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Abstract. Global-mean surface temperature rapidly increased 0.29± 0.04 K from 2022 to 2023. Such a large
interannual global warming spike is not unprecedented in the observational record, with a previous instance
occurring in 1976–1977. However, why such large global warming spikes occur is unknown, and the rapid
global warming of 2023 has led to concerns that it could have been externally driven. Here we show that cli-
mate models that are subject only to internal variability can generate such spikes, but they are an uncommon
occurrence (p= 1.6 %± 0.1 %). However, when a prolonged La Niña immediately precedes an El Niño in the
simulations, as occurred in nature in 1976–1977 and 2022–2023, such spikes become much more common
(p= 10.3 %± 0.4 %). Furthermore, we find that nearly all simulated spikes (p= 88.5 %± 0.3 %) are associated
with El Niño occurring that year. Thus, our results underscore the importance of the El Niño–Southern Oscil-
lation in driving the occurrence of global warming spikes such as the one in 2023, without needing to invoke
anthropogenic forcing, such as changes in atmospheric concentrations of greenhouse gases or aerosols, as an
explanation.

1 Introduction

Global-mean surface temperature (GMST) has been rising
since 1850 and more rapidly since the mid-20th century,
principally because of human activities (IPCC, 2021). Ob-
servational (Lenssen et al., 2019; Morice et al., 2021; Rohde
and Hausfather, 2020) analyses showed that GMST reached
its highest recorded value in 2023, making it the warmest
year on record. The rapid increase in annual-mean GMST of
0.29± 0.04 K (average of three observational datasets; Ap-
pendix A) in 2023 relative to 2022, an increase that occurs
over 1–2 decades usually, has not only been a cause for con-
cern societally but also scientifically as its causes were not
obvious (Esper et al., 2024; Jiang et al., 2024; Kuhlbrodt et

al., 2024; Rantanen and Laaksonen, 2024; Schmidt, 2024).
Potential causes for this year-on-year spike include an-
thropogenic reasons such as greenhouse gas increases and
aerosol pollution reductions or natural reasons such as in-
creased solar activity, volcanic-induced stratospheric water
vapor increases, and natural climate variability such as the El
Niño–Southern Oscillation phenomenon (ENSO) (Schmidt,
2024). Most studies have focused on the external forcing as-
pects, particularly the role of aerosol pollution reductions,
rather than quantifying the role of internal variability (Get-
telman et al., 2024; Quaglia and Visioni, 2024; Schoeberl et
al., 2024; Watson-Parris et al., 2024; Yoshioka et al., 2024;
Zhang et al., 2024). This study focuses on the latter, and we
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will argue that ENSO is the primary reason for global warm-
ing spikes.

ENSO is a mode of internal variability in the climate sys-
tem that comprises a positive phase, El Niño, and a negative
phase, La Niña (Trenberth, 1997). El Niño or La Niña occurs
every few (3–7, typically) years in the tropical Pacific Ocean
and encompasses a global-scale rearrangement of temper-
atures, winds, sea level pressures, atmospheric convection,
clouds, moisture, and radiation (Trenberth, 1997; Clement et
al., 1996; Peng et al., 2024; Raghuraman et al., 2019; Soden,
1997). El Niño brings anomalous warmth to the central and
eastern Pacific Ocean and to other parts of the tropics with
a lag, which increases GMST, and vice versa for La Niña
(Mann and Park, 1994; Mann et al., 2000). However, the
degree of association of ENSO with global warming spikes
has not yet been shown. An El Niño event occurred in 2023,
which was preceded by a prolonged period of La Niña con-
ditions from 2020–2022.

In the observational record since 1950, 2023 is not the
only year with a global warming spike of this magnitude
(an increase in interannual GMST greater than 0.25 K (Ap-
pendix A)) to have occurred; 1977 too had a spike (0.31±
0.04 K). Both of these spikes occurred during an El Niño year
and after a prolonged La Niña (1973–1976 and 2020–2022)
(Fig. 1a). The spatial distribution of the 2023 spike resembles
the canonical El Niño spatial pattern (Fig. 1b) (Peng et al.,
2024). Thus, 2023 is not unprecedented in producing a spike,
and the observational record suggests a strong correlation be-
tween global warming spikes and ENSO (of the four long La
Niña–El Niño transitions since 1950, two have led to spikes,
i.e., p = 50 %). However, given the short record (74 years), it
is difficult to draw conclusions based on a post hoc analysis
of just two events. As a result, we turn to all available multi-
centennial to multi-millennial global climate model simula-
tions spanning 58 021 years across 64 models with no human
influence (“piControl”; Table A1 in Appendix A) (Eyring et
al., 2016; Delworth et al., 2006; Gnanadesikan et al., 2006;
Vecchi et al., 2014; Rugenstein et al., 2019).

In each model, we quantify the probability of a spike
(p(spike); Eq. A1 in Appendix A), the probability of a
spike occurring given a long La Niña–El Niño transition
(p(spike | long La Niña+El Niño); Eq. A2), the probabil-
ity of a spike occurring given a long La Niña occurring
in prior years (p(spike | long La Niña); Eq. A3), the prob-
ability of a spike occurring given an El Niño occurring
that year (p(spike |El Niño); Eq. A4), and the probability
of a spike associated with an El Niño occurring during
the year (p(El Niño | spike); Eq. A5). In the following sec-
tions we quantify the critical role ENSO plays in generating
global warming spikes (Sect. 2) and present our conclusions
(Sect. 3). Throughout our study we focus on the spike/inter-
annual GMST change, rather than the record that a particular
year may set.

2 Results

We find that spikes happen 1.6 %± 0.1 % (multi-model mean
(MMM)) of the time on average in unforced model simu-
lations (p(spike) in Fig. 1c). The models show little inter-
model spread, with a minimum–maximum range of p(spike)
of 0 %–9 %. That is, spikes are uncommon but can occur
solely from internally generated climate variability. Given
a long La Niña in the years prior to the spike followed by
an El Niño during the spike year, the probability of a spike
increases over 6-fold (compared with unconditional prob-
ability p(spike)) to 10.3 %± 0.4 % on average in models
(MMM; Fig. 1c’s p(spike | long La Niña+El Niño)). Thus,
global warming spikes become much more likely during El
Niño events preceded by a long La Niña – even if they are not
to be expected (p= 10.3 %) and internal variability can pro-
duce such large spikes in GMST without invoking external
forcing. The models show considerable inter-model spread
with a minimum–maximum range of 0 %–52 %; i.e., one
model suggests no impact of a long La Niña–El Niño transi-
tion generating a spike, while another suggests a one-in-two
chance of a spike occurring given a prolonged La Niña–El
Niño transition.

In addition to the impact a long La Niña–El Niño tran-
sition has on spikes, the individual impact of a long La
Niña or an El Niño on a spike is quantified below. Given a
long La Niña in the years prior to the spike, the probability
of a spike amounts to 6.5 %± 0.3 % on average in models
(MMM; Fig. 1c’s p(spike | long La Niña)). Similarly, given
an El Niño during the spike year, the probability amounts
to 6.3 %± 0.2 % on average in models (MMM; Fig. 1c’s
p(spike |El Niño)). The models show less inter-model spread
in p(spike |El Niño) compared to p(spike | long La Niña).
Overall, the probability that a long La Niña or an El Niño
can help generate a spike individually is lower than when the
two are combined as a sequence of events. This shows the
importance of how a long La Niña–El Niño transition can
increase the odds of a global warming spike.

So, ENSO can substantially increase the odds of warming
spikes, but is ENSO a dominant driver of spikes? To explore
this question, we compute the probability that El Niño events
co-occur with a spike (p(El Niño | spike)). Spikes show a
strong association with an El Niño occurring that year: the
percentage of spikes associated with El Niño conditions
is 88.5 %± 0.3 % on average in models (MMM; Fig. 1c’s
p(El Niño | spike)). Thus, virtually all spikes are associated
with El Niño conditions that year. In fact, in over half of the
models (38 / 64), the spike is always associated with El Niño
conditions during the year; i.e., this probability is 100 %. One
example of this is the NOAA GFDL CM4 model, where each
of its spikes is associated with an El Niño event occurring
during the year of the spike. This El Niño signal is clearly
seen in the spatial pattern of one of the spikes in Fig. 1d. This
fully coupled climate model has freely evolving sea surface
temperatures, i.e., independent from 2023 observations, and
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yet its internally generated spike’s spatial pattern shows strik-
ing resemblance to the observed 2023 spike’s spatial pattern
(Fig. 1b, d): warming in the central–eastern Pacific; cooling–
warming dipole in the South Pacific; and warming in the At-
lantic, Arctic, Africa, and Australia.

Sensitivity tests

Below, we test the sensitivity of our results to choices in
the ENSO metric, the annual-mean definition, and the ob-
servational dataset (Table 1). We find that our results remain
robust. First, we use an alternative ENSO metric, the rela-
tive Niño3.4 index, to test for the impact of different ENSO
amplitudes/definitions (Van Oldenborgh et al., 2021). The
MMM p(spike | long La Niña+El Niño) is 10.3 %± 0.4 %
for the regular Nino3.4 metric and 10.3 %± 0.8 % for the
relative Nino3.4 index, i.e., identical values on average. Note
that p(spike) remains unchanged by definition, as it is an un-
conditional probability, i.e., independent of ENSO.

Second, due to a lag between ENSO and GMST,
we computed the probabilities using a September–August
annual-mean definition to test if the influence of ENSO
on spikes changes. The MMM p(spike)= 2.3 % and
p(spike | long La Niña+El Niño)= 17.4 %, compared with
the regular January–December annual-mean definition prob-
abilities of 1.6 % and 10.3 %, respectively. This implies that
the probability increases over 7-fold, compared to over 6-
fold in the regular definition. Thus, the September–August
annual-mean definition has a larger influence on spikes as El
Niño continues to impact GMST even the following year.

Third, we test how sensitive our results are to the
choice of the individual observational dataset and its un-
certainty. GISTEMP has a slightly smaller spike and a
slightly larger uncertainty when compared with the aver-
age of the three datasets, resulting in a smaller spike thresh-
old. This yields larger probabilities: MMM p(spike)= 2.9 %
and p(spike | long La Niña+El Niño)= 16.8 %. HadCRUT5
and Berkeley Earth Surface Temperature have slightly larger
spikes and equal or slightly smaller uncertainties when
compared with the average of the three datasets, resulting
in a larger spike threshold. This yields smaller probabili-
ties: MMM p(spike)= 1.3 % and 1.0 %, respectively, and
p(spike | long La Niña+El Niño)= 8.3 % and 6.8 %, respec-
tively. The change in p(spike) can be visualized in the prob-
ability distribution in Fig. A1 in Appendix A: an increase
in the spike threshold value (going further right on the x
axis) reduces the probability of a spike due to the Gaus-
sian nature of the distribution. Overall, the average of these
three probabilities is 10.6 %, nearly identical to the probabil-
ity computed based on the average of the three spike defi-
nitions (10.3 %± 0.4 %), placing confidence in our methods.
Furthermore, in all three datasets, the 6-fold increase in the
probability is maintained.

3 Conclusions and discussion

Our results show that global warming spikes can happen
without any human influence. Such global warming spike
events seem uncommon when unconditioned on ENSO his-
tory. But when conditioned on the occurrence of a long La
Niña–El Niño transition, these global warming spikes be-
come much more common. We underscore that our find-
ings regarding the association of global warming spikes
with ENSO do not undermine the vast body of literature on
how anthropogenic activities are causing long-term global
warming (IPCC, 2021). However, ENSO variability against a
background warming trend may lead to year-on-year spikes
that are also historical temperature records (Forster et al.,
2024; Min, 2024).

Previous work concluded that it is extremely unlikely that
internal variability alone can explain the September 2023
GMST spike (Rantanen and Laaksonen, 2024; hereafter
RL24). However, our results put 2023 temperatures into a
broader context and emphasize that internal variability plays
a central role in explaining the annual-mean temperature
spike. The apparent contrast between our conclusions and
those of RL24 arises from differences in our approaches
to the analysis. RL24 focus on a single month and define
a spike/jump as relative to the previous record (Septem-
ber 2020). Temperatures across the multi-year gaps between
monthly records may be influenced by different factors such
as lower-frequency variability or anthropogenic forcing. By
contrast, we focus on the annual mean and define a spike
as relative to the previous year, considering continuous tran-
sitions that can be related to interannual variability. They
use forced simulations, while we use unforced simulations
and an order of magnitude of more data. They consider only
the unconditional probability, for which the probability of
a spike is divorced from the underlying atmosphere–ocean–
climate processes. We compute the conditional probability,
which reveals the central role of ENSO in explaining year-
to-year temperature spikes. Regarding the September 2023
spike, RL24 find that the September 2023 GMST beat its pre-
vious record by 0.5 K, and this margin is outside the realm of
internal variability (∼ 1 % probability). We find a similar re-
sult with our methodology of GISTEMP’s GMST in Septem-
ber 2023 increasing 0.59 K relative to September 2022 and
piControl simulations showing this spike being exceptionally
unlikely: p(spikeSep)= 0.01 %. However, we also find other
such examples of small probabilities (< 1 % probability) in
other months and years outside of 2023: models simulate
spikes of the magnitude of February 1994–1995’s spike with
a probability p(spikeFeb)= 0.13 % and May 1976–1977’s
spike with a probability of p(spikeMay)= 0.1 %.

Looking forward to 2024, our unforced climate model
simulations can provide some perspective on how likely
another spike in GMST will be. We find that the proba-
bility there are two back-to-back spikes in the models is
0.02 %. Thus, back-to-back spikes are rare, but when they
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Figure 1. (a) Annual-mean global-mean surface temperature (GMST) anomalies (baseline 1951–1980; black) and monthly-mean Oceanic
Niño Index (detrended; grey) from NASA GISTEMP observations. Dots represent GMST spikes (1GMST> 0.25 K) from 1976 to 1977 and
2022 to 2023. (b) Spatial pattern of surface temperature change from 2022 to 2023, i.e., 2023 spike, from NASA GISTEMP observations.
(c) Probabilities based on Eqs. (A1)–(A5). Dots denote each model, and crosses denote the multi-model mean (MMM). (d) Spatial pattern of
a surface temperature change from year 495 to year 496 in one of the 64 models’ piControl simulations analyzed (GFDL CM4) is provided
as an example.

Table 1. Sensitivity of results to choices in the ENSO metric (relative Niño3.4; Van Oldenborgh et al., 2021), the annual-mean definition
(September–August), and the observational dataset (GISTEMP, HadCRUT5, and Berkeley Earth Surface Temperature). Multiplicative factor
refers to the ratio p(spike | long La Niña+El Niño)

p(spike) .

Sensitivity parameter Spike (1Ts; Spike p(spike) (%) p(spike | long La Niña Multiplicative
interannual threshold +El Niño) (%) factor (unitless)

GMST change) (K)
(K)

Relative Niño3.4 0.29± 0.04 0.25 1.6 10.3 6.4
Sep–Aug annual mean 0.29± 0.04 0.25 2.3 17.4 7.6
GISTEMP 0.27± 0.05 0.22 2.9 16.8 5.8
HadCRUT5 0.30± 0.04 0.26 1.3 8.3 6.4
Berkeley 0.30± 0.03 0.27 1.0 6.8 6.8
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do occur, we find that it is often associated with a long
El Niño. Tropical Pacific conditions have turned neutral
over 2024 (https://www.climate.gov/news-features/blogs/
enso/september-2024-enso-update-binge-watch, last access:
September 2024), suggesting that the probability of another
global warming spike (another 0.25 K increase or more in
GMST) in 2024 is low. Looking further forward, model pro-
jections diverge on whether there will be an increase or de-
crease in the number of El Niños and long La Niñas due
to greenhouse gas warming (Cai et al., 2015; DiNezio et
al., 2012; Vecchi et al., 2008). If the probability of spikes
given these ENSO events remains the same, this would imply
that in the future, the number of global warming spikes in-
creases or decreases depending on ENSO frequency changes
(Eq. A6). Finally, future research should quantify the im-
pact of other forms of internal variability such as the Atlantic
Multidecadal Oscillation (Li et al., 2024) and its relation/co-
occurrence with ENSO (Fig. 1b and d show similar warming
patterns in the Atlantic) on the 2023 spike.

Appendix A: Methods

We define a spike as a year-to-year change in GMST (1Ts;
Fig. A1) that exceeds 0.25 K. This value is based on the 2023
increase in GMST relative to 2022 being 0.29±0.04 K (aver-
age of GISTEMP, HadCRUT5, BEST estimates (Lenssen et
al., 2019; Morice et al., 2021; Rohde and Hausfather, 2020);
95 % anomaly uncertainty). Thus, 0.25 K is a lower bound.
The piControl simulations in models are fully coupled simu-
lations that have freely evolving temperatures with no human
influence. We use models’ full time series and only those
that span at least 500 years. Climate models differ in their
representations of ENSO, and this may impact the probabili-
ties we compute for each model. This is why we analyze all
available climate models (64), not just a subset. Furthermore,
not only did we analyze models in this generation (CMIP6),
but also some models from previous generations (CMIP3
and CMIP5). The multi-model mean (MMM) is reported by
weighting by each model’s time series length. Simple averag-
ing yields similar results. Uncertainties are reported as 95 %
confidence intervals, i.e., 1.96× σ

√
n

where σ is the standard
deviation of a probability across models and n is the number
of models.

We define a long La Niña event to be when the detrended
Oceanic Niño Index (ONI) exceeds −0.5 K for at least 18
consecutive months (this threshold was chosen to mimic
the conditions leading up to 2023). The ONI is defined
as the 3-month running mean of sea surface temperature
monthly anomalies in the Niño3.4 region, a central Pacific
region spanning 5° S–5° N, 190–240° E that is widely used
for defining ENSO events (https://origin.cpc.ncep.noaa.
gov/products/analysis_monitoring/ensostuff/ONI_v5.php,
last access: September 2024). We define an El Niño event
as when the detrended ONI exceeds 0.5 K for at least 5

consecutive months. A long La Niña–El Niño transition is
defined as one that occurs in less than a year.

The probability of a spike is given by

p (spike)=
number of spikes

number of years in time series
. (A1)

The probability of a spike given a sequence of a long La Niña
event occurring in prior years followed by an El Niño event
occurring the year of the spike can be expressed as a condi-
tional probability:

p (spike | long La Niña+El Niño)=

p (spike∩ long La Niña+El Niño)
p (long La Niña+El Niño)

(A2a)

p (spike | long La Niña+El Niño)=

number of spikes that follow long La Niña
+El Niño transitions

number of long La Niña
+El Niño transitions

. (A2b)

Similarly, the probability of a spike given a long La Niña
event occurring in prior years (the end of the event must be
less than a year from the spike year) can be expressed as a
conditional probability:

p (spike | long La Niña)=
p (spike∩ long La Niña)

p (long La Niña)
(A3a)

p (spike | long La Niña)=

number of spikes that follow a long La Niña
number of long La Niñas

. (A3b)

Similarly, the probability of a spike given an El Niño event
occurring that year can also be expressed as a conditional
probability:

p (spike |El Niño)=
p (spike∩El Niño)

p (El Niño)
(A4a)

p (spike |El Niño)=

number of spikes during an El Niño year
number of El Niños

. (A4b)

The probability of a spike being associated with El Niño con-
ditions, i.e., the percentage of spikes associated with El Niño
conditions, can also be expressed as a conditional probabil-
ity:

p (El Niño | spike)=
p (El Niño∩ spike)

p (spike)
(A5a)

p (El Niño | spike)=

number of spikes during an El Niño year
number of spikes

. (A5b)

We plot the values of Eqs. (A1)–(A5) for each climate model
in Fig. 1c. Note that Eqs. (A4) and (A5) can be related via
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Figure A1. Probability distribution of year-to-year change in GMST (1Ts) in all piControl simulations in 64 models spanning 58 021 years.
Mean and standard deviation are 0 and 0.12 K, respectively. The shaded area represents the ±0.04 K uncertainty in the 2022–2023 observed
annual-mean GMST anomaly of 0.29 K. Simulated1Ts values within and to the right of this shaded region represent the probability of global
warming spikes (p(spike)). This is an unconditional probability, i.e., independent of ENSO.

Bayes’ theorem:

p (spike |El Niño)=
p (El Niño | spike)×p (spike)

p(El Niño)
. (A6)

Table A1. piControl models and number of years for monthly-
mean surface temperature (“ts”). Only for GFDL CM2.1, FLOR,
and CCSM3 do we exclude the first 20 years due to particularly
spurious model drift. Centennial–millennial length drifts are incon-
sequential for 1Ts as spikes are defined as interannual changes and
are accounted for in the ONI by detrending.

Model name Realization Number of years

CMIP6 piControl

1. ACCESS-CM2 r1i1p1f1 500
2. ACCESS-ESM1-5 r1i1p1f1 1000
3. AWI-CM-1-1-MR r1i1p1f1 500
4. BCC-CSM2-MR r1i1p1f1 600
5. CAMS-CSM1-0 r1i1p1f1 500
6. CanESM5 r1i1p1f1 1000
7. CanESM5-1 r1i1p1f1 500
8. CanESM5-CanOE r1i1p2f1 501
9. CAS-ESM2-0 r1i1p1f1 550
10. CESM2 r1i1p1f1 1200
11. CESM2-FV2 r1i1p1f1 500
12. CESM2-WACCM r1i1p1f1 499
13. CESM2-WACCM-FV2 r1i1p1f1 500
14. CIESM r1i1p1f1 500
15. CMCC-CM2-SR5 r1i1p1f1 500
16. CMCC-ESM2 r1i1p1f1 500
17. CNRM-ESM2-1 r1i1p1f2 500
18. E3SM-1-0 r1i1p1f1 500
19. E3SM-2-0 r1i1p1f1 500
20. E3SM-2-0-NARRM r1i1p1f1 500

Table A1. Continued.

Model name Realization Number of years

CMIP6 piControl

21. EC-Earth3 r1i1p1f1 501
22. EC-Earth3-CC r1i1p1f1 505
23. EC-Earth3-Veg r1i1p1f1 500
24. EC-Earth3-Veg-LR r1i1p1f1 501
25. FGOALS-f3-L r1i1p1f1 561
26. FGOALS-g3 r1i1p1f1 700
27. FIO-ESM-2-0 r1i1p1f1 500
28. GFDL-CM4 r1i1p1f1 500
29. GFDL-ESM4 r1i1p1f1 500
30. GISS-E2-1-G r1i1p1f1 851
31. GISS-E2-1-H r1i1p1f1 801
32. HadGEM3-GC31-LL r1i1p1f1 2000
33. HadGEM3-GC31-MM r1i1p1f1 500
34. ICON-ESM-LR r1i1p1f1 500
35. INM-CM4-8 r1i1p1f1 531
36. INM-CM5-0 r1i1p1f1 1201
37. IPSL-CM6A-LR r1i1p1f1 2000
38. IPSL-CM6A-MR1 r1i1p1f1 500
39. MCM-UA-1-0 r1i1p1f1 500
40. MIROC6 r1i1p1f1 800
41. MIROC-ES2L r1i1p1f2 500
42. MPI-ESM-1-2-HAM r1i1p1f1 1000
43. MPI-ESM1-2-HR r1i1p1f1 500
44. MPI-ESM1-2-LR r1i1p1f1 1000
45. MRI-ESM2-0 r1i1p1f1 701
46. NESM3 r1i1p1f1 500
47. NorCPM1 r1i1p1f1 500
48. NorESM2-LM r1i1p1f1 500
49. NorESM2-MM r1i1p1f1 501
50. SAM0-UNICON r1i1p1f1 700
51. TaiESM1 r1i1p1f1 500
52. UKESM1-0-LL r1i1p1f2 1880
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Table A1. Continued.

Model name Realization Number of years

LongRunMIP control

53. CCSM3 – 1510
54. CESM104 – 1000
55. CNRM-CM6-1 – 2000
56. EC-Earth – 508
57. GFDL CM3 – 5200
58. GFDL ESM2M – 1340
59. HadCM3L – 1000
60. IPSL-CM5A – 1000
61. MIROC3.2 – 680
62. MPI-ESM1.2 – 1237

Other models’ control

63. GFDL CM2.1 – 3980
64. GFDL FLOR – 2980

Code availability. Code can be accessed from Raghuraman
(2024, https://doi.org/10.5281/zenodo.13852018).

Data availability. The observed surface temperature data
were obtained from https://data.giss.nasa.gov/pub/gistemp/
gistemp1200_GHCNv4_ERSSTv5.nc.gz (Lenssen et al.,
2019), https://www.metoffice.gov.uk/hadobs/hadcrut5/
data/HadCRUT.5.0.2.0/analysis/HadCRUT.5.0.2.0.analysis.
anomalies.ensemble_mean.nc (Morice et al., 2021), and
https://berkeley-earth-temperature.s3.us-west-1.amazonaws.
com/Global/Gridded/Land_and_Ocean_LatLong1.nc (Rohde and
Hausfather, 2020). CMIP6 piControl data were obtained from
the CMIP6 archive (https://esgf-node.llnl.gov/projects/cmip6/,
Eyring et al., 2016). LongRunMIP data were obtained from
https://www.longrunmip.org/ (Rugenstein et al., 2019).
CM2.1 and FLOR surface temperature data have been de-
posited in the Zenodo database (Raghuraman et al., 2024,
https://doi.org/10.5281/zenodo.13852048).

Author contributions. SPR performed analysis and writing, with
regular feedback and inputs to the manuscript from all co-authors.
GV, SM, and WY performed the CM2.1 and FLOR simulations.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We acknowledge the World Climate Re-
search Programme, which, through its Working Group on Coupled
Modelling, coordinated and promoted CMIP6. We thank the climate
modeling groups for producing their model output and making it
available, the Earth System Grid Federation (ESGF) for archiving
the data and providing access, and the multiple funding agencies
that support CMIP6 and ESGF. We thank the anonymous referee,
Mika Rantanen, and Ales Kuchar for their comments.

Financial support. This research has been supported by the
National Oceanic and Atmospheric Administration (grant no.
NA21OAR4310351).

Review statement. This paper was edited by Kevin Grise and
Ken Carslaw and reviewed by Mika Rantanen and one anonymous
referee.

References

Cai, W., Santoso, A., Wang, G., Yeh, S. W., An, S. I., Cobb, K.
M., Collins, M., Guilyardi, E., Jin, F.-F., Kug, J.-S., Lengaigne,
M., McPhaden, M. J., Takahashi, K., Timmermann, A., Vecchi,
G., Watanabe, M., and Wu, L.: ENSO and greenhouse warming,
Nat. Clim. Change, 5, 849–859, 2015.

Clement, A. C., Seager, R., Cane, M. A., and Zebiak, S. E.: An
ocean dynamical thermostat, J. Climate, 9, 2190–2196, 1996.

Delworth, T. L., Broccoli, A. J., Rosati, A., Stouffer, R. J., Balaji, V.,
Beesley, J. A., Cooke, W. F., Dixon, K. W., Dunne, J., Dunne, K.
A., Durachta, J. W., Findell, K. L., Ginoux, P., Gnanadesikan, A.,
Gordon, C. T., Griffies, S. M., Gudgel, R., Harrison, M. J., Held,
I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T.
R., Kushner, P. J., Langenhorst, A. R., Lee, H.-C., Lin, S.-J., Lu,
J., Malyshev, S. L., Milly, P. C. D., Ramaswamy, V., Russell, J.,
Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Spelman, M.
J., Stern, W. F., Winton, M., Wittenberg, A. T., Wyman, B., Zeng,
F., and Zhang, R.: GFDL’s CM2 global coupled climate models.
Part I: Formulation and simulation characteristics, J. Climate, 19,
643–674, 2006.

DiNezio, P. N., Kirtman, B. P., Clement, A. C., Lee, S. K., Vecchi,
G. A., and Wittenberg, A.: Mean climate controls on the simu-
lated response of ENSO to increasing greenhouse gases, J. Cli-
mate, 25, 7399–7420, 2012.

Esper, J., Torbenson, M., and Büntgen, U.: 2023 summer warmth
unparalleled over the past 2,000 years, Nature, 631, 94–97,
https://doi.org/10.1038/s41586-024-07512-y, 2024.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens,
B., Stouffer, R. J., and Taylor, K. E.: Overview of the
Coupled Model Intercomparison Project Phase 6 (CMIP6)
experimental design and organization, Geosci. Model Dev.,
9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016
(data available at: https://esgf-node.llnl.gov/projects/cmip6/, last
access: September 2024).

Forster, P. M., Smith, C., Walsh, T., Lamb, W. F., Lamboll, R., Hall,
B., Hauser, M., Ribes, A., Rosen, D., Gillett, N. P., Palmer, M.
D., Rogelj, J., von Schuckmann, K., Trewin, B., Allen, M., An-
drew, R., Betts, R. A., Borger, A., Boyer, T., Broersma, J. A.,

https://doi.org/10.5194/acp-24-11275-2024 Atmos. Chem. Phys., 24, 11275–11283, 2024

https://doi.org/10.5281/zenodo.13852018
https://data.giss.nasa.gov/pub/gistemp/gistemp1200_GHCNv4_ERSSTv5.nc.gz
https://data.giss.nasa.gov/pub/gistemp/gistemp1200_GHCNv4_ERSSTv5.nc.gz
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/analysis/HadCRUT.5.0.2.0.analysis.anomalies.ensemble_mean.nc
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/analysis/HadCRUT.5.0.2.0.analysis.anomalies.ensemble_mean.nc
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/analysis/HadCRUT.5.0.2.0.analysis.anomalies.ensemble_mean.nc
https://berkeley-earth-temperature.s3.us-west-1.amazonaws.com/Global/Gridded/Land_and_Ocean_LatLong1.nc
https://berkeley-earth-temperature.s3.us-west-1.amazonaws.com/Global/Gridded/Land_and_Ocean_LatLong1.nc
https://esgf-node.llnl.gov/projects/cmip6/
https://www.longrunmip.org/
https://doi.org/10.5281/zenodo.13852048
https://doi.org/10.1038/s41586-024-07512-y
https://doi.org/10.5194/gmd-9-1937-2016
https://esgf-node.llnl.gov/projects/cmip6/


11282 S. P. Raghuraman et al.: The 2023 global warming spike was driven by the El Niño–Southern Oscillation

Buontempo, C., Burgess, S., Cagnazzo, C., Cheng, L., Friedling-
stein, P., Gettelman, A., Gütschow, J., Ishii, M., Jenkins, S., Lan,
X., Morice, C., Mühle, J., Kadow, C., Kennedy, J., Killick, R.
E., Krummel, P. B., Minx, J. C., Myhre, G., Naik, V., Peters,
G. P., Pirani, A., Pongratz, J., Schleussner, C.-F., Seneviratne, S.
I., Szopa, S., Thorne, P., Kovilakam, M. V. M., Majamäki, E.,
Jalkanen, J.-P., van Marle, M., Hoesly, R. M., Rohde, R., Schu-
macher, D., van der Werf, G., Vose, R., Zickfeld, K., Zhang, X.,
Masson-Delmotte, V., and Zhai, P.: Indicators of Global Climate
Change 2023: annual update of key indicators of the state of the
climate system and human influence, Earth Syst. Sci. Data, 16,
2625–2658, https://doi.org/10.5194/essd-16-2625-2024, 2024.

Gettelman, A., Christensen, M. W., Diamond, M. S., Gryspeerdt,
E., Manshausen, P., Stier, P., Watson-Parris, D., Yang, M.,
Yoshioka, M., and Yuan, T.: Has Reducing Ship Emissions
Brought Forward Global Warming?, Geophys. Res. Lett., 51,
e2024GL109077, https://doi.org/10.1029/2024GL109077, 2024.

Gnanadesikan, A., Dixon, K. W., Griffies, S. M., Balaji, V., Bar-
reiro, M., Beesley, J. A., Cooke, W. F., Delworth, T. L., Gerdes,
R., Harrison, M. J., Held, I. M., Hurlin, W. J., Lee, H.-C., Liang,
Z., Nong, G., Pacanowski, R. C., Rosati, A., Russell, J., Samuels,
B. L., Song, Q., Spelman, M. J., Stouffer, R. J., Sweeney, C. O.,
Vecchi, G., Winton, M., Wittenberg, A. T., Zeng, F., Zhang, R.,
and Dunne, J. P.: GFDL’s CM2 global coupled climate models.
Part II: The baseline ocean simulation, J. Climate, 19, 675–697,
2006.

IPCC: Climate Change 2021: The Physical Science Basis. Con-
tribution of Working Group I to the Sixth Assessment Re-
port of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Con-
nors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Gold-
farb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi,
O., Yu, R., and Zhou, B., Cambridge University Press, Cam-
bridge, United Kingdom and New York, NY, USA, 2391 pp.,
https://doi.org/10.1017/9781009157896, 2021.

Jiang, N., Zhu, C., Hu, Z. Z., McPhaden, M. J., Chen, D., Liu,
B., Ma, S., Yan, Y., Zhou, T., Qian, W., Luo, J., Yang, X.,
Liu, F., and Zhu, Y.: Enhanced risk of record-breaking regional
temperatures during the 2023–24 El Niño, Sci. Rep., 14, 2521,
https://doi.org/10.1038/s41598-024-52846-2, 2024.

Kuhlbrodt, T., Swaminathan, R., Ceppi, P., and Wilder, T.:
A glimpse into the future: The 2023 ocean temperature
and sea-ice extremes in the context of longer-term cli-
mate change, B. Am. Meteorol. Soc., 105, E474–E485,
https://doi.org/10.1175/BAMS-D-23-0209.1, 2024.

Lenssen, N. J., Schmidt, G. A., Hansen, J. E., Menne, M. J., Persin,
A., Ruedy, R., and Zyss, D.: Improvements in the GISTEMP
uncertainty model, J. Geophys. Res.-Atmos., 124, 6307–6326,
https://doi.org/10.1029/2018JD029522, 2019 (data available at:
https://data.giss.nasa.gov/pub/gistemp/gistemp1200_GHCNv4_
ERSSTv5.nc.gz, last access: September 2024).

Li, K., Zheng, F., Zhu, J., and Zeng, Q. C.: El Niño and the AMO
Sparked the Astonishingly Large Margin of Warming in the
Global Mean Surface Temperature in 2023, Adv. Atmos. Sci.,
41, 1017–1022, 2024.

Mann, M. E. and Park, J.: Global-scale modes of surface tempera-
ture variability on interannual to century timescales, J. Geophys.
Res.-Atmos., 99, 25819–25833, 1994.

Mann, M. E., Bradley, R. S., and Hughes, M. K.: Long-term vari-
ability in the El Nino Southern Oscillation and associated tele-
connections, in: ENSO: Multiscale Variability and Global and
Regional Impacts, edited by: Diaz, H. F. and Markgraf, V., CUP,
Cambridge, UK, 357–412, 2000.

Morice, C. P., Kennedy, J. J., Rayner, N. A., Winn, J. P.,
Hogan, E., Killick, R. E., Dunn, R. J. H., Osborn, T. J.,
Jones, P. D., and Simpson, I. R.: An updated assessment of
near-surface temperature change from 1850: the HadCRUT5
data set, J. Geophys. Res.-Atmos., 126, e2019JD032361,
https://doi.org/10.1029/2019JD032361, 2021 (data avail-
able at: https://www.metoffice.gov.uk/hadobs/hadcrut5/
data/HadCRUT.5.0.2.0/analysis/HadCRUT.5.0.2.0.analysis.
anomalies.ensemble_mean.nc, last access: September 2024).

Min, S. K.: Human influence can explain the widespread ex-
ceptional warmth in 2023, Commun. Earth Environ., 5, 215,
https://doi.org/10.1038/s43247-024-01391-x, 2024.

Peng, Q., Xie, S. P., Passalacqua, G. A., Miyamoto, A., and
Deser, C.: The 2023 extreme coastal El Niño: Atmospheric
and air-sea coupling mechanisms, Sci. Adv., 10, eadk8646,
https://doi.org/10.1126/sciadv.adk8646, 2024.

Quaglia, I. and Visioni, D.: Modeling 2020 regulatory
changes in international shipping emissions helps ex-
plain 2023 anomalous warming, EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2024-1417, 2024.

Raghuraman, S. P.: The 2023 global warming spike was
driven by El Niño/Southern Oscillation, Zenodo [code],
https://doi.org/10.5281/zenodo.13852018, 2024.

Raghuraman, S. P., Paynter, D., and Ramaswamy, V.: Quantifying
the drivers of the clear sky greenhouse effect, 2000–2016, J. Geo-
phys. Res.-Atmos., 124, 11354–11371, 2019.

Raghuraman, S. P., Soden, B., Clement, A., Vecchi, G., Men-
emenlis, S., and Yang, W.: The 2023 global warming spike
was driven by El Niño/Southern Oscillation, Zenodo [data set],
https://doi.org/10.5281/zenodo.13852048, 2024.

Rantanen, M. and Laaksonen, A.: The jump in global temper-
atures in September 2023 is extremely unlikely due to inter-
nal climate variability alone, npj Clim. Atmos. Sci., 7, 34,
https://doi.org/10.1038/s41612-024-00582-9, 2024.

Rohde, R. A. and Hausfather, Z.: The Berkeley Earth Land/O-
cean Temperature Record, Earth Syst. Sci. Data, 12, 3469–3479,
https://doi.org/10.5194/essd-12-3469-2020, 2020 (data available
at: https://berkeley-earth-temperature.s3.us-west-1.amazonaws.
com/Global/Gridded/Land_and_Ocean_LatLong1.nc, last ac-
cess: September 2024).

Rugenstein, M., Bloch-Johnson, J., Abe-Ouchi, A., Andrews, T.,
Beyerle, U., Cao, L., Chadha, T., Danabasoglu, G., Dufresne,
J.-L., Duan, L., Foujols, M.-A., Frölicher, T., Geoffroy, O.,
Gregory, J., Knutti, R., Li, C., Marzocchi, A., Mauritsen, T.,
Menary, M., Moyer, E., Nazarenko, L., Paynter, D., Saint-Martin,
D., Schmidt, G. A., Yamamoto, A., and Yang, S.: LongRun-
MIP: motivation and design for a large collection of millennial-
length AOGCM simulations, B. Am. Meteorol. Soc., 100, 2551–
2570, https://doi.org/10.1175/BAMS-D-19-0068.1, 2019 (data
available at: https://www.longrunmip.org/, last access: Septem-
ber 2024).

Schmidt, G.: Climate models can’t explain 2023’s huge heat
anomaly – we could be in uncharted territory, Nature, 627, 467–
467, 2024.

Atmos. Chem. Phys., 24, 11275–11283, 2024 https://doi.org/10.5194/acp-24-11275-2024

https://doi.org/10.5194/essd-16-2625-2024
https://doi.org/10.1029/2024GL109077
https://doi.org/10.1017/9781009157896
https://doi.org/10.1038/s41598-024-52846-2
https://doi.org/10.1175/BAMS-D-23-0209.1
https://doi.org/10.1029/2018JD029522
https://data.giss.nasa.gov/pub/gistemp/gistemp1200_GHCNv4_ERSSTv5.nc.gz
https://data.giss.nasa.gov/pub/gistemp/gistemp1200_GHCNv4_ERSSTv5.nc.gz
https://doi.org/10.1029/2019JD032361
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/analysis/HadCRUT.5.0.2.0.analysis.anomalies.ensemble_mean.nc
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/analysis/HadCRUT.5.0.2.0.analysis.anomalies.ensemble_mean.nc
https://www.metoffice.gov.uk/hadobs/hadcrut5/data/HadCRUT.5.0.2.0/analysis/HadCRUT.5.0.2.0.analysis.anomalies.ensemble_mean.nc
https://doi.org/10.1038/s43247-024-01391-x
https://doi.org/10.1126/sciadv.adk8646
https://doi.org/10.5194/egusphere-2024-1417
https://doi.org/10.5281/zenodo.13852018
https://doi.org/10.5281/zenodo.13852048
https://doi.org/10.1038/s41612-024-00582-9
https://doi.org/10.5194/essd-12-3469-2020
https://berkeley-earth-temperature.s3.us-west-1.amazonaws.com/Global/Gridded/Land_and_Ocean_LatLong1.nc
https://berkeley-earth-temperature.s3.us-west-1.amazonaws.com/Global/Gridded/Land_and_Ocean_LatLong1.nc
https://doi.org/10.1175/BAMS-D-19-0068.1
https://www.longrunmip.org/


S. P. Raghuraman et al.: The 2023 global warming spike was driven by the El Niño–Southern Oscillation 11283

Schoeberl, M. R., Wang, Y., Taha, G., Zawada, D. J., Ueyama, R.,
and Dessler, A.: Evolution of the climate forcing dur-
ing the two years after the Hunga Tonga-Hunga Ha’apai
eruption, J. Geophys. Res.-Atmos., 129, e2024JD041296,
https://doi.org/10.1029/2024JD041296, 2024.

Soden, B. J.: Variations in the tropical greenhouse effect during El
Niño, J. Climate, 10, 1050–1055, 1997.

Trenberth, K. E.: The definition of El Niño, B. Am. Meteorol. Soc.,
78, 2771–2778, 1997.

Van Oldenborgh, G. J., Hendon, H., Stockdale, T., L’Heureux, M.,
De Perez, E. C., Singh, R., and Van Aalst, M.: Defining El Niño
indices in a warming climate, Environ. Res. Lett., 16, 044003,
https://doi.org/10.1088/1748-9326/abe9ed, 2021.

Vecchi, G. A., Clement, A., and Soden, B. J.: Examining the tropi-
cal Pacific’s response to global warming, EOS T. Am. Geophys.
Un., 89, 81–83, 2008.

Vecchi, G. A., Delworth, T., Gudgel, R., Kapnick, S., Rosati, A.,
Wittenberg, A. T., Zeng, F., Anderson, W., Balaji, V., Dixon, K.,
Jia, L., Kim, H.-S., Krishnamurthy, L., Msadek, R., Stern, W. F.,
Underwood, S. D., Villarini, G., Yang, X., and Zhang, S.: On
the seasonal forecasting of regional tropical cyclone activity, J.
Climate, 27, 7994–8016, 2014.

Watson-Parris, D., Wilcox, L. J., Stjern, C. W., Allen, R. J., Per-
sad, G., Bollasina, M. A., Ekman, A. M. L., Iles, C. E., Joshi,
M., Lund, M. T., McCoy, D., Westervelt, D., Williams, A.,
and Samset, B. H.: Weak surface temperature effects of re-
cent reductions in shipping SO2 emissions, with quantifica-
tion confounded by internal variability, EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2024-1946, 2024.

Yoshioka, M., Grosvenor, D. P., Booth, B. B. B., Morice,
C. P., and Carslaw, K. S.: Warming effects of reduced
sulfur emissions from shipping, EGUsphere [preprint],
https://doi.org/10.5194/egusphere-2024-1428, 2024.

Zhang, J., Chen, Y. S., Gryspeerdt, E., Yamaguchi, T., and Fein-
gold, G.: Large radiative forcing from the 2020 shipping
fuel regulation is hard to detect, Research Square [preprint],
https://doi.org/10.21203/rs.3.rs-4552523/v1, 2024.

https://doi.org/10.5194/acp-24-11275-2024 Atmos. Chem. Phys., 24, 11275–11283, 2024

https://doi.org/10.1029/2024JD041296
https://doi.org/10.1088/1748-9326/abe9ed
https://doi.org/10.5194/egusphere-2024-1946
https://doi.org/10.5194/egusphere-2024-1428
https://doi.org/10.21203/rs.3.rs-4552523/v1

	Abstract
	Introduction
	Results
	Conclusions and discussion
	Appendix A: Methods
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

