
Atmos. Chem. Phys., 24, 11565–11584, 2024
https://doi.org/10.5194/acp-24-11565-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Importance of aerosol composition and
aerosol vertical profiles in global spatial

variation in the relationship between
PM2.5 and aerosol optical depth

Haihui Zhu1, Randall V. Martin1, Aaron van Donkelaar1, Melanie S. Hammer1, Chi Li1, Jun Meng2,
Christopher R. Oxford1, Xuan Liu1, Yanshun Li1, Dandan Zhang1, Inderjeet Singh1, and

Alexei Lyapustin3

1Department of Energy, Environmental & Chemical Engineering,
Washington University in St. Louis, St. Louis, Missouri, USA

2Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA
3Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

Correspondence: Haihui Zhu (haihuizhu@wustl.edu)

Received: 28 March 2024 – Discussion started: 5 April 2024
Revised: 3 August 2024 – Accepted: 27 August 2024 – Published: 16 October 2024

Abstract. Ambient fine particulate matter (PM2.5) is the leading global environmental determinant of mortality.
However, large gaps exist in ground-based PM2.5 monitoring. Satellite remote sensing of aerosol optical depth
(AOD) offers information to help fill these gaps worldwide when augmented with a modeled PM2.5–AOD rela-
tionship. This study aims to understand the spatial pattern and driving factors of this relationship by examining η
( PM2.5

AOD ) using both observations and modeling. A global observational estimate of η for the year 2019 is inferred
from 6870 ground-based PM2.5 measurement sites and satellite-retrieved AOD. The global chemical transport
model GEOS-Chem, in its high-performance configuration (GCHP), is used to interpret the observed spatial
pattern of annual mean η. Measurements and the GCHP simulation consistently identify a global population-
weighted mean η value of 96–98 µgm−3, with regional values ranging from 59.8 µgm−3 in North America to
more than 190 µgm−3 in Africa. The highest η value is found in arid regions, where aerosols are less hygro-
scopic due to mineral dust, followed by regions strongly influenced by surface aerosol sources. Relatively low
η values are found over regions distant from strong aerosol sources. The spatial correlation of observed η val-
ues with meteorological fields, aerosol vertical profiles, and aerosol chemical composition reveals that spatial
variation in η is strongly influenced by aerosol composition and aerosol vertical profiles. Sensitivity tests with
globally uniform parameters quantify the effects of aerosol composition and aerosol vertical profiles on spatial
variability in η, exhibiting a population-weighted mean difference in aerosol composition of 12.3 µgm−3, which
reflects the determinant effects of composition on aerosol hygroscopicity and aerosol optical properties, and a
population-weighted mean difference in the aerosol vertical profile of 8.4 µgm−3, which reflects spatial variation
in the column–surface relationship.
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1 Introduction

Exposure to ambient fine particulate matter (PM2.5) has been
recognized as the predominant environmental risk factor for
the global burden of disease, leading to millions of deaths
annually (Brauer et al., 2024). Even at low PM2.5 concen-
trations, long-term exposure can increase circulatory- and
respiratory-related mortality (Christidis et al., 2019; Pinault
et al., 2016; Weichenthal et al., 2022). Despite the impor-
tance of PM2.5, many countries do not provide publicly ac-
cessible PM2.5 data (Martin et al., 2019). Satellite remote
sensing of aerosol optical depth (AOD), an optical measure
of aerosol abundance, offers information about the distribu-
tion of PM2.5 (Kondragunta et al., 2022). A large community
relies upon the spatial distribution of PM2.5 concentrations
inferred from satellite AOD and modeled PM2.5–AOD rela-
tionships for health impact assessments and epidemiological
analyses of long-term exposure (Brauer et al., 2024; Burnett
et al., 2018; Cohen et al., 2017; Hao et al., 2023). Quantita-
tive applications of satellite AOD for long-term characteriza-
tions of the spatial distribution of PM2.5 would benefit from a
better understanding of the factors affecting the PM2.5–AOD
relationship.

The relationship between satellite AOD and surface PM2.5
can be established through statistical methods, geophysical
methods, or a combination of the two. Statistical methods
use ground-based monitors for training and are well suited
for regions with dense monitoring networks (Di et al., 2016;
Hu et al., 2014; Xin et al., 2014). Geophysical approaches
utilize chemical transport models to simulate the relationship
(η) between PM2.5 and AOD for application to satellite AOD
(van Donkelaar et al., 2006, 2010; He et al., 2021) and thus
depend on accurate model representations of η. Van Donke-
laar et al. (2015, 2016) combined the two types of methods
by applying geographically weighted regression (GWR) to
geophysical PM2.5, further constraining geophysical PM2.5
using ground measurements and other predictors. However,
the accuracy of geophysical PM2.5 remains critical across
vast areas with sparse monitoring, and knowledge about the
factors affecting spatial variability in η is needed to guide
improvements of modeled η and geophysical PM2.5.

Previous studies have identified several factors that affect
η variability, including aerosol vertical distribution; aerosol
hygroscopicity; aerosol optical properties; and ambient me-
teorological factors, such as relative humidity (RH), plane-
tary boundary layer height (PBLH), wind speed, tempera-
ture, and fire events (van Donkelaar et al., 2013; Ford and
Heald, 2016; Guo et al., 2017; Jin et al., 2019; Li et al., 2015;
Wendt et al., 2023). Most studies have focused on temporal
variability in η and have found associations with meteoro-
logical variables, such as PBLH (Chu et al., 2015; Damas-
cena et al., 2021; Gupta et al., 2006; He et al., 2021; Yang
et al., 2019; Zhang et al., 2009). A few studies have exam-
ined regional-scale spatial variation in η with meteorological
and land-type variables, as well as aerosol vertical profiles, in

North America (van Donkelaar et al., 2006; Jin et al., 2020;
Li et al., 2015) and China (Yang et al., 2019). To our knowl-
edge, no studies have examined global-scale factors affecting
spatial variation in η or the effects of chemical composition.

In this work, we examine the knowledge gap regard-
ing spatial variation in η at a global scale. We first collect
data from more than 6000 PM2.5 monitoring sites across
10 networks, along with satellite AOD data, to obtain an
observation-based map of η. We further interpret the global
η distribution using the GEOS-Chem model of atmospheric
composition, incorporating recent improvements in aerosol
size representation, PM2.5 diel variation, and vertical alloca-
tion. By decomposing the simulation of η, we identify two
strong drivers of spatial variability in η: aerosol composition
and aerosol vertical profiles. We conduct sensitivity tests us-
ing GEOS-Chem to study how these two factors vary glob-
ally and how they contribute to spatial variation in η.

2 Methods

2.1 Ground-measured PM2.5

We collect ground-based measurements of PM2.5 for the
year 2019 to produce observational constraints on η

( PM2.5
AOD ), the spatially and temporally varying ratio be-

tween 24 h surface PM2.5 concentrations and total column
AOD at the satellite sampling time. At the time of pa-
per preparation, the year 2019 offered the greatest den-
sity of measurements and the most current emission in-
ventory. We obtain PM2.5 measurements from seven re-
gional networks and three global networks, as shown in
Fig. A1. For the United States, we access data from the
United States Environmental Protection Agency’s Air Qual-
ity System (https://www.epa.gov/outdoor-air-quality-data/
download-daily-data, last access: 12 October 2024), includ-
ing both Federal Reference Method and non-Federal Ref-
erence Method PM2.5 (e.g., from the Interagency Moni-
toring of Protected Visual Environments (IMPROVE) net-
work). PM2.5 data for Canada are from Environment
Canada’s National Air Pollution Surveillance (NAPS) pro-
gram. PM2.5 data for Europe are from the European Envi-
ronment Agency’s Air Quality e-Reporting system (https:
//www.eea.europa.eu/data-and-maps/data/aqereporting, last
access: 12 October 2024). For mainland China, PM2.5 mea-
surements from national and provincial environmental pro-
tection agencies are downloaded from https://quotsoft.net/
air/ (last access: 12 October 2024). For India, PM2.5 data
are originally from the Central Pollution Control Board’s
Continuous Ambient Air Quality Monitoring network and
the US embassies. Data quality checks follow Zhou et
al. (2024). For Australia, observations are sourced from
the Northern Territory (http://ntepa.webhop.net/NTEPA/,
last access: 12 October 2024), Queensland (https://www.
data.qld.gov.au/dataset/, last access: 12 October 2024), and
New South Wales (https://www.dpie.nsw.gov.au/air-quality/
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air-quality-data-services/data-download-facility, last access:
12 October 2024). We require at least 5 d of measurements
for each month for monitoring to be included. Addition-
ally, we obtain PM2.5 measurements from other regions, pro-
vided by the World Health Organization (WHO) Ambient
Air Quality Database (https://www.who.int/data/gho/data/
themes/air-pollution/who-air-quality-database/2022, last ac-
cess: 12 October 2024); OpenAQ (https://openaq.org/, last
access: 12 October 2024); and the Surface Particulate Mat-
ter Network (SPARTAN; https://www.spartan-network.org/,
last access: 12 October 2024), which is co-located with the
Aerosol Robotic Network (AERONET). SPARTAN also pro-
vides filter-based PM2.5 chemical compositions, which are
initially described in Snider et al. (2016). Subsequent devel-
opments in the sampling and analysis procedures of SPAR-
TAN include upgrading the AirPhoton SS5 sampling station
to use a cyclone inlet, an automated weighing system (MTL
AH500E) that improves precision and throughput, additional
black-carbon analysis using the Hybrid Integrating Plate and
Sphere system (White et al., 2016), elements measured via
X-ray fluorescence (Liu et al., 2024), and a global mineral-
dust equation (Liu et al., 2022). We require at least 50 d of
coincident PM2.5 and AERONET AOD measurements for a
SPARTAN site to be included in our analysis.

We also collected publicly available PM2.5 compositional
data to assess the composition simulated with the high-
performance version of GEOS-Chem (GCHP). Long-term
PM2.5 compositional data from the United States Environ-
mental Protection Agency’s Air Quality System, the Euro-
pean Environment Agency’s Air Quality e-Reporting system,
and SPARTAN are included, with a total of 365 sites cover-
ing the US (306), Europe (37), and the Global South (22).

2.2 Satellite AOD

We obtain AOD at 550 nm from the Multi-Angle Imple-
mentation of Atmospheric Correction (MAIAC) algorithm,
which offers AOD at a high spatial resolution of 1 km world-
wide over both land and coastal regions (Lyapustin et al.,
2018). The radiances used in the retrieval are measured by
the twin Moderate Resolution Imaging Spectroradiometer
(MODIS) instruments onboard the Terra and Aqua satellites.
The Terra satellite follows a descending orbital path, cross-
ing the Equator at 10:30 LT, while the Aqua satellite follows
an ascending orbit, with a 13:30 LT equatorial crossing. Both
MODIS instruments offer a wide swath width of 2330 km,
enabling nearly global daily coverage of the Earth (Sayer
et al., 2014). PM2.5 monitoring sites with an annual mean
satellite AOD of less than 0.05 (the background AOD level
over land) are excluded to reduce the influence of retrieval
uncertainties on our analysis.

2.3 AERONET AOD

AERONET is a worldwide sun photometer network that
provides long-term measurements of AOD. We use Ver-
sion 3 of the Level-2 database, which includes an improved
cloud screening algorithm (Giles et al., 2019). We sample
AERONET AOD within ± 15 min of the satellite overpass
time and interpolate to a 550 nm wavelength, based on the
local Ångström exponent at 440 and 670 nm. For SPARTAN
sites, we sample AERONET data coincidentally with SPAR-
TAN aerosol composition to obtain the ground-based obser-
vation of η.

2.4 GEOS-Chem simulation

We simulate η with the chemical transport model GEOS-
Chem (https://www.geos-chem.org, last access: 26 October
2023), driven by offline meteorological data (MERRA-2)
from the Goddard Earth Observing System (GEOS) of the
NASA Global Modeling and Assimilation Office (Schubert
et al., 1993). We use version 13.4.0 of the high-performance
configuration of GEOS-Chem (GCHP; Eastham et al., 2018)
(DOI: https://doi.org/10.5281/zenodo.7254268), which in-
cludes advances in performance and usability (Martin et al.,
2022). The simulation is conducted for the year 2019 on a
C90 cubed-sphere grid corresponding to a horizontal resolu-
tion of about 100 km, with a spin-up time of 1 month.

The GEOS-Chem aerosol simulation includes a sulfate–
nitrate–ammonium (SNA) system (Fountoukis and Nenes,
2007), primary and secondary carbonaceous aerosols (Pai
et al., 2020; Park et al., 2003; Wang et al., 2014), sea salt
(Jaeglé et al., 2011), and both natural (Fairlie et al., 2007;
Meng et al., 2021) and anthropogenic (Philip et al., 2017)
dust. Emissions are processed with the Harmonized Emis-
sions Component (HEMCO) (Lin et al., 2021). The pri-
mary emission data are from version 2 of the Community
Emissions Data System (CEDS v2; Hoesly et al., 2018;
CEDS, 2024) for the year 2019. Emissions from stacks are
distributed vertically (Bieser et al., 2011). Diel variation
in anthropogenic emissions is included (Li et al., 2023).
Resolution-dependent soil NOx , sea salt, biogenic volatile
organic compounds (VOCs), and natural dust emissions are
calculated offline at a native meteorological resolution to pro-
duce consistent emissions across resolutions (Meng et al.,
2021; Weng et al., 2020). Biomass-burning emissions use
version 4 of the Global Fire Emissions Database (GFED4)
at a daily resolution (van der Werf et al., 2017) for the
year 2019. We estimate organic matter (OM) from primary
organic carbon (OC) using an OM/OC parameterization
(Canagaratna et al., 2015; Philip et al., 2014b). For secondary
aerosol components, the concentration at 2 m above the sur-
face is used to calculate PM2.5, following Li et al. (2023).
A 50 % reduction in surface nitrate concentration is applied
to account for the long-standing bias in surface nitrate simu-
lated by GEOS-Chem (Heald et al., 2012; Miao et al., 2020;
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Travis et al., 2022; Zhai et al., 2021; Zhang et al., 2012; see
also Fig. A2 in this paper) and other models, such as CMAQ
(Shimadera et al., 2014), WRF-Chem (Sha et al., 2019), and
the European Monitoring and Evaluation Programme’s Me-
teorological Synthesizing Centre – West (EMEP MSC-W;
Prank et al., 2016). Despite this bias, GEOS-Chem can suffi-
ciently represent variability in nitrate, making it suitable for
applications in studies at global (McDuffie et al., 2021; Wea-
gle et al., 2018) and regional (Geng et al., 2017; Kim et al.,
2015; Philip et al., 2014a; Zhai et al., 2021) scales. Both dry
and wet deposition follow Amos et al. (2012), using a stan-
dard resistance-in-series dry-deposition scheme (Wang et al.,
1998). Wet deposition includes scavenging processes from
convection and large-scale precipitation (Liu et al., 2001).

Global RH-dependent aerosol optical properties are based
on the Global Aerosol Data Set (GADS) (Kopke et al., 1997),
as originally implemented by Martin et al. (2003), with up-
dates for SNA and OM dry sizes (Zhu et al., 2023), hygro-
scopicity (Latimer and Martin, 2019), mineral dust size dis-
tribution (Zhang et al., 2013), and absorbing brown carbon
(Hammer et al., 2016). These updates enable GEOS-Chem
to capture 74 % of the AOD spatial variability in compari-
son to AERONET (Zhu et al., 2023). A slight systematic low
bias relative to MAIAC AOD is found, with an intercept of
−0.05 and a population-weighted mean difference (PWMD)
of −0.04. Low bias in simulated AOD is also reported for
other models, such as CMAQ (Jin et al., 2019) and WRF-
Chem (Benavente et al., 2023). We artificially increase sim-
ulated AOD by 0.04 globally to address this poorly under-
stood systematic bias, which, although minor, is useful for
the representation of η (with the PWMD reduced from 20.6
to 1.9 µgm−3). PM2.5 is calculated as the sum of each com-
ponent at 35 % RH in accordance with common measure-
ment protocols.

2.5 Population

Global population information is obtained from the Gridded
Population of the World, provided by the NASA Socioe-
conomic Data and Applications Center (Center for Interna-
tional Earth Science Information Network, 2018).

2.6 Sensitivity tests with globally uniform parameters

We conduct sensitivity tests for factors affecting spatial vari-
ation in η, with a focus on aerosol composition and aerosol
vertical profiles. To understand the relative importance of
these factors, we impose a constant for each factor and sim-
ulate the corresponding η value. The difference between the
test scenario and the base scenario reflects the change due
to variation in the factor. We use the global population-
weighted mean (PWM) and population-weighted mean dif-
ference (PWMD) to summarize changes, with a focus on the
relevance to population exposure:

XPWM =

∑
j

∑
i

Pi,jXi,j∑
j

∑
i

Pi,j
,

PWMD=

∑
j

∑
i

Pi,j |Xi,j −Yi,j |∑
j

∑
i

Pi,j
,

where i and j are grid box identifiers. X and Y could be any
variables of interest, and |Xi,j −Yi,j | is the absolute value of
their difference. P represents the population density for each
grid box.

The first test imposes globally uniform aerosol chemical
composition, calculated as the global PWM aerosol compo-
nent fraction (Fk,s,PWM), which is expressed as

Fk,s,PWM =

∑
j

∑
i

Pi,jFi,j,k,s∑
j

∑
i

Pi,j
,

where i, j , and k are grid box identifiers along the latitude,
longitude, and vertical layer, respectively. Fs is the fraction of
the aerosol component (s) in the total aerosol mass. This test
keeps the total columnar aerosol mass and aerosol vertical
profile unchanged.

The second test imposes a globally uniform aerosol ver-
tical profile, calculated as the PWM relative vertical profile
(Rk,s,PWM), which is expressed as

Rk,s,PWM =

∑
j

∑
i

Pi,jRi,j,k,s∑
j

∑
i

Pi,j
,

where Ri,j,k,s is the relative dry-mass ratio compared to the
surface. The total mass loading and relative chemical com-
position remain unchanged.

We analyze global and regional variations in both η and
the driving factors. The definitions of the regions used in this
study are summarized in Fig. A3.

3 Results and discussion

3.1 Global spatial pattern of η

Figure 1a shows observation-based annual mean η, inferred
from the ratio of ground-measured PM2.5 to MAIAC AOD.
Measurements are most dense in North America, Europe,
and East Asia. The annual mean η value varies substantially,
from 7.8 µgm−3 in Hawaii to 504 µgm−3 in Mongolia, with
a PWM of 96.1 µgm−3. Higher PWM η values of 154 to
196 µgm−3 exist over desert regions, such as Africa and West
Asia, and PWM η values of 97 to 119 µgm−3 are observed
over regions strongly influenced by anthropogenic aerosols,
such as East Asia and South Asia (Fig. A4 and Table A1).
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Figure 1. (a) Observed (OBS) and (b) simulated (SIM) annual mean η for 2019. Circles represent ground measurement sites from regional
networks or the World Health Organization. Squares represent co-located ground-measured PM2.5 data from SPARTAN and AOD data from
AERONET. PWM stands for the population-weighted mean, while µ refers to the coefficient of variation (the standard deviation divided by
the mean).

Over North America, η values are around 60 µgm−3 in the
east and in California, more than double the values observed
in the Rockies, and are driven by the spatial pattern of sur-
face PM2.5 (Fig. A4). The PWM η value for North America,
at 59.8 µgm−3, is about 30 % lower than the global PWM.
The η pattern found here is similar to that reported by Jin
et al. (2020) for the US. In Europe, η also varies noticeably
between the east and the west, driven by the spatial pattern of
surface PM2.5, as PM2.5 increases by 60 % from west to east,
while AOD increases by only 8 %. The PWM η value for
Europe is 92.3 µgm−3, slightly lower than the global PWM.
In Asia, measured η is concentrated in China and India. In
China, the η spatial pattern shows a clear distinction between
the northern and southern regions, driven by the higher AOD
in the south (Fig. A5), where relative humidity is high. A
similar η spatial pattern and a negative correlation between η
and RH are reported by Yang et al. (2019). In India, η is high-
est in the northwest, where a PWM η value of 129 µgm−3

is observed, and decreases to about 80 µgm−3 toward the
east and the south. Both PM2.5 and AOD follow the same
spatial pattern, while PM2.5 exhibits a stronger decreasing
tendency (Figs. A4 and A5). The PWM η value for Asia is
102 µgm−3, the highest value among populous regions and
6.0 % higher than the global PWM. Globally, from west to
east, η increases by about 70 %, despite the fact that both
PM2.5 and AOD increase more than 3-fold (Fig. A6). The

coefficient of variation (i.e., the standard deviation divided
by the mean) for η is higher in Europe (µ= 0.31) and Asia
(µ= 0.36) than in North America (µ= 0.25; Fig. A6).

Figure 1b shows GCHP-simulated η, the ratio between
simulated 24 h mean surface PM2.5 and simulated total col-
umn AOD at the satellite overpass time. The simulation gen-
erally reproduces the global observations of η, with a ten-
dency for high values in arid regions influenced by dust and a
tendency for low values in regions distant from strong surface
sources. Simulated global PWM η values are 2 % higher than
the observed values (98.1 vs. 96.1 µgm−3), mostly driven
by an overestimation in East Asia (108 vs. 96.9 µgm−3),
which reflects an overestimation of PWM PM2.5 (43.3 vs.
38.0 µgm−3). The simulation generally reproduces the re-
gional spatial pattern in North America and Asia but underes-
timates η variability in Europe as it overestimates η in central
Europe and underestimates η in Eastern Europe, which is due
to a positive bias in simulated PM2.5 in central Europe and a
positive bias in simulated AOD in Eastern Europe. Nonethe-
less, the PWM η value for Europe (83.6 µgm−3) is within
9.4 % of the observations. Globally, there is overall consis-
tency between simulated η and observed η, with a correlation
of 0.59, resulting in a high degree of consistency between
geophysical PM2.5 and measured PM2.5 (r = 0.89; Fig. A6).
Evaluation of the simulation of PM2.5 chemical composition
versus ground-based measurements reveals a high degree of

https://doi.org/10.5194/acp-24-11565-2024 Atmos. Chem. Phys., 24, 11565–11584, 2024



11570 H. Zhu et al.: Spatial variation in the PM2.5–AOD relationship and the driving factors

consistency (Fig. A2), which supports further assessment of
the factors affecting η.

We explore the dominant driving factors for spatial varia-
tion in η by calculating the spatial correlation between each
candidate factor and observation-based η. The candidate fac-
tors examined include meteorological fields (MERRA-2),
aerosol vertical profiles, and aerosol composition, as col-
lected from the GCHP simulation or SPARTAN. Meteoro-
logical fields include those commonly regarded as represent-
ing temporal variation in η, such as PBLH, RH at 700 hPa,
wind speed at 10 m, and temperature at 2 m (Chu et al.,
2015; Damascena et al., 2021; He et al., 2021; Yang et al.,
2019). The aerosol vertical profile is represented as the AOD
fraction below 1 km (i.e., the AOD percentage below 1 km).
The aerosol composition includes SNA, OM, dust, black
carbon, and sea salt, all represented as fractional contribu-
tions to surface PM2.5 (expressed as percentages). Figure 2
shows the spatial correlation of annual mean factors ver-
sus observation-based η. Aerosol components, particularly
those with strong primary sources (dust, OM, and black
carbon), exhibit the strongest correlations with observation-
based η (> 0.27). Significant positive correlations are found
for mineral dust and black carbon, both of which are non-
hygroscopic or weakly hygroscopic. Significant negative cor-
relations are found for organic matter and sea salt, reflect-
ing the weak connection between surface concentrations and
AOD aloft. The processes are further discussed in Sect. 3.2
and 3.4. The aerosol vertical profile exhibits a moderate cor-
relation with η (0.14), which is notably higher than that
of any meteorological factors (6 0.10). Ground-based data
from SPARTAN and AERONET corroborate the correla-
tion between aerosol composition and η (Fig. A7). Thus,
in Sect. 3.2–3.4, we focus further analysis on the two main
drivers of η: aerosol composition and aerosol vertical pro-
files.

The drivers of spatial variation in η found here differ from
the drivers of temporal variation in η observed in prior work
(e.g., He et al., 2021), reflecting the different processes in-
volved. Meteorological parameters drive short-term variabil-
ity in the aerosol vertical profile, such as day-to-day variation
in mixed-layer depth or in advection from a point source. In
contrast, the spatial variation in annual mean η reflects the
spatial variation in processes affecting the long-term relation-
ship between surface PM2.5 at a controlled RH of 35 % and
AOD at an ambient RH. Aerosol composition and the aerosol
vertical profile reflect spatial variation in aerosol hygroscop-
icity, mass extinction efficiency, and sources. The follow-
ing sections explore how aerosol composition and aerosol
vertical profiles vary globally and examine how they affect
the spatial pattern of η by conducting two sensitivity tests.
In each sensitivity test, we replace the spatial variability in
a factor with a globally uniform value. The variability in
aerosol composition and aerosol vertical profiles is discussed
in Sect. 3.2 and 3.3, respectively. The sensitivity test results
are discussed in Sect. 3.4.

3.2 Spatial variability in aerosol composition

Figure 3 shows the simulated PWM aerosol composition
globally and regionally, as well as the global area-weighted
mean (AWM). Figure 3a shows the compositional contri-
bution to PM2.5. Globally, dust is the leading PWM PM2.5
component (34.7 %), followed by OM (31.9 %) and SNA
(29.3 %). Figure 3b shows the compositional contribution
to AOD. The PWM AOD composition is more evenly dis-
tributed, with a larger contribution from SNA (49.9 %), fol-
lowed by smaller contributions from OM (27.2 %) and dust
(16.1 %). Overall, aerosols that are more hygroscopic, such
as SNA, tend to contribute a larger fraction of AOD at an
ambient RH, while aerosols that are less hygroscopic, such
as mineral dust, tend to contribute a larger fraction of PM2.5
at a controlled RH of 35 %. The AWM PM2.5 and AOD com-
positions exhibit weaker contributions from SNA, primarily
reflecting a larger contribution from dust in remote regions
compared to more densely populated areas. Over populous
regions, such as North America, Europe, and Southeast Asia,
the SNA and OM fractions are greater than the global mean
(Fig. 3). Arid regions, such as West Asia, the Middle East,
North Africa, and Sub-Saharan Africa, exhibit large fractions
of non-hygroscopic mineral dust that (1) reduce the aerosol
mass extinction efficiency, yielding less AOD per unit mass,
and (2) are unaffected by the controlled RH of PM2.5. Both of
these factors increase η in dusty regions compared to regions
dominated by hygroscopic SNA aerosols.

3.3 Spatial variability in aerosol vertical profiles

Figure 4 shows the AOD fraction below 1 km in the GEOS-
Chem simulation. Globally, 35.3 % of the PWM AOD is be-
low 1 km. The PWM value is greater than the AWM value
since populated areas tend to have more surface emissions
of particles and precursors. Over North America, Europe,
and East Asia, the PWM surface AOD fractions are much
higher than the medians and AWM, indicating high spatial
heterogeneity between urban and remote areas. Europe ex-
hibits the highest variation and the largest discrepancy be-
tween the PWM and AWM, reflecting the largest spatial het-
erogeneity in the aerosol vertical profile, driven by influences
from regional pollution, marine aerosols, and transported
dust (Zhao et al., 2018). Southeast Asia has the highest sur-
face AOD fraction and large variation. Local sources, long-
range-transported dust, and the influence of trade winds all
contribute to the unique spatial variation in aerosol vertical
profiles in this region (Banerjee et al., 2021; Nguyen et al.,
2019). Globally, PWM values exhibit less variation than
AWM values, indicating moderate variations in the aerosol
profile across populous areas.

3.4 Sensitivity tests with globally uniform parameters

Figure 5 shows global changes in the spatial variation in
η due to variations in aerosol chemical composition (panel
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Figure 2. Spatial correlation between annual mean modeled parameters and observation-based η. Blue bars indicate positive correlations.
Red bars indicate negative correlations. The stars above each bar indicate the p value associated with each correlation: “∗∗∗” indicates a p
value lower than 0.001, and “∗∗” indicates a p value lower than 0.01.

Figure 3. Global and regional PWM contributions of aerosol composition to surface PM2.5 (a) and AOD (b). The global area-weighted
mean (AWM) over land is also included and represented in the second bar.

https://doi.org/10.5194/acp-24-11565-2024 Atmos. Chem. Phys., 24, 11565–11584, 2024



11572 H. Zhu et al.: Spatial variation in the PM2.5–AOD relationship and the driving factors

Figure 4. (a) Map of the AOD fraction below 1 km. (b) Global and regional statistics for the AOD fraction below 1 km. Black triangles show
the area-weighted mean. Red circles show the PWM. The line inside each box represent the sample median. The top and bottom edges of
the boxes represent the 75th and 25th quartiles, respectively. Vertical bars represent the maximum and minimum values within 1.5 times the
interquartile range. The dashed line indicates the global PWM.

(a)) and the aerosol vertical profile (panel (b)), the two main
drivers identified in Fig. 2. Globally, neglecting spatial vari-
ation in aerosol composition induces a 12.3 µgm−3 PWMD
in spatial variation in η. Both PM2.5 and AOD are strongly
affected by aerosol composition, following a similar spatial
pattern (Fig. A8). Over middle- and low-latitude areas, the
change in AOD is stronger than that in PM2.5 since AOD at
an ambient RH is more sensitive to hygroscopicity changes.
This yields an opposite pattern in η. Neglecting spatial vari-
ation in chemical composition reduces η over North Africa
and the Middle East, desert regions where aerosols contain
more weakly hygroscopic components, such as mineral dust;
in contrast, populous areas contain more secondary inor-
ganic aerosols (Fig. 3). For smaller deserts in the southwest-
ern US, Argentina, and southwestern Africa, the dust frac-
tions for surface aerosols are higher than the global mean
(36 %, 76 %, and 49 %, respectively), but the dust fractions
for AOD are similar to the global mean (15 %, 25 %, and
14 %, respectively). Therefore, neglecting spatial variation in
chemical composition increases η over these small deserts
by increasing the fraction of hygroscopic components in
PM2.5 and leaving AOD almost unchanged (Fig. A8). Ne-

glecting spatial variation in chemical composition also re-
duces η over boreal forests, where surface aerosols are more
hygroscopic compared to those in populous areas and show
strong changes, while changes are less pronounced for col-
umn aerosols (Fig. A8). Moreover, neglecting spatial varia-
tion in chemical composition increases η over the eastern US
and eastern China, where PM2.5 contains more hygroscopic
SNA and less dust than the global mean. It also increases η
in coastal regions, where aerosols contain more hygroscopic
sea salt than the global mean.

Neglecting spatial variation in the aerosol vertical pro-
file induces an 8.4 µgm−3 PWMD in spatial variation in η
(Fig. 5), following the spatial pattern of the change in surface
PM2.5 (Fig. A9). The most apparent feature is an increase in
η throughout the remote Northern Hemisphere, driven by an
increased aerosol fraction near the surface, where the frac-
tion is normally small (Fig. 4). The uniform aerosol vertical
profile decreases η over northern Africa and biomass-burning
regions of boreal forests, the Amazon, and Indonesia, driven
by a decreased aerosol fraction near the surface in regions
where this fraction is normally high.
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Figure 5. Changes in η (test–base) for each sensitivity test. In the
first test, a global PWM aerosol composition replaces the actual
composition (a). In the second test, a global PWM aerosol profile re-
places the actual profile (b). The number in the bottom-right corner
of each panel indicates the population-weighted mean difference
(PWMD).

4 Conclusion

Understanding the global variation in the PM2.5–AOD re-
lationship (η) offers insights into the geophysical infer-
ence of PM2.5 from satellite AOD observations. We col-
lected ground-based PM2.5 measurements from 6870 sites
and MODIS MAIAC satellite AOD throughout 2019 to ob-
tain, for the first time, a global-scale observation-based η
map. Observed annual mean η values range from 7.8 µgm−3

in Hawaii to 504 µgm−3 in Mongolia. We observed en-
hanced η values of 154 to 196 µgm−3 over arid regions,
such as Africa and West Asia, due to the low aerosol ex-
tinction efficiency in these regions. Moderate η values of
97 to 119 µgm−3 were found in industrial areas, such as
East Asia and South Asia, where anthropogenic emissions
increase near-surface PM2.5 concentrations. Over remote ar-
eas, low η values (< 50 µgm−3) were usually observed.

We simulated global annual mean η using the chemi-
cal transport model GEOS-Chem in its high-performance
configuration (GCHP). The simulation generally represented
the observed η values with a PWM within 3 % (98.1 vs.
96.1 µgm−3) and a correlation of 0.59 across the 6780 mea-
surement sites. We examined the correlation between the
simulation and measurements to identify the two most im-
pactful drivers for spatial variation in η – aerosol composition
and aerosol vertical profiles – both of which strongly affect
the annual mean relationship between columnar AOD at an
ambient RH and surface PM2.5 at a controlled RH of 35 %.
We subsequently conducted sensitivity tests by eliminating
the spatial variation in each of the two drivers and quanti-
fied the impact on spatial variability in η. Imposing a glob-
ally uniform aerosol composition led to pronounced changes
(i.e., a PWMD of 12.3 µgm−3), reflecting how changes in
aerosol composition affect both AOD and surface PM2.5 due
to the effects of aerosol hygroscopicity on both quantities.
Imposing a globally uniform aerosol vertical profile had a
moderate effect (i.e., a PWMD of 8.4 µgm−3), reflecting
changes in the fraction of aerosol near the surface.

These findings motivate additional efforts to develop sim-
ulations of aerosol composition and aerosol vertical profiles.
Promising avenues include (1) enhancing global long-term
measurements of PM2.5 chemical composition to evaluate
and improve simulations; (2) exploiting new and emerging
information about aerosol type from satellite remote sensing
(e.g., the PACE (Plankton, Aerosol, Cloud, ocean Ecosys-
tem) and MAIA (Multi-Angle Imager for Aerosols) mis-
sions); (3) advancing simulations at a finer spatial resolution
to better represent processes affecting aerosol composition
and vertical profiles; (4) leveraging aircraft, lidar, and col-
lected AOD-to-PM2.5 measurements for constraints on verti-
cal profiles; and (5) exploiting nascent capabilities in apply-
ing satellite remote sensing (e.g., the TROPOspheric Mon-
itoring Instrument (TROPOMI), the “Tropospheric Emis-
sions: Monitoring of Pollution” (TEMPO) instrument, and
the Geostationary Environment Monitoring Spectrometer
(GEMS)) for top-down constraints on emissions that affect
aerosol composition.
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Appendix A

Figure A1. PM2.5 measurement sites from publicly available networks. EPA: Environmental Protection Agency. FRM: Federal Reference
Method. CPCB: Central Pollution Control Board.

Figure A2. Normalized mean bias (NMB) between simulated PM2.5 chemical composition and ground measurements from the Chemical
Speciation Network (CSN), the IMPROVE network, the EMEP database, and SPARTAN. The original simulation is the out-of-the-box
edition of version 13.4.0 of GCHP, while the updated simulation includes certain adjustments, such as GFED4.1s emissions at a daily scale
(where GFED4.1s refers to version 4.1 of the Global Fire Emissions Database with a small fire boost), diel variation, the vertical distribution
of anthropogenic emissions, and a 50 % reduction in nitrate concentration. BC: black carbon. SS: sea salt.
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Figure A3. Region definitions.

Figure A4. Observed (a) and simulated (b) annual mean PM2.5 for 2019. Circles represent measurement sites from regional networks or
those reported by the WHO. Squares represent measured PM2.5 from SPARTAN. PWM stands for the population-weighted mean, while µ
refers to the coefficient of variation.
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Figure A5. Satellite-retrieved (a) and GCHP-simulated (b) annual mean AOD for 2019. Squares represent ground-measured AOD from
AERONET. PWM stands for the population-weighted mean, while µ refers to the coefficient of variation.

Table A1. Regional population-weighted mean η, PM2.5, and AOD from both observations and simulations. Geophysical PM2.5 is also
included. Coefficients of variation are given in parentheses. Regional means and coefficients of variation for North America, Europe, and
East Asia can be found in Fig. A6.

Region South Asia Southeast
Asia

West Asia Latin
America

Middle East North Africa Sub-Saharan
Africa

Australia

No. of sites 220 5 43 2 142 32 3 6

η

(µgm−3)
Observed 119.5

(0.36)
111.4
(0.21)

154.0
(0.23)

72.0
(0.29)

117.5
(0.51)

135.0
(0.32)

196.0
(0.01)

187.8
(0.34)

Simulated 95.0 (0.14) 93.8 (0.18) 93.4 (0.03) 74.1 (0.04) 86.6 (0.18) 135.8 (0.19) 105.9 (0.01) 128.4 (0.54)

PM2.5
(µgm−3)

Observed 75.7
(0.45)

40.6
(0.26)

22.0
(0.21)

12.0
(0.23)

20.4
(0.36)

32.2
(0.53)

24.0
(0.00)

46.3
(0.29)

Simulated 64.9 (0.37) 38.1 (0.23) 20.8 (0.08) 20.9 (0.06) 10.1 (0.30) 47.2 (0.52) 16.7 (0.03) 56.6 (0.87)

Geophysical 59.9
(0.31)

36.1
(0.43)

13.9
(0.08)

12.4
(0.08)

17.6
(0.39)

33.0
(0.40)

12.9
(0.03)

37.0
(0.99)

AOD
(unitless)

Observed 0.63 (0.29) 0.38 (0.30) 0.14 (0.08) 0.17 (0.03) 0.20 (0.32) 0.23 (0.30) 0.12 (0.01) 0.27 (0.52)

Simulated 0.69 (0.36) 0.40 (0.12) 0.22 (0.09) 0.28 (0.02) 0.21 (0.23) 0.33 (0.34) 0.16 (0.01) 0.37 (0.47)
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Figure A6. Scatter plots of simulated and observed η (top row), simulated and ground-measured PM2.5 (second row), simulated and MAIAC
AOD (third row), and geophysical and observed PM2.5 (bottom row). The red line shows the line of best fit using reduced-major-axis linear
regression. Insets in the top-left corner of each scatter plot show the coefficient of determination (R2), line of best fit, normalized root-
mean-square deviation (NRMSD), and total number of data points (N). The bottom-right insets show the population-weighted means of the
observed and simulated/geophysical estimates for each dataset; the coefficients of variation are given in parentheses. Detailed regional means
and coefficients of variation for other regions can be found in Table A1. N-Am: North America. Eu: Europe. E-As: East Asia.
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Figure A7. Correlation with η with respect to ground-measured aerosol fractional compositions from SPARTAN. Organic matter is inferred
from the residual (Snider et al., 2016). Blue bars indicate positive correlations. Red bars indicate negative correlations. The stars above each
bar indicate the p value associated with each correlation: “∗∗∗” indicates a p value lower than 0.001, “∗∗” indicates a p value lower than
0.01, and “∗” indicates a p value lower than 0.5.

Figure A8. Changes in PM2.5 (a) and AOD (b) (test–base) when imposing a global PWM aerosol composition.
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Figure A9. Changes in PM2.5 (a) and AOD (b) (test–base) when imposing a global PWM aerosol profile.

Data availability. GEOS-Chem in its high-performance
configuration (version 13.4.0) can be downloaded from
https://doi.org/10.5281/zenodo.6512251 (The International
GEOS-Chem User Community, 2022).
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