



## Supplement of

## CO<sub>2</sub> and CO temporal variability over Mexico City from ground-based total column and surface measurements

Noémie Taquet et al.

Correspondence to: Noémie Taquet (noemi.taquet@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

## Supplement

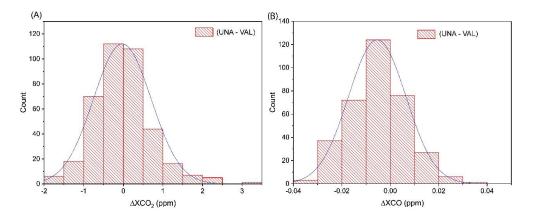



Figure S1: Statistical distribution of the (UNA-VAL) XCO<sub>2</sub> and XCO differences over the 2019-2021 period.

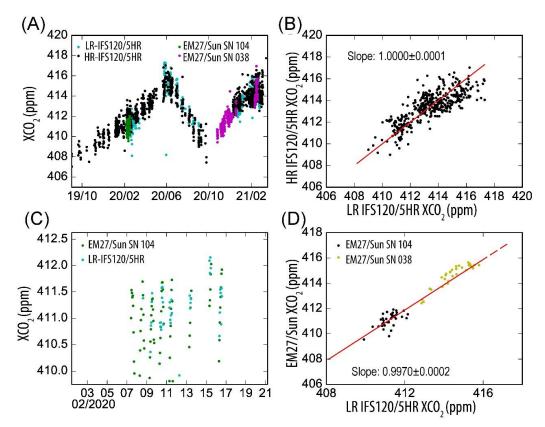



Figure S2: Determination of calibrated factors between the HR120/5 and EM27/Sun products from side-by-side measurements. (A) XCO<sub>2</sub> time series of from the different instruments. (B) Correlation plot of XCO<sub>2</sub> from the IFS120/5HR at high (HR IFS120/5HR) and low (LR IFS120/5HR) resolution products after aplying the calibration factors. (C) Zoom of (A) for February 2020. (D) Correlation plot of XCO<sub>2</sub> from EM27/Sun and LR IFS120/5HR products.

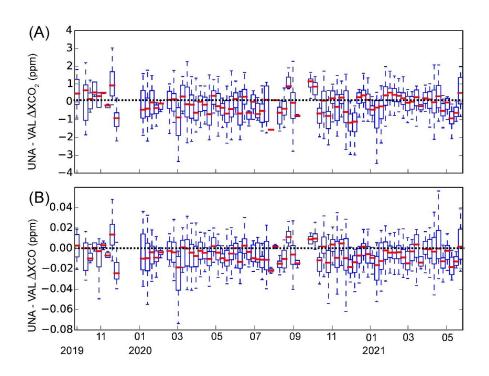



Figure S3: Whisker diagram representing the weekly-average difference between the UNA and VAL total columns of (A) XCO<sub>2</sub> and (B) XCO.

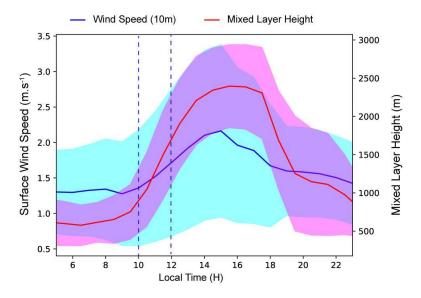



Figure S4: Diurnal pattern of the mixed layer height from the UNA ceilometer data and of the surface wind speed from the ERA5 data. The dash lines represent the time window used to calculate the XCO growth rate.

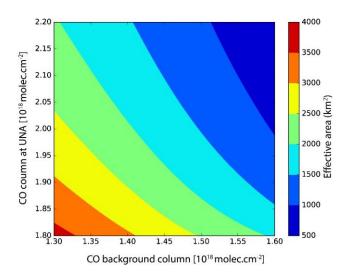



Figure S5: Sensitivity of the effective area to the background uncertainties.

| Instrument/product         | Calibration factor |  |  |  |
|----------------------------|--------------------|--|--|--|
| EM27_62 XCO <sub>2</sub>   | 1.0                |  |  |  |
| EM27_104 XCO <sub>2</sub>  | 0.9983             |  |  |  |
| EM27_38 XCO <sub>2</sub>   | 0.9986             |  |  |  |
| EM27_62 XCO                | 1.0                |  |  |  |
| EM27_104 XCO               | 1.0055             |  |  |  |
| EM27_38 XCO                | 0.9907             |  |  |  |
| HR_120/5 -XCO <sub>2</sub> | 1.0043             |  |  |  |
| VERTEX-XCO MIR             | 1.00               |  |  |  |

Table S2: Parameters of correlation plots between the different products (after applying the calibration factors).  $R^2$  stands for the coefficient of determination.

| Instrument 1, product1     | Instrument 2, product 2    | Slope +/- errSlope;<br>Offset +/- errOffset | R <sup>2</sup> |
|----------------------------|----------------------------|---------------------------------------------|----------------|
| EM27_62, XCO <sub>2</sub>  | EM27_38 XCO2               | 1.00                                        | 1.0            |
| EM27_62, XCO <sub>2</sub>  | EM27_104 XCO <sub>2</sub>  | 1.00                                        | 1.0            |
| EM27_104, XCO <sub>2</sub> | HR_120/5 -XCO <sub>2</sub> | 0.9957+/-0.0002                             | 0.96           |
| EM27_38_104, XCO           | HR_120/5 -XCO MIR          | 1.49+/-0.07<br>-0.034+/-0.005               | 0.96           |
| HR_120/5 -XCO MIR          | HR_120/5 -XCO NIR          | 0.98+/-0.01                                 | 0.96           |
| EM27_62, XCO               | VERTEX-XCO (MIR)           | 1.04+/-0.01                                 | 0.92           |

Table S3: CO and CO<sub>2</sub> emissions derived from inventories (SEDEMA) and from the FTIR data for the MCMA. "\*"corresponds to the indicated period but excluding the lock-down period.

| Year          | CO<br>(inventory<br>-Total)<br>(kt/year) | CO<br>(inventory<br>Mobile<br>source)<br>(kt/year) | CO <sub>2</sub><br>(inventory<br>-Total)<br>(kt/year) | CO <sub>2</sub><br>(inventory<br>)<br>Mobile<br>source)<br>(kt/year) | CO<br>(FTIR)<br>from CO<br>growth<br>rates<br>(kt/year) | CO<br>(FTIR)<br>uncert<br>ainties <sup>1</sup> | CO <sub>2</sub><br>(FTIR)<br>from<br>CO/CO <sub>2</sub><br>ratio at<br>UNA<br>and CO<br>growth<br>rates<br>(kt/year) | CO <sub>2</sub><br>(FTIR)<br>uncertainties <sup>1</sup> |
|---------------|------------------------------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 2016          | 728.6                                    | 646.4                                              | 54,020                                                | 52,439                                                               | 634.7                                                   | 106.2                                          | 63,470                                                                                                               | 10,620                                                  |
| 2018          | 728.9                                    | 689.3                                              | 66,031                                                | 43,217                                                               | 716.6                                                   | 64.3                                           | 71,660                                                                                                               | 6,430                                                   |
| 2019          |                                          |                                                    |                                                       |                                                                      | 534.2                                                   | 33.9                                           | 53,420                                                                                                               | 3,390                                                   |
| 2020          | 974.0                                    | 928.5                                              | 58, 273                                               | 35, 271                                                              | 328.4                                                   | 18.7                                           | 32,840                                                                                                               | 1,870                                                   |
| 2021          |                                          |                                                    |                                                       |                                                                      | 553.9                                                   | 37.5                                           | 55,390                                                                                                               | 3,750                                                   |
| 2016-<br>2020 |                                          |                                                    |                                                       |                                                                      | 547.6*<br>519.2                                         | 21.25*<br>21.4                                 | 54,760*<br>51,920                                                                                                    | 2,125*<br>2,400                                         |

<sup>1</sup> only includes the propagated growth rate error. An estimation of errors due to the spatial and temporal interpolation is given in Figure 11 and discussed in the manuscript.