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Abstract. Nitrous acid (HONO) and nitrogen oxides (NOx = NO+NO2) are important atmospheric pollutants
and key intermediates in the global nitrogen cycle, but their sources and formation mechanisms are still poorly
understood. Here, we investigated the effect of soluble iron (Fe3+) on the photochemical behavior of a widely
used neonicotinoid (NN) insecticide, nitenpyram (NPM), in the aqueous phase. The yields of HONO and NOx
increased significantly when NPM solution was irradiated in the presence of iron ions (Fe3+). We propose that
the enhanced HONO and NO2 emissions from the photodegradation of NPM in the presence of iron ions re-
sult from the redox cycle between Fe3+ and Fe2+ and the generated reactive oxygen species (ROS) by electron
transfer between the excited triplet state of NPM and molecular oxygen (O2). Using the laboratory-derived pa-
rameterization based on kinetic data and gridded downward solar radiation, we estimate that the photochemistry
of NPM induced by Fe3+ releases 0.50 and 0.77 TgNyr−1 of NOx and HONO, respectively, into the atmosphere.

This study suggests a novel source of HONO and NOx during daytime and potentially helps to narrow the gap
between field observations and model outcomes of HONO in the atmosphere. The suggested photochemistry of
NPM can be an important contribution to the global nitrogen cycle affecting the atmospheric oxidizing capacity
and climate change.
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1 Introduction

Neonicotinoids (NNs) are a class of systemic insecticides
that have been widely used in agriculture and horticulture
since the 1990s (Bass et al., 2015), accounting for one-
third of the total world insecticide market (Simon-Delso et
al., 2015) and experiencing growing use in recent decades
(Botías et al., 2015; Morrissey et al., 2015). They are highly
water-soluble and persistent in the environment and can be
transported to surface waters via runoff, leaching, or spray
drift. NNs have been detected in various aquatic ecosystems,
such as rivers, lakes, wetlands, and coastal waters, at concen-
trations ranging from 12.45 ngL−1 to 225 µgL−1 (Pan et al.,
2020; Anderson et al., 2013). Increasing public perception
of NN insecticide pollution has led to significant research
efforts devoted to revealing the effect of insecticide appli-
cation on humans (Cimino et al., 2017; Han et al., 2017),
birds (Hallmann et al., 2014; Millot et al., 2017), animals
(Morrissey et al., 2015; Gibbons et al., 2015), and pollina-
tors (especially bees) (Kessler et al., 2015; Raine and Gill,
2015; Goulson et al., 2015). In the environment, NN insec-
ticides can undergo various chemical processes, photolysis
being one of their major fates (Lu et al., 2015; González-
Mariño et al., 2018). Recent studies have focused mainly
on the photochemistry of NN insecticides and their related
atmospheric lifetimes and quantum yields (Lu et al., 2015;
González-Mariño et al., 2018; Aregahegn et al., 2017, 2018).
It has been shown that the ozonolysis of NN insecticides on
various surfaces could contribute to the formation of gaseous
nitrous acid (HONO) (W. Wang et al., 2020). Gaseous ni-
trous oxide (N2O), which is a potent greenhouse gas, was
previously identified as the gas-phase product in the photol-
ysis of solid thin films of NNs (nitenpyram, acetamiprid, thi-
amethoxam, thiacloprid, clothianidin, and dinotefuran), with
yields of 1N2O/1NN> 0.5 in air at both 313 and 254 nm
(Wang et al., 2019; Aregahegn et al., 2017, 2018). Palma et
al. (2020) used a gas-flow reactor connected to a NOx ana-
lyzer, and the production of gaseous NO/NO2 began during
irradiation (300–450 nm) of imidacloprid. However, the cru-
cial role of NN insecticides in the global nitrogen cycle at the
air–water interface is largely unknown.

Nitenpyram (NPM) is one of the most commonly used NN
insecticides. It represents a systemic NN insecticide which is
widely distributed among soils, dust particles, and the aque-
ous environment (Botías et al., 2015; Ezell et al., 2019). Once
released into the environment, NPM will be transformed into
other products by absorbing sunlight (λ > 290 nm) and/or re-
acting with atmospheric oxidants such as the hydroxyl rad-
ical (OH) and ozone (O3) (W. Wang et al., 2020). NPM is
a nitroalkene, which is structurally similar to nitroaromatic
compounds (Ar-NO2). Previous studies have indicated that
photolysis of Ar-NO2 can be a source of HONO and NOx in
the atmosphere (Fukuhara et al., 2001; Yang et al., 2021; Be-
jan et al., 2006). HONO represents one of the main sources
of OH radicals in the urban atmosphere, contributing up to

80 % of the total OH production (Alicke et al., 2003; Young
et al., 2012; Zheng et al., 2020). The main identified HONO
sources in urban air are photolysis of nitrates (Ye et al., 2017;
Gen et al., 2021) and light-induced heterogeneous reaction
of NO2 with environmental surfaces (Liu et al., 2019, 2020,
2023; Monge et al., 2010; Han et al., 2016). However, there is
a discrepancy between the modeled HONO values and field
observations of HONO during the daytime, suggesting that
there are missing HONO sources in the atmosphere. Mean-
while, the quantification of NOx is also of great significance
for the atmospheric cycle of nitrogen species, as NOx plays
a crucial role in photochemical smog and acid rain forma-
tion. Therefore, it is worthwhile exploring the contribution
of NPM photolysis to HONO and NOx , which in turn can
offer guidance for the development of more sustainable next-
generation insecticide products.

Iron species are ubiquitous on Earth surfaces, including
water, soil, and the air–water interface (Gen et al., 2021). A
recent study (Kebede et al., 2016) showed that one of the
less explored HONO sources could be highly dependent on
the photochemical reaction of iron. The photosensitivity, ox-
idation state, and catalytic properties of iron could enable it
to possibly react with NN insecticide compounds that are
enriched at the air–water interface. Previous studies on the
mechanism of NN oxidation in the ferric aqueous phase have
focused on the photo-Fenton reaction (Malato et al., 2001;
Lacson et al., 2018; Wang et al., 2022; Nguyen et al., 2020;
Sedaghat et al., 2016) and heterogeneous-phase photocataly-
sis (Rózsa et al., 2019; Sun and Liu, 2019; Hayat et al., 2019;
Soltani-nezhad et al., 2019). As reported recently, the pho-
tolysis of iron can generate several reactive oxygen species
(ROS), e.g., O2

q−/HO2
q, which can trigger the redox cycle

between Fe3+ and Fe2+ (Gen et al., 2021) and promote NN
insecticide oxidation. Meanwhile, iron ions inhibit the degra-
dation of organic matter through the formation of complexes,
which is mainly due to fluorescence bursting. This complexa-
tion may cause inhibition of the excited singlet state and thus
photoformation of the triplet excited state (Wan et al., 2019).
In addition to the NN insecticides and iron photosensitiz-
ers, nitrate (NO3

−) and nitrite (NO2
−) can absorb sunlight

in the actinic region and initiate production of ROS (Vione
and Scozzaro, 2019). Moreover, reaction between Fe2+ and
NO3

− may be a potentially important source of HONO (Gen
et al., 2021). To this end, we suggest that photolysis of NPM
in the presence of iron may contribute to a missing atmo-
spheric HONO source.

To the best of our knowledge, this is the first investigation
to measure the photochemical production of HONO and NOx
from NPM photolysis in the absence and presence of solu-
ble iron. The photolysis frequency of HONO (JNPM→HONO),
NO2 (JNPM→NO2 ), and NO (JNPM→NO) during the NPM re-
action at the air–water interface was investigated. The kinet-
ics and mechanism of HONO and NOx formation in the pres-
ence of soluble iron were evaluated. This study highlights an
overlooked source of HONO and NOx from NN-covered wa-
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ter surfaces that may play a critical role in the atmospheric
nitrogen cycle and the evaluation of the atmospheric oxida-
tion capacity.

2 Experiments

2.1 Material and sample preparation

Solid NPM (Aladdin, China) was dissolved in ultra-pure wa-
ter to prepare an aqueous NPM solution (0.5 mgmL−1) be-
fore each experiment. FeCl3 (98 %; Aladdin, China) was
used as the source of different concentrations of aqueous
Fe3+ (0.1–0.8 mgmL−1), and their solutions were prepared
by dissolving the corresponding mass of FeCl3 in ultra-pure
water.

2.2 Experimental setup

The circular reactor consisted of a double layer of quartz
glass (3.4 cm height, 7.5 cm inner diameter) connected to
a thermostatic bath (XOSC-20, China), which allowed op-
eration at a constant temperature of 298 K (Fig. S1 in the
Supplement). The previously prepared sample solution was
placed in the circular reactor and exposed to a xenon lamp
(Perfect Light, PLS-SXE 300, China) vertically above the
reactor. The xenon lamp was 12 cm away from the liquid
level of NPM. The spectral irradiance of the xenon lamp
was measured using a calibrated spectroradiometer (HP 350
UVP, China) (Fig. S1). Dry air collected from an air gener-
ator (HY-3, China) was used for the experiment. During the
whole experiment, a constant flow of 800 mLmin−1 of dry
air was controlled using an electronic soap film flowmeter
(SCal Plus, China). The UV absorption spectra of the NPM
aqueous solutions in the absence or presence of iron ions
were measured using the UV–Vis double-beam spectropho-
tometer (Shimadzu 2600, Japan) (Fig. S2 and Test S1).

2.3 NOx, HONO, NPM, and ROS measurements

NO, NO2, and HONO were detected using a chemilumi-
nescence NOx analyzer (42i, THERMO) with a molybde-
num converter. NO was measured by reacting NO with O3
to produce characteristic luminescence, and the intensity of
the luminescence was proportional to the concentration of
NO. In the detection of NO2, a molybdenum catalyst was
used to convert NO2 to NO. A quartz tube (25 cm length,
2.9 cm inner diameter) filled with a certain amount of crys-
talline (Na2CO3) was introduced to capture HONO between
the circular reactor outlet and the NOx analyzer. It is well
known that almost all HONO molecules can contact Na2CO3
when using molybdenum converters, achieving a high cap-
ture efficiency of HONO. Therefore, HONO can be quanti-
fied indirectly by the difference between the NO2 signal and
the Na2CO3 tube (Monge et al., 2010; Cazoir et al., 2014;
Brigante et al., 2008; Zhou et al., 2018). The quantification

of NPM before and after the reaction was determined us-
ing high-performance liquid chromatography (HPLC). The
mobile phase was a mixture of water and acetonitrile with
a flow rate of 0.5 mLmin−1 at 80 : 20 (v/v). The column
temperature was kept at 30 °C, the injection volume was
20 µL, and the detection wavelength was set to 270 nm.
The external standard method was used for the quantita-
tive determination of NPM. Photoproductions of O2- q, 1O2,
and OH were quantified using 5,5-Dimethyl-1-Pyrroline-N-
oxide (DMPO), 2,2,6,6-Tetramethylpiperidine (TEMP) and
5,5-Dimethyl-1-Pyrroline-N-oxide (DMPO), respectively, as
the chemical probe molecules.

2.4 Kinetic analysis

The NPM photolysis kinetics were described using a first-
order reaction (Eq. 1), and the half-life (t1/2) was calculated
using Eq. (2):

Ct = C0× e
−kt , (1)

t1/2 = ln(2)/k, (2)

where C0 (mgmL−1) is the initial concentration of NPM, Ct
(mgmL−1) is the NPM concentration at time t , and k is the
first-order rate constant.

2.5 The photolysis frequency

The photolysis frequencies of NPM to HONO and NOx were
calculated using Eqs. (3) and (4), respectively:

JNPM→HONO =
QMNPM

∫ t
0C

HONO
t dt

60× 10−3NA× t × (m0+mt )/2
, (3)

JNPM→NOx =
QMNPM

∫ t
0C

NOx
t dt

60× 10−3NA× t × (m0+mt )/2
, (4)

where Q (mLmin−1) and MNPM (gmol−1) are the total gas
flow rates in the reactor and the molar mass of NPM, respec-
tively; t (min) is the irradiation time; CNOx

t (molec.cm−3)
is the concentration of gaseous HONO or NOx formed by
photolysis of NPM during the irradiation period; NA is the
Avogadro number; andM0 (mg) andMt (mg) are the masses
at the beginning and end of the NPM photolysis experiments.

2.6 Flux densities of HONO and NOx

The flux densities of HONO and NOx were estimated using
the following equations:

HONOflux =
[HONO] ·V

s · t
, (5)

NOxflux =
[NOx] ·V
s · t

, (6)

where HONO flux is expressed (molec.cm−2 s−1), [HONO]
is the concentration of HONO (molec.cm−3), V (cm3) is the
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volume of the reactor, S (cm2) is the surface of the reactor,
and t (s) is the residence time of HONO in the circular reac-
tor.

2.7 Global simulation of NOx and HONO fluxes

We estimated the global inventory of the NOx and
HONO fluxes produced by NPM photochemistry using the
observation-constrained parameterization scheme and hourly
solar radiation data. Gridded and hourly downward solar ra-
diation data are obtained from Modern-Era Retrospective
analysis for Research and Application Version 2 (MERRA-
2)-assimilated meteorological fields. We calculated the flux
of NOx and HONO for each model grid at a horizontal res-
olution of 0.5°× 0.625° (consistent with the MERRA-2 ra-
diation dataset) following Eqs. (S1)–(S3) in the Supplement
but assuming that the environmental NPM concentration is 3
orders of magnitude smaller than the experimental condition
of 0.5 mgL−1. The parameterization of HONO and NOx pro-
ductions from NPM photolysis at the Fe3+ concentration of
0.025 mgL−1 used in our estimation is based on Eqs. (S1)–
(S3), and more details can be seen in Test S2.

3 Results and discussion

3.1 Absorbance of NPM in the presence of Fe3+

Figure S1 shows the absorbance of NPM (0.05 mgmL−1)
in the dilute aqueous phase and at different Fe3+ concen-
trations, adjusted by FeCl3, along with the emission spec-
trum of the solar simulator and the sunlight. The presence of
Fe3+ at various initial concentrations slightly enhanced the
absorbance of NPM, especially at a high Fe3+ concentration
(0.08 mgmL−1), indicating that no Fe3+–NPM complexes
were generated (Liu et al., 2022). Indeed, pH is a sensitive
parameter that can significantly affect the light-absorbing
properties and degree of photochemical degradation of or-
ganic compounds (Cai et al., 2018; Zhou et al., 2019). The
interaction between Fe3+ and organics as well as possible
aggregation of organics at low pH may also influence the
light absorption at low wavelengths (Weishaar et al., 2003).
The change in Fe3+ concentrations may alter the pH of the
system, which in turn may affect the protonation or deproto-
nation degree of NPM and therefore its absorption spectrum
(Zhou et al., 2019). The pH value of the NPM solution in
the presence of Fe3+ varies between 2.4 and 3.4, and under
this pH condition NPM (pKa= 3.1) exists in both ionic and
neutral forms (Hâ.u et al., 2021; Bonmatin et al., 2014).

3.2 Kinetic analysis

Iron ions are ubiquitous in natural waters, with concentra-
tions ranging from 10−7 to 10−4 M and even higher in con-
taminated waters (Li et al., 2018; Faust and Hoigné, 1990).
Previous studies have shown that iron ions play an impor-

tant role in the photolysis of pesticides and may affect the
photodegradation of organic pollutants (Faust and Hoigné,
1990; Zhao et al., 2014). The photolysis kinetics of NPM
were performed to account for the loss of NPM. The pho-
tolysis of NPM at different concentrations of Fe3+ obeyed
pseudo-first-order kinetics (Fig. 1), with half-lives ranging
from 135.1 to 223.6 min as the Fe3+ concentration increased
from 0 to 0.8 mgmL−1 (Table S1 in the Supplement).

The light-induced degradation of NPM was signifi-
cantly inhibited at low Fe3+ concentrations (C(Fe3+) <

0.5 mgmL−1; Fig. 1 and Table S1). In contrast, when the
concentration of Fe3+ reaches 0.8 mgmL−1, the degrada-
tion of NPM is promoted (Fig. 1), exhibiting a rate con-
stant of 0.00513 min−1 (Table S1). Previous studies have
demonstrated that the degradation of organic compounds in
the presence of Fe3+ is dose-dependent (Lin et al., 2019;
Deguillaume et al., 2005). For instance, Fe3+ slightly inhibits
the photodegradation of fluazaindolizine at concentrations of
1–5 mgL−1 but promotes its degradation rate at concentra-
tions ranging between 0.1 and 0.5 mgL−1 (Lin et al., 2019).
Deguillaume et al. (2005) reported that photodegradation of
flupyradifurone, a novel neonicotinoid pesticide, was faster
at lower Fe3+ concentrations and slowed down with the in-
crease in Fe3+ concentrations.

The main reason for the inhibition effect of Fe3+ is the
attenuation of radiation due to the absorption by Fe3+ (light
screening), which reduces the light absorbance by NPM and
its photodegradation. At the same time, it has been exten-
sively confirmed that [Fe3+(OH)]2+ is the main form of
Fe3+ and exhibits great photoactivity in aqueous solution at
pH= 3 (Bai et al., 2023; Li et al., 2023). In the presence of
[Fe3+(OH)]2+, strong oxidizing ROS are produced, which
promote hydroxylation and degradation of NPM (Andrianiri-
naharivelo et al., 1995; Mazellier et al., 1997). As a result, at
pH= 3, the photodegradation of NPM is accelerated at high
Fe3+ concentrations.

In this study, a high Fe3+ concentration (0.8 mgmL−1)
promoted the photodegradation of NPM and the formation
of HONO and NOx (see the section below). The enhanced
formation of HONO and NOx can be ascribed to ROS, as
described in Sect. 3.5.

3.3 HONO and NOx formations by NPM photolysis

The experiments of NPM photodegradation in the aqueous
phase were performed to measure the HONO and NOx pro-
duction in the presence of different Fe3+ concentrations.
The HONO and NOx production by spontaneous reaction
of NPM in the dark was negligible (Fig. S3 in the Supple-
ment). When the NPM samples were exposed to light irra-
diation, the concentrations of HONO and NOx quickly in-
creased (Fig. 2a).

Only the concentration of NO formed upon irradiation
of NPM is almost the same in the absence of Fe3+ and
in the presence of 0.25 mgmL−1 of Fe3+ (Fig. 2a). In the
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Figure 1. (a) The kinetics of NPM (0.5 mgmL−1) in the absence of Fe3+ (dark line) and in the presence of different Fe3+ concentrations:
0.1 mgmL−1 (red line), 0.25 mgmL−1 (blue line), 0.5 mgmL−1 (green line), and 0.8 mgmL−1 (purple line). (b) The rate constants of NPM
light-induced degradation (0.5 mgmL−1) at different Fe3+ concentrations.

Figure 2. (a) Concentrations of NO, NO2, and HONO produced by NPM photolysis at different concentrations of Fe3+. (b) JNPM→HONO
and JNPM→NOx from NPM at different concentrations of Fe3+ and an irradiation intensity of 169.4 Wm−2 at 300< λ < 400 nm, T = 298 K.

meantime, the NO2 formation increased significantly with
the increase in Fe3+ concentrations and remained almost
steady during the whole light exposure time (Fig. S3). More-
over, when the experiments were shifted to high concen-
trations of soluble iron (0.25–0.8 mgmL−1), significantly
enhanced NO2 and NO formation was observed that then
slowly decreased with the light exposure time. In order to
better understand the effect of iron on HONO and NOx
production, the quantities of HONO and NOx were com-
pared when the NPM photolysis reached a relatively sta-
ble stage (120 min). It is important to note that the formed
HONO (341 ppb) was significantly higher at an iron con-
centration of 0.8 mgmL−1 compared to the HONO (37 ppb)
that formed in the absence of iron. Similarly, the quan-
tity of the formed NO2 increased from 17 ppb in the ab-
sence of iron to 96 ppb in the presence of 0.5 mgmL−1

of Fe3+. However, further increases in the iron concentra-
tion to 0.8 mgmL−1 tended to decrease the production of
NO2. Figure 2 shows that the NO concentrations remained
almost unchanged with the increase in the iron concentra-
tion. To quantify the photolysis quantum yields of HONO,

NO2, and NO formation from NPM photolysis, we estimated
the photolysis frequency of HONO (JNPM→HONO), NO2
(JNPM→NO2 ), and NO (JNPM→NO) formation, respectively
(Fig. 2b). JNPM→HONO varied from (2.99± 0.46)×10−7 s−1

in the absence of Fe3+ to (2.79± 0.10)×10−6 s−1 in the
presence of 0.8 mgmL−1 Fe3+. Simultaneously, JNPM→NO2

increased ca. 5-fold from (1.25± 0.06)×10−7 s−1 in the ab-
sence of Fe3+ to (6.77± 0.44)×10−7 s−1 at 0.8 mgmL−1

of Fe3+. Regarding JNPM→NO, there were nearly no
discernible changes observed, with values ranging from
(2.38± 0.27)×10−7 to (2.92± 0.15)×10−7 s−1. A previ-
ous study (Yang et al., 2021) found that the photolysis fre-
quency of HONO and NO in nitrophenol solid-phase films
(4-nitrophenol, 4-nitrocatechol, 3,5-dinitrosalicylic acid, 3-
nitrosalicylic acid, and 5-nitrosalicylic acid) varied in the
ranges (0.34–4.16)×10−7 and (0.38–3.21)×10−7 s−1, re-
spectively, when irradiated by xenon lamps. NPM liquid-
phase photolysis produced HONO and NOx at a photoly-
sis frequency of 10−7, but the addition of iron resulted in
a photolysis frequency of 10−6 for HONO, suggesting that
iron significantly facilitated the release of HONO. In order to

https://doi.org/10.5194/acp-24-11943-2024 Atmos. Chem. Phys., 24, 11943–11954, 2024



11948 Z. Ran et al.: Formation of reactive nitrogen species promoted by iron ions

compare the efficiency of NPM at different Fe3+ concentra-
tions in producing HONO and NO, 8HONO and 8NOx were
displayed (Table S2 in the Supplement). It can be concluded
that NPM with high Fe3+ concentrations had more important
HONO formations as compared to pure NPM.

3.4 HONO and NOx surface flux densities

Figure 3 summarizes the results obtained in terms of HONO
formation rates per unit of exposed surface area, flux densi-
ties of HONO, NO2, and NO.

The flux density values of HONO and NOx indicate that
direct photolysis dominated the transformation process of the
NPM samples in the absence of Fe3+. However, the introduc-
tion of soluble iron leads to significantly increased HONO
and NO2 yields during the first 10 min of the reaction time.
Further progress of the reaction up to 2 h leads to slightly in-
creased flux densities of NO2 and HONO. In contrast, the NO
formation showed a slow decrease after the addition of Fe3+.
A recent study (Aregahegn et al., 2017) demonstrated that
photolysis of a solid film consisting of imidacloprid (IMD)
did not lead to HONO and NOx formation and that N2O
was rather the main gas-phase product. However, it is impor-
tant to note that the introduction of Fe3+ promotes the pho-
todegradation of NPM to produce more HONO and NOx . In
the section below we suggest a tentative reaction mechanism
to describe the formation of HONO and NO2 upon irradia-
tion of NPM at the water surface in the presence of soluble
iron.

3.5 Mechanism describing the formation of HONO and
NOx

We speculate that, in the presence of Fe3+, the decrease in
dissolved nitrogen species that resulted from the photodegra-
dation of NPM is the reason for the formation of HONO and
NOx . Therefore, ROS and dissolved nitrogen-containing ions
were measured upon photodegradation of NPM in the pres-
ence of Fe3+. The generation of superoxide radicals (O2- q),
singlet oxygen (1O2), and hydroxyl radicals (OH) was quan-
tified using DMPO, TEMP, and DMPO, respectively, as the
chemical probe molecules. Figure 4a shows that, in the ab-
sence of Fe3+, the photodegradation of NPM induces gen-
eration of OH, O2- q, and 1O2, which can be ascribed to the
electron transfer between the excited triplet state of NPM and
the molecular oxygen (O2) (Segura et al., 2008; Mostafa and
Rosario-Ortiz, 2013; Marin et al., 2012; Wang et al., 2021).

It has been reported that, under UV light irradiation, Fe3+

photoreduction regenerates Fe2+, accelerating the process
due to the formation of new OH radicals (Segura et al., 2008).
The electron paramagnetic resonance (EPR) measurements
revealed an interesting phenomenon where the increase in the
Fe3+ concentration promotes the consumption rate of ROS
(Fig. 4b) rather than the production rate. The generated ROS
would react with lower-valence nitrogen-containing species

to form HONO and NOx . Based on this finding, we suggest a
tentative reaction mechanism which could explain the forma-
tion of large quantities of HONO and NOx during the pho-
tochemical degradation of NPM. The photochemical gener-
ation of ROS could be driven by two pathways. Pathway
I is the excited triplet state of NPM (3NPM∗) that can be
formed under light irradiation (Reaction R1) (Mora Garcia
et al., 2021), and then, by reacting with water molecules (Re-
action R2), it can trigger the formation of ROS such as OH
radicals, accompanied by the generation of O2- q through the
transformation between radical anions of NPM (NPM- q) and
dissolved oxygen (Reaction R3) (Wang et al., 2021). Further-
more, with the progress of the photodegradation of NPM, an
increase in O2- q and OH formation was observed (Fig. 4a),
favoring HONO and NO2 formation (Reactions R6–R8). In
the presence of Fe3+, formation of OH radicals by Reac-
tion (R4) occurs as well (Mazellier et al., 1997). In addition,
nitrate ions (NO3

−) and nitrite ions (NO2
−) in the aque-

ous phase are formed by Reactions (R5)–(R7). Peroxyni-
trate (OONO2

−) is formed by reaction of O2- q with NO2,
which thermally decomposes to form NO2

− and O2, which
further leads to HONO formation (Reaction R6) (X. Wang
et al., 2020; Lammel et al., 2002; Goldstein et al., 1998).
The reaction between O2- q and NO can lead to the forma-
tion of NO2

− and NO3
−, with a relatively fast rate constant

of 4.3× 109 M−1 s−1 (Goldstein and Czapski, 1995) pro-
ducing a peroxynitrite (OONO−) which then yields NO3

−

through internal rearrangement (Reaction R7) (Loegager and
Sehested, 1993). At neutral pH (pKa= 6.5), the OONOH
product can also be formed by protonation, which can coexist
with OONO− to form NO2

− (Reaction R7) (Guptaet et al.,
2009). Previous studies have shown that the reaction between
OH and NO2

− will generate NO2 (Reaction R8) (Loegager
and Sehested„ 1993), and a sharp increase in the HONO con-
centration occurs immediately from reaction between NO2

−

and H+ (Reaction R9), which is expected to be an important
pathway of HONO formation.

At low Fe3+ concentrations (0.25–0.5 mgmL−1), the
degradation rate of NPM was completely inhibited, which
was not the case for higher Fe3+ concentrations (0.5–
0.8 mgmL−1) (Fig. 1). Notably, Fe3+ plays an important role
in providing an acidic environment (pH= 2.4–3.4) in the re-
action system, which is followed by the redox reaction be-
tween Fe2+ and NO3

− to produce NO2 and consequently in-
crease the amount of NO2 (Reaction R10) (Fig. S3). It has
been shown that NO3

− undergoes a photochemical process
and thus produces HONO (Reaction R11) and NO2 (Reac-
tion R12) (Ye et al., 2016; Zhou et al., 2011).

NPM
hv
−→

3NPM∗ (R1)
3NPM∗+H2O→ H++ qOH+NPM−

q
(R2)

NPM−
q
+O2→ NPM+O2

− q (R3)

Fe3+
+H2O

hv
−→ Fe2+

+ qOH+H+ (R4)
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Figure 3. Flux densities of HONO (a), NO2 (b), and NO (c) determined as a function of the photolysis time of NPM in the presence of
different concentrations of Fe3+.

Figure 4. (a) EPR spectra obtained upon photodegradation of NPM (0.5 mgmL−1) in the absence of Fe3+ as a function of the reaction time.
(b) EPR spectra obtained upon 45 min photodegradation of NPM (0.5 mgmL−1) in the absence of Fe3+ (dark line) and in the presence of
0.25 mgmL−1 of Fe3+ (red line) and 0.8 mgmL−1 of Fe3+ (blue line).

2NO2+H2O→ HNO2+HNO3 (R5)

O2
− q
+NO2→ OONO2

−
→ O2+NO2

−

+H+ (pKa=3.2)
−−−−−−−−−→ HONO

(R6)

O2
− q
+NO→ OONO− (NO3

−) � OONOH

+OONO−
−−−−−−→ O2+ 2NO2

−
+H+

pKa=3.2
−−−−−→ HONO

(R7)

NO2
−
+ qOH→ NO2+OH− (R8)

NO2
−
+H+

pKa=3.2
−−−−−→ HONO (R9)

Fe2+
+NO3

−
+ 2H+→ Fe3+

+NO2(g)+H2O (R10)

NO3
− hv
−→ [NO3

−
]
∗
→ O(3P)+NO2

− H+
−→ HONO (R11)

NO3
− hv
−→ [NO3

−
]
∗ H+
−→ NO2+

qOH (R12)

A simplified illustration of the reaction mechanism is shown
in Fig. S4 in the Supplement. As shown in Fig. S3, the
HONO and NO2 production during the photodegradation of
NPM in the presence of Fe3+ is significantly enhanced rel-
ative to that in the absence of iron ions. High Fe3+ con-
centrations (0.5–0.8 mgmL−1) promote HONO and NO2
formation compared to low Fe3+ concentrations (0.25–
0.5 mgmL−1). The formed NO3

− and NO2
− were also mea-

sured by ion chromatography analysis to evaluate the effect
of Fe3+ (see the details in Test S1 and Fig. S5 in the Sup-
plement). As shown in Fig. S5, the concentrations of NO3

−

and NO2
− decreased sharply in the presence of Fe3+ com-

pared to those in the absence of Fe3+. These results suggest
that HONO and NO2 enhancement during the irradiation of
NPM solutions containing Fe3+ can be ascribed to the trans-
formation of the product distribution from NO3

− and NO2
−
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Figure 5. Global emissions of HONO (a) and NOx (b), produced by photochemistry of NPM in the presence of iron ions for the year 2017.

rather than a change in the product formation from the pho-
todegradation of NPM.

4 Conclusions and outlook

Laboratory study revealed the formation of a greenhouse gas
(N2O) through photolysis of NPM (Aregahegn et al., 2018),
but previously the theoretical calculation had predicted that
photolysis of NNs would generate NO2 (Palma et al., 2020).

The current study reveals that the light-induced degrada-
tion of NPM leads to enhanced production of HONO and
NOx driven by secondary photochemistry between redox re-
action of Fe3+/Fe2+ and photoproduced ROS. We quantified
the photochemical HONO and NOx formation through NPM
photodegradation, and we suggest that this chemistry may
represent a significant source of HONO and NOx in regions
where surface waters are polluted with NN insecticides.

In order to estimate the relative importance of the NPM
photolysis to global HONO and NOx emissions in the at-
mosphere, we parameterized the global HONO and NOx
production related to NPM photochemistry, based on the
NPM photolysis kinetic data and gridded downward solar
radiation. The parameterization of HONO and NOx pro-
duction from NPM photolysis at the Fe3+ concentration of
0.025 mgL−1 used in our estimation is based on Eqs. (S1)–
(S3). The concentrations of NNs vary from several nanogram
per liter to hundreds of microgram per liter (Anderson
et al., 2013). In view of the high concentration of NPM
(50 000 µgL−1) used in our experiments, we selected a ra-
tionalization parameter scheme related to the environmen-
tal concentration of NPM (50 µgL−1). The kinetic data have
shown that the rate constant (k) is faster at low NPM con-
centrations compared to that of high NPM concentrations
(Fig. S6 in the Supplement). Current chemical models do not
explicitly consider this source of reactive nitrogen species. In
this way, we are able to generate an hourly dataset of the NOx
and HONO fluxes released from NPM chemistry, and we an-
alyze the amounts and spatial patterns of the fluxes in Fig. 5.
We note that, although such estimation is rather simplified
and can be biased in terms of the spatial heterogeneity as we

do not consider the spatial variation of environmental NPM
concentrations, our study represents a pioneering attempt to
quantify the global source of HONO and NOx from the NPM
photochemistry, as current chemical models do not explic-
itly consider this source of reactive nitrogen species. This in-
ventory can then be applied in chemical models to quantify
the environmental impact of HONO and NOx fluxes emerg-
ing from NPM photochemistry. Details about the parameter-
ization of HONO and NOx production that emerged from
NPM photochemistry are given in Text S2 in the Supplement.
Figure 5 shows the spatial distributions of HONO and NOx
fluxes produced by NPM photochemistry in the tested year of
2017. The results indicate that the globally produced HONO
and NOx fluxes based on NPM photochemistry are 0.77 and
0.5 TgNyr−1, respectively, making a total of 1.27 TgNyr−1.

The total production of HONO and NOx emissions due
to NPM photochemistry (1.27 TgNyr−1) represents 3.5 % of
the anthropogenic emissions of NOx related to fossil fuel in
the year 2017 (36.2 TgNyr−1, from the Community Emis-
sions Data System (CEDS) inventory) and about 14.8 % of
the soil emissions (8.6 TgNyr−1, Lu et al., 2021). The high-
est HONO and NOx fluxes (74 %) are produced by the pho-
tochemistry of NPM at the ocean surface in the presence of
iron ions, especially tropical oceans. The latter can be as-
cribed to the higher solar radiation in the tropical regions.
As displayed in Fig. S7 in the Supplement, it is obvious to
see that the spatial distribution of solar radiation is partic-
ularly strong in tropical oceanic regions, which can further
confirm the higher HONO and NOx fluxes at the ocean sur-
face. The high reactive nitrogen emissions could also appear
over other water surfaces like inland waters and lakes world-
wide through similar mechanisms induced by NPM photo-
chemistry. Further studies are needed to quantify the relative
importance of the recognized HONO and NOx sources from
NPM photochemistry on a global scale as well as the impact
on tropospheric ozone and OH in the marine boundary layer.

Data availability. All raw data can be provided by the correspond-
ing authors upon request.
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Supplement. The Supplement contains 10 additional figures,
three tables, and text. The supplement related to this article
is available online at: https://doi.org/10.5194/acp-24-11943-2024-
supplement.
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