

Supplement of

Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean

Krishnakant Budhavant et al.

Correspondence to: Örjan Gustafsson (orjan.gustafsson@aces.su.se)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1: The 10-day air mass back trajectory cluster means ending at Bhola Climate Observatory-Bangladesh (BCOB), Maldives Climate Observatory at Hanimaadhoo (MCOH), and Maldives Climate Observatory at Gan (MCOG), at 50 m above mean sea level with MODIS/Aaua active fires from December 2017 to March 2018. Grepresents the group number and percentage in brackets and gives information on percentages of trajectories in the group.

Figure S2: Ten-day air mass back-trajectories (AMBTs) were generated for Bhola Climate Observatory-Bangladesh (BCOB) at an arrival height of 50 m, computed for every three h using NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) version 4.

25

Figure S3: Ten-day air mass back-trajectories (AMBTs) were generated for Maldives Climate Observatory-Hanimaadhoo (MCOH) at an arrival height of 50 m, computed for every three hours using NOAA HYSPLIT model version 4. The AMBTs were clustered into four regions: Western Indian margin, Southern India, IGP, and the Arabian Sea.

Figure S4: Ten-day air mass back-trajectories (AMBTs) were generated for Maldives Climate Observatory-Gan (MCOG) at an arrival height of 50 m, computed for every three h using NOAA HYSPLIT model version 4. The AMBTs were clustered into four regions: Arabian Sea, IGP, and Indian Ocean.

35 Figure S5. Daily average aerosol optical depth (AOD) measured over Bhola Climate Observatory-Bangladesh (BCOB), Maldives Climate Observatory-Hanimaadhoo (MCOH), and Maldives Climate Observatory-Gan (MCOG) from December 2017 to April 2018. The vertical yellow field indicates the period dominated by air mass transport through the high-pollution source region Indo-Gangetic Plain (IGP).

40 Figure S6: The ratio of black carbon (BC) MAC to [(water-soluble ions + WSOC) / BC] measured at Bhola Climate Observatory-Bangladesh (BCOB), Maldives Climate Observatory-Hanimaadhoo (MCOH), and Maldives Climate Observatory-Gan (MCOG) from December 2017 to April 2018. The horizontal black dotted lines indicate the average MAC (3.5 m² g⁻¹) measured at the BCOB period when air mass transport dominated through the high-pollution source region Indo-Gangetic Plain (IGP).

	OC	EC	WSOC	WIOC	nss- SO4	NO ₃	nss-K	nss- Ca	nss- Mg	NH4	Na	Cl
OC	1.00	0.85	0.95	0.99	0.11	0.80	0.85	-0.36	-0.44	-0.23	0.22	0.76
EC	0.85	1.00	0.79	0.85	-0.05	0.55	0.79	-0.46	-0.54	-0.22	0.08	0.74
WSOC	0.95	0.79	1.00	0.89	0.10	0.76	0.78	-0.41	-0.47	-0.19	0.17	0.69
WIOC	0.99	0.85	0.89	1.00	0.11	0.78	0.85	-0.32	-0.42	-0.24	0.23	0.77
nss-SO ₄	0.11	-0.05	0.10	0.11	1.00	0.40	0.28	0.21	0.09	-0.03	0.14	0.22
NO ₃	0.80	0.55	0.76	0.78	0.40	1.00	0.77	-0.12	-0.23	-0.28	0.35	0.73
nss-K	0.85	0.79	0.78	0.85	0.28	0.77	1.00	-0.38	-0.43	-0.27	0.30	0.82
nss-Ca	-0.36	-0.46	-0.41	-0.32	0.21	-0.12	-0.38	1.00	0.53	0.40	0.17	-0.14
nss-Mg	-0.44	-0.54	-0.47	-0.42	0.09	-0.23	-0.43	0.53	1.00	0.05	0.63	-0.20
NH4	-0.23	-0.22	-0.19	-0.24	-0.03	-0.28	-0.27	0.40	0.05	1.00	-0.17	-0.27
Na	0.22	0.08	0.17	0.23	0.14	0.35	0.30	0.17	0.63	-0.17	1.00	0.46
Cl	0.76	0.74	0.68	0.77	0.22	0.73	0.82	-0.14	-0.20	-0.27	0.46	1.00

45 Table S1. Matrix of correlation coefficients (r) for the components measured at BCOB station. Correlations coefficients higher than 0.7 are highlighted in **bold**.

	OC	EC	WSOC	WIOC	nss-SO ₄	NO ₃	nss-K	nss-Ca	nss-Mg	\mathbf{NH}_4	Na	Cl
OC	1.00	0.74	0.72	0.93	0.60	0.21	0.55	0.33	-0.13	0.60	0.27	0.11
EC	0.74	1.00	0.61	0.64	0.78	0.40	0.74	0.25	0.04	0.78	0.67	0.47
WSOC	0.72	0.61	1.00	0.60	0.82	0.32	0.77	0.29	-0.08	0.83	0.58	0.52
WIOC	0.93	0.64	0.60	1.00	0.48	-0.01	0.46	0.32	-0.04	0.49	0.67	0.50
nss-SO4	0.60	0.78	0.82	0.48	1.00	0.38	0.94	0.21	0.05	0.99	0.72	0.76
NO ₃	0.21	0.40	0.32	-0.01	0.38	1.00	0.32	0.12	0.01	0.38	0.84	0.80
nss-K	0.55	0.74	0.77	0.46	0.94	0.32	1.00	0.15	0.08	0.95	0.70	0.59
nss-Ca	0.33	0.25	0.29	0.32	0.21	0.12	0.15	1.00	0.23	0.19	0.10	-0.20
nss-Mg	-0.13	0.04	-0.08	-0.04	0.05	0.01	0.08	0.23	1.00	0.05	-0.04	-0.47
NH4	0.60	0.78	0.83	0.49	0.99	0.38	0.95	0.19	0.05	1.00	0.72	0.49
Na	0.27	0.67	0.58	0.67	0.72	0.84	0.70	0.10	-0.04	0.72	1.00	0.59
Cl	0.11	0.47	0.52	0.50	0.76	0.80	0.59	-0.20	-0.47	0.49	0.59	1.00

Table S2. Matrix of correlation coefficients (r) for the components in PM2.5 measured at MCOH. Correlations50coefficients higher than 0.7 are highlighted in bold.

	OC	EC	WSOC	WIOC	nss-SO ₄	NO ₃	nss-K	nss-Ca	nss-Mg	NH4	Na	Cl
OC	1.00	0.83	0.80	0.99	0.55	0.68	0.26	0.56	0.39	0.43	0.53	0.48
EC	0.83	1.00	0.67	0.83	0.79	0.50	0.10	0.39	0.27	0.63	0.53	0.35
WSOC	0.80	0.67	1.00	0.73	0.50	0.53	0.02	0.44	0.26	0.43	0.43	0.38
WIOC	0.99	0.83	0.73	1.00	0.53	0.68	0.30	0.56	0.39	0.41	0.52	0.47
nss-SO ₄	0.55	0.79	0.50	0.53	1.00	0.30	0.17	0.29	0.22	0.78	0.54	0.04
NO ₃	0.68	0.50	0.53	0.68	0.30	1.00	0.24	0.92	0.85	0.00	0.74	0.80
nss-K	0.26	0.10	0.02	0.30	0.17	0.24	1.00	0.31	0.47	0.24	0.04	0.14
nss-Ca	0.56	0.39	0.44	0.56	0.29	0.92	0.31	1.00	0.91	0.04	0.68	0.70
nss-Mg	0.39	0.27	0.26	0.39	0.22	0.85	0.47	0.91	1.00	-0.04	0.62	0.74
NH ₄	0.43	0.63	0.43	0.41	0.78	0.00	0.24	0.04	-0.04	1.00	-0.02	-0.23
Na	0.53	0.53	0.43	0.52	0.54	0.74	0.04	0.68	0.62	-0.02	1.00	0.68
Cl	0.48	0.35	0.38	0.47	0.04	0.80	0.14	0.70	0.74	-0.23	0.68	1.00

Table S3. Matrix of correlation coefficients (r) for the components measured at MCOG station. Correlations coefficients higher than 0.7 are highlighted in **bold**.

Site	OC	EC	Na^+	Cl	NO ₃ -	NH4 ⁺	nss-SO42-	nss-K ⁺			
November-2027											
BCOB	24.4±11	3.3±1.0	0.3±0.2	$1.9{\pm}1.1$	9.9±7.2	3.3 ± 4.0	10.0 ± 5.1	3.1±1.2			
MCOH	0.4 ± 0.1	0.2 ± 0.1	0.5 ± 0.2	0.1 ± 0.0	0.1 ± 0.1	3.4 ± 0.2	12.5±0.7	0.4 ± 0.1			
MCOG	0.7 ± 0.2	0.2 ± 0.1	2.1±0.5	3.2±0.8	$1.7{\pm}1.0$	0.0 ± 0.0	$2.0{\pm}1.0$	0.6 ± 0.2			
December 2017											
BCOB	23.6±8.1	3.8 ± 1.4	0.4 ± 0.2	2.2 ± 1.5	5.9 ± 3.5	2.8 ± 2.3	7.9 ± 3.4	$2.7{\pm}1.1$			
MCOH	2.8 ± 1.8	0.9 ± 0.4	0.9 ± 0.4	0.1 ± 0.1	0.1 ± 0.0	3.5 ± 1.8	12.9±6.0	0.3 ± 0.2			
MCOG	0.9 ± 0.7	0.3±0.2	0.4 ± 0.4	0.6 ± 0.6	0.2 ± 0.3	0.5 ± 0.5	$1.8{\pm}1.7$	0.1 ± 0.1			
January 2018											
BCOB	32.2±4.4	3.8±0.4	0.6 ± 0.4	3.9±1.8	16.5±7.4	$1.8{\pm}1.8$	13.7±4.7	3.3±1.0			
MCOH	2.7±1.5	1.1±0.6	1.1±0.6	0.2 ± 0.2	0.1 ± 0.0	5.2 ± 4.5	16.1±7.7	0.5 ± 0.4			
MCOG	1.2 ± 0.5	0.7 ± 0.2	1.5 ± 1.4	0.6±0.3	0.4 ± 0.4	$1.8{\pm}1.0$	8.3±3.9	0.2 ± 0.1			
				February 20	18						
BCOB	12.7±5.8	2.1±0.7	0.4 ± 0.4	0.5 ± 0.5	4.7±4.7	6.1 ± 1.8	12.5±4.1	1.5 ± 0.6			
MCOH	$2.4{\pm}1.1$	1.2 ± 0.4	0.8 ± 0.4	0.1 ± 0.2	0.1 ± 0.0	4.5±1.6	16.7±5.7	0.5 ± 0.2			
MCOG	0.8±0.3	0.4 ± 0.2	1.7 ± 0.7	0.4±0.3	0.4 ± 0.3	0.1 ± 0.0	3.4±1.7	0.1 ± 0.1			
March 2018											
BCOB	11.3 ± 8.4	2.3±1.0	0.3±0.1	$1.4{\pm}1.5$	3.6±4.0	$7.0{\pm}2.1$	13.5±2.3	1.8 ± 0.8			
MCOH	1.4 ± 0.9	0.9 ± 0.5	0.5 ± 0.4	0.1 ± 0.2	0.1 ± 0.0	3.5 ± 2.6	12.2±9.6	0.4 ± 0.4			
MCOG	0.2±0.2	0.1 ± 0.0	0.6 ± 0.5	0.5 ± 0.5	0.1±0.1	0.1±0.2	1.0 ± 0.8	0.0 ± 0.0			

Table S4. Monthly average concentrations of black carbon (BC), organic carbon (OC), and major ions (µg m⁻³) were measured at the Bhola Climate Observatory-Bangladesh (BCOB), Maldives Climate Observatory-Hanimaadhoo (MCOH), Maldives Climate Observatory-Gan (MCOG) from November 2017 to March 2018.