlation Coefficient (r), which ranges from -1 to 245 

1, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Error (ME). The negative 246 

values in ME means the GAW (WDCGG) has higher values, vice versa. 247 
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 El Niño 1987-1988 

 Trough (GATM starts increasing) Peak (GATM starts decreasing) 

Date  Decimal year  Days of year Decimal year  Days of year 

CTE 1985.791635 289 1987.041665 15 

GAW 1985.874965 319 1986.958295 350 

NOAA 1985.874965 319 1987.124995 46 

 El Niño 1997-1998 

CTE 1996.208325 76 1997.624975 228 

GAW 1996.291655 106 1997.624975 228 

NOAA 1996.374985 137 1997.708305 259 

 El Niño 2014-2016 

CTE 2013.458315 167 2015.208325 76 

GAW 2013.374985 137 2015.374985 137 

NOAA 2013.541645 198 2015.374985 137 

Table S2. displays the estimates of CO2 growth rate increase/decrease for the three strong El Niño events (i.e 1987-248 
1988, 1997-1998 and 2014-2016). These estimates are calculated from the smoothed trend of CO2 growth rate based on 249 
CTE, GAW and NOAA networks (Fig. S9). 250 

 251 
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