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Abstract. Black carbon (BC) in the Tibetan Plateau (TP) region has distinct climate effects that strongly de-
pend on its mixing state. The aging processes of BC in the TP are subject to emissions from various regions,
resulting in considerable variability of its mixing state and physicochemical properties. However, the mechanism
and magnitude of this effect are not yet clear. In this study, field observations on physicochemical properties of
BC-containing particles (PMBC) were conducted in the northeast (Xihai) and southeast (Lulang) regions of the
TP to investigate the impacts of transported emissions from lower-altitude areas on BC characteristics in the TP.
Large spatial discrepancies were found in the chemical composition of PMBC. Both sites showed higher concen-
trations of PMBC when they were affected by transported air masses outside the TP but with diverse chemical
composition. Source apportionment for organic aerosol (OA) suggested that primary OA in the northeastern TP
was attributed to hydrocarbon OA (HOA) from anthropogenic emissions, while it was dominated by biomass
burning OA (BBOA) in the southeastern TP. Regarding secondary aerosol, a marked enhancement in nitrate
fraction was observed on aged BC coating in Xihai when the air masses were brought by updrafts and east-
erly winds from lower-altitude areas. With the development of boundary layer, the enhanced turbulent mixing
promoted the elevation of anthropogenic pollutants. In contrast to Xihai, the thickly coated BC in Lulang was
mainly caused by elevation and transportation of biomass burning plumes from south Asia, showing a large con-
tribution of secondary organic aerosol (SOA). The distinct transported emissions lead to substantial variations of
both chemical composition and light absorption ability of BC across the TP. The thicker coating and higher mass
absorption cross-section (MAC) of PMBC in air masses elevated from lower-altitude regions reveal the promoted
BC aging processes and their impacts on the mixing state and light absorption of BC in the TP. These findings
emphasize the vulnerability of plateau regions to influences of elevated emissions, leading to significant changes
in BC concentration, mixing states and light absorption across the TP, all of which need to be considered in the
evaluation of BC radiative effects for the TP region.

Published by Copernicus Publications on behalf of the European Geosciences Union.



11064 J. Wang et al.: Impacts of elevated emissions over the Tibetan Plateau

1 Introduction

The Tibetan Plateau (TP) is the largest plateau of the world,
covering approximately 2.5× 106 km2. Its average altitude
exceeds 4000 m, and its glaciers cover an area of over
100 000 km2 (Yao et al., 2012a). As the third pole, the TP
plays a crucial role in the Asian monsoon systems, the hy-
drological cycle and the global climate (Duan and Wu, 2005;
Wu et al., 2007, 2015). Pollutants affect the ecological envi-
ronment of the TP and its surrounding region significantly.
They result in increased air temperature (Gustafsson and
Ramanathan, 2016), changes in cloud properties (Hua et
al., 2020; Lai et al., 2024), glacier retreat (Kang et al., 2010,
2019; Xu et al., 2009; Yao et al., 2012b), anomalies in the hy-
drological cycle (Luo et al., 2020; Yang et al., 2014; Menon
et al., 2002; Ramanathan et al., 2005) and the Asian monsoon
(Meehl et al., 2008).

Black carbon (BC) is one of the most important aerosol
species affecting climate, glaciers and hydrology in the TP
(Kopacz et al., 2011; Xu et al., 2009; Yang et al., 2022)
because of distinct climate effects (Bond et al., 2013). It
is generated by the incomplete combustion of fossil fuels
and biomass and is also known as refractory BC (rBC).
BC influences the climate directly because it can absorb
short-wave radiation (Zhu et al., 2017). The climate forc-
ing of BC is highly dependent on its mixing state. BC
can be coated with non-refractory aerosol like organics, ni-
trate (NO−3 ) and sulfate (SO2−

4 ) through condensation or
coagulation and turns from an externally mixed to an in-
ternally mixed structure. The rBC mass absorption cross-
section (MAC) of BC-containing particles (PMBC) can be
affected by non-refractory components coated on BC (Cai
et al., 2022; Cheng et al., 2016; Gao et al., 2021; Liu et
al., 2017; Schnaiter et al., 2005; Wang et al., 2023) via the
“lensing effect” (Lack and Cappa, 2010), causing the change
in radiative properties of BC. The cloud microphysical prop-
erties may also be altered when PMBC are coated with hy-
drophilic materials and activated into cloud condensation
nuclei (CCN), which influences climate indirectly (Bond et
al., 2013; Dusek et al., 2006; Henning et al., 2010).

Previous studies have shown that BC has a remarkable
direct radiative effect in the TP (Zhao et al., 2017; Liu et
al., 2021). The radiative effects of BC are not only influ-
enced by its concentration but also by its mixing state. In
recent years, there has been an increasing number of field
measurements of BC in the TP. It is reported that BC concen-
tration can still occasionally reach high levels in the TP un-
der certain meteorological and synoptic conditions (Babu et
al., 2011; Zhu et al., 2016; Zhao et al., 2017). Observations of
BC mixing states demonstrated that BC is mainly internally
mixed (Yuan et al., 2019), and the BC coating enhances the
MAC of BC in the TP (Wang et al., 2017; Wang et al., 2018;
Chen et al., 2019; Tan et al., 2021). BC can be transported

over long distances with wildfire plumes (Huang et al., 2023;
Zheng et al., 2020). Some regions of the TP may be affected
by biomass burning (BB) from lower-altitude areas (Cao et
al., 2010; Zhang et al., 2015; Cong et al., 2015). External
transport can raise BC concentration and affect its morphol-
ogy and mixing state in the TP (Tan et al., 2021; Chen et
al., 2023). However, research on how emissions from vari-
ous sources affect the chemical composition of PMBC in the
TP is scarce. Therefore, we conducted field observations of
the physicochemical characteristics of PMBC at two typical
sites in the TP. The objective of this study is to investigate the
impacts of various pollutant emissions and the subsequent re-
gional transport, particularly those from anthropogenic activ-
ities from low-altitude regions, on the mixing state and chem-
ical composition of PMBC in the TP.

2 Materials and methods

2.1 Site description

Field measurements were conducted at two observation sta-
tions in the TP (Fig. 1). The station in the northeast TP is
located in Xihai (∼ 3100 ma.s.l.; 36°56′ N, 100°54′ E). The
station in the southeast TP is the Southeast Tibet Plateau Ob-
servation and Research Station for the Alpine Environment,
located in Lulang (∼ 3200 ma.s.l.; 29°46′ N, 94°44′ E). The
field campaign was conducted from 2 April to 16 May 2021
in Lulang and from 3 to 23 June 2021 in Xihai. Both stations
are typical high-altitude sites of mountainous areas (Fig. 1a)
but potentially influenced by distinct emission sources. There
are more wildfires around Lulang (Fig. 1a), but Xihai is close
to the northwest region of China, which is largely affected by
anthropogenic emissions (Fig. 1b).

2.2 Instrumentation

The Soot Particle Aerosol Mass Spectrometer (SP-AMS,
Aerodyne Inc., USA) was used to measure rBC and non-
refractory materials coated on rBC (NR-PMBC) (Onasch et
al., 2012). The tungsten vaporizer was removed, and the in-
tracavity infrared laser vaporizer was reserved to exclusively
measure PMBC. After adjusting the SP-AMS to the laser-
only configuration, only PMBC could be volatilized via the
absorbing laser. We collected V-mode data due to their high
sensitivity (DeCarlo et al., 2006). The total flow rate through
the inlet was maintained at ∼ 3 Lmin−1. A PM2.5 cyclone
was used in the front of the inlet (URG Corp., USA), and only
particles in the size range of 50–1000 nm could be focused
by the lens of inlet system. The bounce effect of aerosol was
eliminated because the tungsten vaporizer was removed, so
the usual collection efficiency (CE) (Docherty et al., 2013;
Drewnick et al., 2005) was not applicable. The overlap of
the particle beam and laser beam determined the CE of the
SP-AMS with a laser-only configuration (Willis et al., 2014).
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Figure 1. The maps showing (a) the topographic height and (b) the anthropogenic emissions of BC at the two measurement sites (Xihai,
Lulang) and in the surrounding region. The red spots represent the fire spots during the field measurement period, and the square outlined in
black represents the simulated domain.

The new CE was acquired by intercomparison of rBC con-
centration measured using the SP2 and SP-AMS (Massoli et
al., 2015) and was nearly 1 during this campaign.

SP-AMS data were processed by standard time-of-flight
AMS data analysis software packages (SQUIRREL version
v1.60P and PIKA v1.20P). Ionization efficiency (IE) cali-
bration was done shortly before removing the tungsten va-
porizer. The mass-based calibration method was used to ob-
tain IE values by sampling the 300 nm dried pure ammo-
nium nitrate particles into the SP-AMS. The 300 nm particles
were selected with a differential mobility analyzer (DMA,
model 3081, TSI Inc., USA). The relative IE (RIE) for or-
ganic aerosol (OA) and SO2−

4 was 1.4 and 1.2, which was
consistent with the RIE reported in a previous work (Cana-
garatna et al., 2007). The RIE for rBC was calibrated by
sampling monodispersed 300 nm Regal Black particles in the
SP-AMS. The detection limit was calculated based on the
method in DeCarlo et al. (2006), and the detection limit of
ammonium was higher, so the concentration of ammonium
was estimated by ionic equilibrium. OA measured by the
SP-AMS was subdivided into factors with different charac-
teristics and sources based on positive matrix factorization
(PMF) results (Zhang et al., 2005b, 2011). The PMF Eval-
uation Tool version 3.04A was used to perform PMF anal-
ysis on the high-resolution organic mass spectra (Ulbrich et
al., 2009). Only ions with a mass-to-charge ratio below ap-
proximately 115 were considered in the PMF analysis.

The meteorological parameters, aerosol optical properties
and gaseous pollutants were also measured simultaneously.
Ozone (O3), carbon monoxide (CO), nitric oxide (NO), nitro-
gen oxides (NOx) and sulfur dioxide (SO2) were measured
using online analyzers (Teledyne API Inc., USA). The pho-
toacoustic extinctiometer (PAX, Droplet Measurement Tech-
nologies Inc., USA) measured light absorption coefficients.
Temperature, relative humidity (RH) and other meteorolog-

ical parameters were monitored by meteorological sensors
(WXT530, Vaisala Inc., Finland).

2.3 Model configuration

In this study, we conducted regional chemical transport mod-
eling using the Weather Research and Forecasting model
coupled with Chemistry (WRF-Chem, version 3.7.1). This
model encompasses a broad spectrum of physical and chem-
ical processes, addressing the emission and deposition of
pollutants, advection, diffusion, and gaseous and aqueous
chemical transformations, as well as aerosol chemistry and
dynamics (Grell et al., 2005). The model domain was cen-
tered at 35° N, 110° E with a grid resolution of 20 km, cov-
ering the northeastern Tibetan Plateau. The vertical structure
of the model comprised 30 layers extending from the sur-
face to the top pressure of 50 hPa. The simulation was con-
ducted for a longer period including the time of the whole
campaign from 3 to 23 June 2021. To establish accurate ini-
tial and boundary conditions for meteorological fields, we
updated the model using 6-hourly 1°× 1° National Cen-
ters for Environmental Prediction (NCEP) FNL (final) global
analysis data. In our pursuit of capturing the meteorological
fields well, we assimilated NCEP Automated Data Process-
ing (ADP) operation global surface observation and global
upper-air observational weather data. This assimilation pro-
cess utilized default nudging coefficients for wind, tempera-
ture, and moisture.

The Yonsei University planetary boundary layer (YSU
PBL) scheme was used to parameterize boundary layer pro-
cesses (Hong et al., 2006). Other essential physical param-
eterization options included the unified Noah land surface
model (Ek et al., 2003), the Lin microphysics scheme (Lin
et al., 1983) and the Grell–Freitas cumulus parameteriza-
tion scheme (Grell and Freitas, 2014). For representing atmo-
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spheric chemistry numerically, we utilized the Carbon Bond
Mechanism version Z photochemical mechanism along with
the Model for Simulating Aerosol Interactions and Chem-
istry aerosol module (MOSAIC; Zaveri and Peters, 1999;
Zaveri et al., 2008). Both natural and anthropogenic emis-
sions were considered in this regional WRF-Chem mod-
eling study. Anthropogenic emissions were derived from
the Multi-resolution Emission Inventory for China (MEIC,
2023), which includes emissions from power plants, residen-
tial combustion, industrial processes, on-road mobile sources
and agricultural activities (Li et al., 2017a). Biogenic emis-
sions were calculated online using the Model of Emissions of
Gases and Aerosols from Nature (MEGAN), encompassing
more than 20 biogenic species (Guenther et al., 2006).

A comprehensive overview of the model configuration can
be referenced in earlier investigations (Huang et al., 2016;
Huang et al., 2018). Additionally, key configurations and val-
idation for the WRF-Chem regional modeling are shown in
Table S1 and Fig. S1 in the Supplement.

2.4 Other materials

The transport and emission conditions were considered in or-
der to investigate their impacts on BC physical and chemi-
cal properties. The Hybrid Single-Particle Lagrangian Inte-
grated Trajectory (HYSPLIT) model was used to calculate
and cluster 72 h backward trajectories (Stein et al., 2015; Xu
et al., 2018). The starting points of the simulation were Xihai
and Lulang, and particles were released at a height of 1000 m
above the ground level. The backward trajectories were cal-
culated every hour during the field campaign. The boundary
layer height is from the ECMWF Reanalysis v5 (Hersbach
et al., 2023). The Fire Inventory from NCAR (FINN) was
adopted to estimate daily open BB emissions with high spa-
tial resolution (1 km) during the campaign (Wiedinmyer et
al., 2006, 2011, 2022, 2023), and the anthropogenic emis-
sions of major pollutants (MIX, 2021) were estimated using
the MIX-Asia emission inventory (Li et al., 2017b).

Further, the optical properties of PMBC were investigated
based on the widely used core–shell Mie model (Bohren and
Huffman, 1983; Virkkula, 2021). The MAC and the absorp-
tion enhancement (Eabs) of PMBC were calculated following
the algorithm developed by Mätzler (2002). The refractive in-
dex was 1.95–0.79i for rBC (Bond and Bergstrom, 2006) and
1.52–10−6i for BC coating (Pitchford et al., 2007) at 550 nm
wavelength. The calculated optical properties of PMBC in
PM1 were validated with good agreement with observed re-
sults of BC in PM2.5 (Fig. S2).

3 Results and discussion

3.1 Overview of BC properties and meteorological
conditions in the TP

Figure 2 presents the overall conditions during the campaign.
The mass concentration of rBC shows large temporal varia-
tion at both sites, with ranges of 0.02–1.28 µgm−3 in Xihai
and 0.02–2.22 µgm−3 in Lulang. PMBC concentration and
light absorption coefficients (babs) increased in the latter pe-
riod of Xihai campaign, contrasting with the marked decreas-
ing pattern in PMBC concentration and babs observed during
the latter period of Lulang campaign. In Xihai, the concen-
tration and proportion of inorganic components, especially
NO−3 , rose in the latter phase of the campaign as the wind
direction (WD) shifted to a southeasterly one (Fig. 2f). The
RH also got higher with the change of wind direction. An-
other major feature is that the wind direction had distinct
diurnal variations. In Xihai, the wind direction converted
from easterly and northeasterly flows during the nocturnal
hours to southerly direction during daytime. Conversely, Lu-
lang is predominantly controlled by northerly to northeast-
erly winds throughout the campaign period. Nevertheless, the
wind speed (WS) was similar in Xihai and Lulang, with mean
values of 1.8± 1.2 and 1.5± 1.2 ms−1, respectively. In terms
of gaseous pollutants, higher levels of NOx and O3 were ob-
served in Xihai (5.3± 3.4 and 48± 13 ppb) than in Lulang
(4.0± 2.5 and 35± 15 ppb).

We also compared the observed BC concentration at dif-
ferent sites of the TP. Note that the term “black carbon” (BC)
has not been used rigorously or consistently throughout all
the previous modeling and measurement literature (Bond et
al., 2013). Similar terms including “rBC”, “equivalent BC
(eBC)” and “elemental carbon (EC)” have also been widely
used corresponding to different measurement techniques. BC
measured by laser-induced techniques is often referred to
as “rBC”, and measured BC using light absorption (e.g.,
Aethalometer, AE) and thermal–optical methods is normally
named “eBC” and “EC”, respectively. In Table 1, BC concen-
trations in the TP measured by several common techniques
were collected and grouped according to the methods to
make clearer comparison. Compared to measurements using
the same instrument in a metropolitan area (Cui et al., 2022),
the rBC concentration of the TP (0.24± 0.20 µgm−3) was
approximately 25 % of Shanghai (0.92± 0.81 µgm−3). The
rBC concentration in Xihai was relatively high compared to
the southeastern and central TP, measured using the same
technique (Table 1). This was potentially attributed to the
strong BC emissions in the surrounding area of the north-
east TP (Fig. 1). The rBC concentration in Lulang exhib-
ited a relatively lower mean value yet with a broad range of
variation, suggesting that BC may be subject to diverse air
masses with significant discrepancies in emission intensity
across the southeast and southern regions of the TP (Fig. 1).
Higher BC levels were observed at stations in proximity to
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Figure 2. The time series of (a) mass concentrations of particulate matters (PM2.5), refractory black carbon (rBC), organics (Org), nitrate
(NO−3 ), sulfate (SO2−

4 ), ammonium (NH+4 ) and chloride (Cl−) in PMBC; (b) mass fraction of different species in PMBC; (c) aerosol light
absorption coefficients (babs) at 870 nm wavelength; (d) gaseous pollutants including nitric oxide (NO), nitrogen oxide (NO2) and ozone
(O3); (e) air temperature (Temp) and relative humidity (RH); and (f) wind direction (WD) and wind speed (WS).

Mainland Southeast Asia and the wider area of south Asia,
where wildfire activities were extremely intense in spring.
Therefore, the considerable variability of rBC concentrations
in Lulang is likely due to the alternating influences from air
masses transporting BB plumes and those originating from
cleaner environments.

3.2 Physicochemical characteristics of BC-containing
particles in the TP

The overall characteristics of PMBC in Xihai and Lulang
were compared based on statistical results. As Fig. 3a
and b show, the mass concentration of rBC and PMBC were
higher in Xihai due to possible impacts of stronger anthro-
pogenic emissions (Fig. 1b), and the difference (trBC= 2.8,
tPMBC = 2.1) between the two sites was shown by the t test
(α= 0.05, ν= 50). Figure 3c compares the mixing state of
PMBC in Xihai and Lulang, which was expressed by the
mass ratio of BC coating to rBC (RBC). The frequency dis-
tribution of RBC showed an obvious difference at the two
sites. RBC in Xihai was generally higher than in Lulang, in-
dicating the thicker coating in Xihai. The peak of RBC oc-
curred at [4.5,6] and [1.5,3] in Xihai and Lulang, respec-
tively. RBC of more than 50 % PMBC was between 3.0 and

7.5, and only 11 % PMBC hadRBC less than 3.0 in Xihai. Un-
like Xihai, the percentage of thinly coated PMBC for which
RBC was less than 3.0 was higher in Lulang at 33 %. The
difference in mixing states of PMBC was also demonstrated
by the t test (tRBC = 2.4). The peak of MAC at both sites
was between 12 and 14 m2 g−1 (Fig. 3d) which was signif-
icantly greater than the MAC of BC without coating (Bond
and Bergstrom, 2006), and the average value and range of
MAC in Xihai and Lulang were 12.8 (5.6–17.4) and 12.3
(6.8–15.7) m2 g−1. Over 61 % of BC was distributed in the
larger MAC range (higher than 12.5 m2 g−1) in Xihai, show-
ing stronger light absorption ability of BC in this region. Due
to the synergy of higher mass concentration and light absorp-
tion ability, PMBC could have larger climate effects in the
northeast TP.

The chemical characteristics and sources of OA in PMBC
were identified by PMF. OA was separated into primary OA
(POA) and oxygenated OA (OOA) at both sites (Figs. 4
and S3). In Xihai, there was one factor originating from pri-
mary emissions, and there were two factors from secondary
formation. The POA factor had a higher signal of C4H+7
and C4H+9 , which are important alkyl fragments from pri-
mary sources (Hu et al., 2016), in its mass spectrum. It also
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Figure 3. The box plots of (a) rBC and (b) BC-containing particles mass concentrations in Xihai and Lulang, where the lower and upper lines
of the box plot represent the 25th and 75th percentiles and the whiskers stand for 5th and 95th values. The normalized frequency distribution
charts show (c) the mass ratio of coating substance to the rBC core (RBC) and (d) the mass absorption cross-section (MAC). Only 1.15 % of
the RBC exceeded the maximum value of the bin (19.5) in Xihai, and no RBC exceeded the maximum value of the bin in Lulang.

had higher content of hydrogen; H : C was up to 1.84, and
it had a lower signal of C2H4O+2 , which is the typical BB
tracer. Hence, this factor was mainly emitted from fossil fuel
combustion rather than BB and was named hydrocarbon OA
(HOA). OOA factors were further divided into less-oxidized
OOA (LO-OOA) and more-oxidized OOA (MO-OOA) fac-
tors. These two factors constitute secondary OA (SOA)
formed through oxidation processes such as photochemical
reactions (Kanakidou et al., 2005; Zhang et al., 2005a; Zhao
et al., 2018). They had a higher fraction of the signal of the
CO+2 ion (m/z 44) and other oxygenic ions in the mass spec-
trum, which is similar to the mass spectra of typical OOA
reported in other field campaigns (Crippa et al., 2013; Hu et
al., 2016; Kim et al., 2020; Lee et al., 2017; Sun et al., 2016;
Sun et al., 2020; Wang et al., 2016; Zhou et al., 2018). The
O : C of the two OOA factors was also calculated (Cana-
garatna et al., 2015) to learn about the oxidation degree of
OOA. MO-OOA exhibited a higher O : C ratio (0.84) than
LO-OOA (0.49). Unlike Xihai, the POA factor in Lulang
had a higher fraction of the signal of the C2H4O+2 (m/z 60)
ion (fC2H4O+2 ) in the mass spectrum, which is the fragment
of levoglucosan mainly from BB (Lee et al., 2010). There-
fore, this POA factor was identified as biomass burning OA

(BBOA) in Lulang. Moreover, the fCO+2 and fC2H4O+2
(0.065 versus 0.025) of this factor were also within the tri-
angle area in a previous BBOA study (Cubison et al., 2011),
and the fC2H4O+2 was lower than the fresh BBOA, indicat-
ing that this factor was influenced by biomass burning ac-
tivities and aging processes collectively. The remaining two
factors were from SOA formation in Lulang and had a higher
fraction of the signal of the CO+2 ion. Based on the oxidation
degree, the two factors were identified as MO-OOA and LO-
OOA. The O : C of MO-OOA and LO-OOA was 0.95 and
0.46, respectively. Compared to Lulang, the OA in BC coat-
ing was under stronger impacts of anthropogenic emissions
in Xihai, indicated by HOA.

Figure 5 presents PMBC chemical composition at two
sites. BC coating had a higher mass contribution to PMBC
in Xihai and Lulang compared to the urban site (Collier et
al., 2018), indicating the thick coating of PMBC in the TP.
The average mass fraction and concentration of BC coat-
ing were 84 % and 1.2 µgm−3 in Xihai. The mass fraction
of coating was similar (83 %) in Lulang, although the con-
centration of BC coating was lower (0.85 µgm−3). OA was
the dominant component of BC coating (Fig. 5a) at both
sites, which was consistent with the observation in the cen-
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Figure 4. The mass spectra of different factors represents organic aerosol from specific sources in BC-containing particles in (a) Xihai
and (b) Lulang. MO-OOA is more oxidized oxygenated organic aerosol, LO-OOA is less oxidized oxygenated organic aerosol, HOA is
hydrocarbon-like organic aerosol and BBOA is biomass burning organic aerosol.

tral TP (Wang et al., 2017). OA took up a higher proportion
of BC coating in Lulang compared to Xihai, Shanghai (Cui
et al., 2022) and Fresno (Collier et al., 2018). During the
field campaign, the average concentration of HOA, LO-OOA
and MO-OOA was 0.25, 0.18 and 0.28 µgm−3 in Xihai.
MO-OOA also had the highest concentration (0.32 µgm−3)
of OA in Lulang and exceeded BBOA (0.15 µgm−3) and
LO-OOA concentration (0.14 µgm−3). It demonstrated that
SOA formation plays an important role in the coating pro-
cess of PMBC. The BC coating was dominated by MO-OOA,
which was importantly affected by atmospheric oxidizing
process. The concentration of O3 highly relative to atmo-
spheric oxidizing capacity improved significantly in the af-
ternoon (Fig. S8), and the enhanced oxidizing capacity could
cause an increase in MO-OOA in BC coating in both Xi-
hai and Lulang. Besides MO-OOA, NO−3 (17 %) and HOA
(35 %) also made a large contribution to BC coating (Fig. 5a)
and coated OA (Fig. 5b) in Xihai compared to Lulang. The
HOA and NO−3 were both closely associated with anthro-
pogenic sources because the anthropogenic sources emitted
HOA (Zhang et al., 2005a) and precursors of NO−3 largely
(Dall’Osto et al., 2009; Richter et al., 2005; Sun et al., 2018).
This indicates that anthropogenic emissions have a strong in-
fluence on the coating process of PMBC in the northeast TP,
which is quite different from the southeast TP.

Figure 6 shows the coating components of BC with differ-
entRBC in Xihai and Lulang. The mass fraction of MO-OOA
was predominant in the thickly coated PMBC in both Xi-
hai and Lulang. Notably, a more significant enhancement in
MO-OOA contribution within the thickly coated PMBC was
exhibited in Lulang, concomitant with a reduced fraction of
inorganic components. The mass fraction of MO-OOA was
only 9 % in the thin BC coating (RBC< 1.5), rising dramat-
ically to 59 % in those with RBC exceeding 10.5 (thick BC
coating). Another notable feature of the coating components
was the higher contribution of BBOA in Lulang, especially
when the coating thickness of PMBC was higher. This in-
dicates that thickly coating of BC was affected by BB ac-
tivities and atmospheric oxidation significantly. In contrast
to Lulang, HOA contribution decreased with the growth of
RBC, indicating a weaker effect of primary aerosol on thickly
coated PMBC in Xihai. Besides the MO-OOA, NO−3 also
contributed significantly to the composition of thickly coated
PMBC in Xihai, while the contribution of NO−3 dropped with
the rise of RBC in Lulang. As illustrated in Fig. 6a, the mass
fraction of NO−3 reached 35 % in the maximum bin of RBC
(18–19.5) in Xihai. The abundant NO−3 was closely associ-
ated with anthropogenic sources, as mentioned in the preced-
ing paragraph. The results demonstrate substantial variability
in the composition influencing BC aging across the TP, af-
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Figure 5. The stacked bars represent mass concentrations of (a) different species in BC-containing particles (PMBC) and (b) different
factors of organic aerosol in BC-containing particles. The numbers on the plot show the percentage of different species and organic factors.
In panel (a), PMBC in the TP (this study) was compared to PMBC in urban regions (Collier et al., 2018; Cui et al., 2022).

fected by diverse emission sources. Moreover, anthropogenic
pollutant emissions had strong impacts on BC coating, even
in the remote highland areas, and the contribution of inor-
ganic aerosol to BC coating is non-negligible in the TP.

3.3 Impacts of transported emissions on BC-containing
particles

As discussed above, PMBC in the TP region is possibly af-
fected by both anthropogenic sources and BB transported
from surrounding areas. To further investigate the impact
mechanism of regional transport on BC, the cluster analysis
of backward trajectories was carried out during field cam-
paign of Xihai and Lulang, and backward trajectories were
clustered into three kinds. In Xihai, the air masses were dom-
inantly from the eastern region outside of the TP, as indicated
by air masses of cluster1 (CL1), followed by the air masses
of cluster2 (CL2) from the northwest of Xihai and the air
masses of cluster3 (CL3) from the west of Xihai (Fig. 7a).
PMBC was brought more to Xihai (Fig. 7c) by the air masses
of CL1, which went through the lower-altitude regions with
stronger anthropogenic BC emissions (Figs. 7a and 1b). In
Lulang, the CL1 air masses from south Asia were heavily
polluted and aged; the CL2 air masses from southern edge
of Himalayas and the CL3 air masses from central inland
of the TP were cleaner (Fig. 7b). Comparing the polluted
air masses (CL1) at two sites, the chemical composition of
PMBC showed an obvious difference between Xihai and Lu-
lang (Fig. 7c and d). The contribution of inorganic species
to BC coating was higher in Xihai, and there was more OA
(especially MO-OOA) in polluted air mass of Lulang. MO-

OOA was the major component of BC coating in CL1 in Lu-
lang. As shown by Fig. 7b, there were intensive wildfires in
the source region of CL1 air masses of Lulang, and the wild-
fire plume could be readily uplifted to higher altitudes due to
prevailing upflow driven by the lifting of the plume (Freitas et
al., 2007; Fromm et al., 2000; Labonne et al., 2007; Luderer
et al., 2006; Sofiev et al., 2012) or large-scale westerly and
small-scale southerly circulations during the pre-monsoon
season (Zhang et al., 2020; Cao et al., 2010). Such circula-
tion could transport BC and other co-emitted pollutants from
wildfires in Mainland Southeast Asia and the wider area of
south Asia over the mountains of the TP until they reached
Lulang. Because the biomass burning during wildfires can
emit plentiful volatile organic compounds (VOCs) like ter-
penes (Akagi et al., 2013; Fiddler et al., 2024), it is expected
that SOA can be formed through oxidation from precursors
in the plume, leading to a thick coating on PMBC. In Xi-
hai, NO−3 was one of the major coating species in PMBC
in CL1 (Fig. 7c) with mass concentration of NO−3 of up to
0.35 µgm−3 (accounting for 19 % of PMBC), and other air
mass clusters had a higher mass fraction of HOA in BC coat-
ing, indicating that PMBC was less affected by oxidation and
was fresher. CL1 transported air masses from the northwest
region of China where the anthropogenic emissions are much
stronger than the TP (Fig. 7a). With higher concentrations of
primary pollutants like NOx , the formation and coating of
NO−3 can be enhanced in PMBC. The above results indicate
that the effects of emission sources were discrepant in differ-
ent regions of the TP, and the northeast part of the TP was
significantly affected by anthropogenic emissions.
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Figure 6. The variation of BC coating composition with RBC between (a) Xihai and (b) Lulang. The x axis represents the mass ratio of BC
coating components and rBC cores (RBC), and the y axis represents the mass fractions of BC coating components coated on rBC. The mass
fraction of components was averaged in each bin of RBC (bin width: 1.5).

Figure 7. The maps show the backward trajectories in different clusters of (a) Xihai and (b) Lulang. Each circular marker along the
trajectories denotes a 24 h interval. The background shading represents the anthropogenic BC emission intensity, and the orange spots
represent the location of wildfire during the campaign in (a) and (b). The stacked bar plots show the mass concentration of coating components
and rBC in (c) Xihai and (d) Lulang.
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To further explore the coupling effect of horizontal and
vertical transport on BC in high-altitude regions, both obser-
vations and simulations were performed to track the evolu-
tion of pollutants in the surrounding area. We chose a typi-
cal episode in CL1 in Xihai to conduct model simulations.
As illustrated in the zonal profile plots of CO and BC, the
high levels of anthropogenic pollutants were uplifted to Xihai
(Fig. 8a and b). The updraft flow and the turbulent mixing in
the boundary layer carried the anthropogenic emissions from
the ground to high altitudes, and then the horizontal easterly
winds transported the anthropogenic emissions to the north-
east TP. The combination of upward wind and a developing
boundary layer (Fig. S8c) allowed the pollutants emitted by
the anthropogenic sources near the surface to be carried aloft
and transported to the high-altitude TP in the afternoon. This
effect can significantly change both the concentration and
chemical composition of BC. Compared to the average di-
urnal variation during observation period, the diurnal varia-
tion during episode shows distinctive features (Fig. 8c and d).
PMBC concentration increased remarkably from 15:00 (Bei-
jing time) and peaked at 16:00 to 17:00 (Beijing time), with
a maximum concentration of 4.0 µgm−3. Concurrently, NO−3
and SOA also exhibit a noticeable increase along with the
thickening of the BC coating in the afternoon. The NO−3 ,
SOA and RBC rose from 0.41 µgm−3, 0.49 µgm−3 and 2.8
at 11:00 to 1.06 µgm−3, 1.31 µgm−3 and 10.2 at 16:00 (Bei-
jing time, respectively. As Fig. S8a shows, O3 did not in-
crease significantly after 15:00 (Beijing time) in Xihai, im-
plying that the photochemistry and secondary aerosol forma-
tion might not be enhanced. However, the consistent radia-
tive heating of the ground surface during the daytime kept a
convective boundary layer (Fig. S8c), facilitating the vertical
transport of anthropogenic emissions to higher altitudes and
plausibly causing the enhanced air pollution in the afternoon
in Xihai. This phenomenon is a good illustration of the vul-
nerability of remote plateau regions to intense anthropogenic
influences, as pollutants can be transported from low-altitude
regions to the plateau.

3.4 Impacts of diverse BC coating characteristics on
light absorption

The effects of different emission sources on the BC light
absorption ability were investigated. Compared to Lulang,
the MACs of PMBC were higher in Xihai overall, indicating
higher absorption efficiency and potentially stronger radia-
tive forcing in this region. The MACs were all relatively high
in three clusters of air masses of Xihai, with the distribution
peaking between 12 and 14 m2 g−1 (Fig. 9a), which is nu-
merically comparable to previous studies (Wang et al., 2015).
The overall high MAC in Xihai may result from the signifi-
cant impact of anthropogenic emissions in the northeast TP.
The stronger emissions provided abundant precursors of BC
coating to improve the coating thickness, and the thick coat-
ing enhanced the light absorption capacity of PMBC via the
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Figure 8. Simulated meridional mean concentration profiles of (a) CO and (b) BC independently during the episode day (19 June 2021).
The air circulation is shown as vector arrows, and the terrain height is shown as gray shading in panels (a) and (b). The vertical velocity
of wind was amplified by a factor of 3000 for clarity. Panels (c) and (d) show the diurnal variation of BC-containing particle concentration
during (c) the episode day and (d) the entire observation period in Xihai. The blue shading represents the nighttime hours during the Xihai
campaign in panels (c) and (d). Sunrise in Xihai was at about 06:00 (Beijing time), and sunset was at about 20:30 (Beijing time).

lensing effect, while the MAC was only higher under con-
trol of the polluted CL1 air masses in Lulang (Fig. 9b), in-
dicating that the south Asian wildfire plume could signif-
icantly strengthen the light absorption ability of BC. The
MAC in Lulang was also comparable to previous studies
(Wang et al., 2018); the peak of the MAC distribution was
7.6 m2 g−1 at 870 nm (12.0 m2 g−1 at 550 nm if the absorp-
tion Ångström exponent of BC is 1.0). In CL1 air masses of
Lulang, the MAC was mainly distributed at the bin between
12 and 14 m2 g−1. That is close to the MAC (13.1 m2 g−1 at
550 nm) at other TP sites affected by biomass burning plumes
(Tan et al., 2021). The BC coating was thick (Fig. 7d) to
improve the MAC in CL1 air masses of Lulang influenced
by higher BB emissions. These results indicate that strong
BB and anthropogenic emissions from the surrounding area
could have noticeable impacts on the chemical composition
and light absorption ability of BC in the TP, and these im-
pacts were more prevalent in the northeast part of the TP.

4 Conclusions

In this study, we employed the SP-AMS in the laser-only
configuration to quantitatively analyze the chemical compo-
sition of PMBC at distinct sites, Xihai and Lulang, located in
the northeast and southeast regions of the TP. Our findings
demonstrate the considerable variability and spatial hetero-
geneity of BC physical and chemical properties across the
TP. Notably, Xihai exhibited higher mass concentrations of
rBC and PMBC, with respective mean concentrations of 0.24
and 1.48 µgm−3, compared to 0.17 and 1.02 µgm−3 in Lu-
lang. The PMBC in Xihai has a higher aging degree, as indi-
cated by a higher mean RBC of 6.7, in contrast to the mean
RBC of 4.5 in Lulang.

The marked differences in chemical composition of PMBC
were also observed within the TP region. Due to differences
in emission sources, the POA was distinct in Xihai and Lu-
lang. HOA from fossil fuel combustion was one of the main
components of PMBC in Xihai as the result of elevated an-
thropogenic emissions, and there was more BBOA in Lulang,
especially when the air masses were from the plains of south
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Figure 9. The normalized frequency distribution of the MAC at 550 nm wavelength in different trajectory clusters of (a) Xihai and (b) Lulang.

Asia, affected by frequent wildfire. Besides primary species,
the secondary coating components also showed larger dif-
ferences. The contribution of secondary inorganic aerosols,
particularly NO−3 , was noticeably higher in Xihai because of
the strong anthropogenic emission of NOx as the precursor
of NO−3 . SOA was comparatively higher in areas with less
anthropogenic emissions like Lulang. The oxidizing level of
SOA was high at both sites of the TP; MO-OOA occupied
the largest mass fraction of SOA. We also investigated the
variation of PMBC composition with its coating thickness in
both sites. An enhancement in NO−3 fraction was observed on
aged BC coating in Xihai. In contrast, the mass contribution
of NO−3 decreased and SOA contribution notably increased
during the thickening of PMBC in Lulang.

Backward trajectory analysis and regional chemical trans-
port modeling were then performed to track the impacts of
transported anthropogenic and BB emissions on the chemi-
cal composition of PMBC in the northeastern and southeast-
ern TP. The effect of anthropogenic emissions was stronger
in the northeastern TP when the air masses were brought by
updrafts and easterly winds from lower-altitude areas, lead-
ing to an increase of NO−3 and SOA coated on BC. With the
development of the boundary layer, strong turbulent mixing
promoted the elevation of anthropogenic pollutants. In con-
trast to Xihai, the thickly coated BC in Lulang was mainly
caused by elevation and transportation of biomass burning
plumes from south Asia, leading to a significantly higher
contribution of MO-OOA and BBOA. The distinct trans-
ported emissions caused substantial variations of chemical
composition and mixing state of BC, which further changes
the light absorption ability of BC in the TP. The MAC of
PMBC at both sites was at a high level, showing the strong ab-
sorption ability of BC in the TP region, especially in polluted
air masses affected by biomass burning emission from south
Asia. The overall thicker coating and higher MAC of PMBC

in air masses elevated from lower-altitude regions reveal the
impacts of promoted BC aging processes during transporta-
tion on the mixing state and light absorption of BC in the TP,
which will further influence its radiative effects. Such im-
pacts need to be considered in the evaluation of BC radiative
effects for the TP region.
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