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Abstract. Cloud area distributions are a defining feature of Earth’s radiative exchanges with outer space. Cloud
perimeter distributions n(p) are also interesting because the shared interface between clouds and clear sky de-
termines exchanges of buoyant energy and air. Here, we test using detailed model output and a wide range
of satellite datasets a first-principles prediction that perimeter distributions follow a scale-invariant power law
n(p) ∝p−(1+β), where the exponent β = 1 is evaluated for perimeters within moist isentropic atmospheric lay-
ers. In model analyses, the value of β is closely reproduced. In satellite data, β is remarkably robust to latitude,
season, and land–ocean contrasts, which suggests that, at least statistically speaking, cloud perimeter distribu-
tions are determined more by atmospheric stability than Coriolis forces, surface temperature, or contrasts in
aerosol loading between continental and marine environments. However, the satellite-measured value of β is
found to be 1.26± 0.06 rather than β = 1. The reason for the discrepancy is unclear, but comparison with a
model reproduction of the satellite perspective suggests that it may owe to cloud overlap. Satellite observations
also show that scale invariance governs cloud areas for a range at least as large as ∼ 3 to ∼ 3× 105 km2, and
notably with a corresponding power law exponent close to unity. Many prior studies observed a much smaller
range for power law behavior, and we argue this difference is due to inappropriate treatments of the statistics of
clouds that are truncated by the edge of the measurement domain.

1 Introduction

Since the first numerical global climate models (GCMs) were
developed in the 1960s, there have been exponential ad-
vances in computational capabilities that have led to spec-
tacular simulations of cloud structures. The next generation
of climate models is expected to resolve individual clouds at
kilometer scales (Schär et al., 2020). The strategy behind this
“bottom-up” approach to representing the role of clouds in
climate is that pursuing ever finer spatial resolution and im-
proved model physics will lead to more accurate predictions,
accepting the necessary evil of increased computational ex-
pense (Slingo et al., 2022). Yet, perhaps alarmingly, it has not
been clear that this approach has been successful in its goal
given that the spread in GCM predictions of the climate sen-

sitivity to greenhouse gases has, if anything, only increased
(Palmer, 2016; Arias et al., 2021; Lovejoy, 2022).

In some sense, time-dependent deterministic simulations
are not obviously well suited for obtaining a statistical time-
independent climatology. An alternative approach might be
to derive the statistics directly, using principles of statistical
thermodynamics, from bulk physical constraints (Arakawa,
2004; Procyk et al., 2022). A familiar example is the sim-
plicity of the derivation of the Maxwell–Boltzmann statis-
tics characterizing the distribution of speeds of molecules
in an ideal gas, obtained knowing only the average energy
per molecule and without deterministically simulating indi-
vidual particles and the extraordinary complexities of their
quantum mechanical interactions (Schroeder, 2021). There is
some evidence that this “top-down” philosophy may work for
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convective cloud fields. An exponential distribution of mass
fluxes can be derived for non-interacting clouds by consider-
ing only the large-scale vertical mass flux (Cohen and Craig,
2006; Craig and Cohen, 2006). Another study by Garrett
et al. (2018) took a similar top-down approach but allowed
for cloud interactions. It obtained a distribution of cloud hor-
izontal sizes in a steady state that follows an exponential in
saturated static energy and a power law with respect to cloud
perimeter.

In this study, we use a range of satellite observations to
test the validity of the cloud perimeter distribution derived
by Garrett et al. (2018). We show that both cloud perime-
ters and cloud areas do indeed follow a power law but that
the power law exponent appears to be a function of perspec-
tive, agreeing well with theory in thin horizontal layers in
cloud-resolving models but not with satellite observations of
cloud fields looking down from space. We also find that the
choice of domain size and treatment of clouds that are trun-
cated by the domain edge can introduce spurious scale breaks
in power law size distributions. We suggest that previous re-
sults that do not account for these subtle effects should be
interpreted with caution.

This paper is organized as follows. In Sect. 2, we first pro-
vide an overview of the theoretical arguments presented by
Garrett et al. (2018) that led to the predicted cloud perimeter
distribution. With this necessary background, prior empiri-
cal measurements of the related cloud area distribution are
then discussed, along with the subtleties involved in measur-
ing distributions of cloud sizes. The methods are presented in
Sect. 3, and results from satellite observations are presented
in Sect. 4. In Sect. 5, we examine the role of perspective
in measuring cloud size distributions and finally conclude in
Sect. 6.

2 A steady-state thermodynamic model for cloud
size distributions

To begin, we justify why it is physically meaningful to look
at cloud perimeters by summarizing the derivation of the
cloud perimeter number distribution n(p) presented by Gar-
rett et al. (2018). The foundation follows a parcel through an
idealized thermodynamic cycle around cloud edges – what
was termed a “mixing engine” – defined by four “legs”:

1. moist adiabatic ascent inside cloud

2. diabatic mixing with clear air across cloud edge that
dries the parcel and reduces cloud perimeter

3. dry adiabatic clear-sky descent

4. diabatic mixing with cloudy air across cloud edge that
moistens the parcel and lengthens cloud perimeter.

The cycle is analogous to the familiar Carnot cycle, used to
describe hurricanes (Emanuel, 1991), but with entropy gen-
eration associated with mixing at the cloud edge rather than

with energetic exchanges with the oceans or outer space. In
observations of tropical convection, Heus and Jonker (2008)
found that shallow cumulus clouds tend to have a neutrally
buoyant cloud edge and a “subsiding shell” of descending
clear air adjacent to the cloud edge. A similar pattern was
later observed in local circulations around simulated deep
convection (Glenn and Krueger, 2014). These observations
appear to support the mixing engine framework, at least for
actively convecting clouds.

Representing mass fluxes across cloud edges in 4D space-
time coordinates, as is typically done in detailed cloud nu-
merical simulations, is difficult because turbulent mixing
changes both the location and length of the cloud edge it-
self and over a very wide range of time and space scales.
However, while the cloud edge may deform during mixing, it
maintains its position as a point of approximate neutral buoy-
ancy and in this sense can serve as a fixed reference point in a
related coordinate system. For this purpose, we use the moist
static energy, which is given by

h= gz+ cpT +Lvq, (1)

where g, cp, and Lv are the gravitational acceleration, the
specific heat of air at constant pressure, and the latent heat
of vaporization of water, respectively, and z, T , and q are
height, temperature, and the water vapor mixing ratio, re-
spectively. At the cloud edge, air is just saturated, so the
moist static energy is equal to the saturated static energy, de-
fined as h? = h(q = q?), where q? is the saturated mixing ra-
tio. At a given height, perturbations in saturated static energy
can be related to temperature (and hence buoyancy) perturba-
tions T ′ through h?′ = cp(1+γ )T ′, where γ = L/cp∂q?/∂T
(Randall, 1980).

In a tropical atmosphere, variability in h? between hori-
zontal levels dominates variability within a given level, so a
constant h? surface can be approximated as lying along a sur-
face of constant z (Xu and Emanuel, 1989). Supposing a thin
atmospheric layer of thickness δz, clouds within this layer
can be partitioned into discrete bins j of mean perimeter pj .
For a number nj of such clouds, each bin has a total cloud
perimeter njpj and a total surface area σ = njpj δz. This
surface area is the component of the overall cloud surface
area that is vertically oriented. Fick’s law suggests that for
bin j , the total rate of dissipation of potential energy across
the cloud edgeQj due to diabatic turbulent mixing is propor-
tional to the product of the energy gradient between cloudy
and clear air ∇h and the total surface area σ (Garrett, 2012;
Garrett et al., 2018). Provided that the perturbation from the
domain mean δh is much smaller than the mean value 〈h?〉,
a constraint that is satisfied even over the entire depth of the
troposphere, and that turbulence around cloud edges is ap-
proximately isotropic (Heus and Jonker, 2008; Heus et al.,
2009; Wang et al., 2009), the vertical and horizontal legs
of the mixing engine are approximately the same size, so
δx ≈ δz and ∇h≈ δh/δz= S, where S is the stability. Thus
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the rate of dissipation of energy due to horizontal mixing
across the cloud edge in any given size bin j is

Qj ∝ njpj δh. (2)

In any cloud field, clouds continually grow and shrink
due to turbulent mixing processes, and so cloud number is
passed from one perimeter bin j to the next j + 1 or j − 1.
In a steady state, however, which can be defined as a time-
invariant perimeter distribution, there must be no net conver-
gence of cloud number or energy into any bin j . This im-
plies that dQ/dp = 0 or in discretized form from Eq. (2) that
njpj = const. The steady-state perimeter distribution n(p)
can therefore be expected to follow the power law (Garrett
et al., 2018)

n(p)≡
dn
dp
∝ p−(1+β), β = 1, pmin < p < pmax. (3)

Power laws such as Eq. (3) are generally considered to be
“scaling”, since a rescaling of p by some constant factor c
results in a constant rescaling of n(p) by a constant factor
c−(1+β). Of course, it is impossible for any physical system to
exhibit scale invariance over an infinite range of scales, and
so such scaling behavior can only be valid over a finite range
pmin < p < pmax. Beyond these “scale breaks”, the value of
β changes, or the functional form of the distribution changes.
As an example, a common feature of power law distributions
describing many other natural and social systems is an expo-
nential cutoff at large scales (Newman, 2005; Clauset et al.,
2009).

For clouds, as a guess, the smallest possible size defin-
ing pmin might be the Kolmogorov microscale for turbulent
circulations such as in the mixing engine, whose order of
magnitude is ∼ 1 mm (Tennekes and Lumley, 1972). The
largest possible clouds are of course limited by the Earth’s
circumference of ∼ 105 km but might be more reasonably
constrained by the Rossby radius of deformation ∼ 103 km
where Coriolis forces limit horizontal spreading.

Since cloud edges are fractal (Lovejoy, 1982), calculated
perimeter lengths depend on the chosen measurement reso-
lution, so pmax can be orders of magnitude larger than the
distance from one end of a cloud to the other. A measure
of maximum cloud size that is less resolution-dependent is
maximum cloud area, which is roughly O(cloud length)2.

The continuous function n(p) can be discretized into lin-
early spaced bins with constant 1p, in which case the slope
on a plot with two logarithmic axes would be −(1+β). If
logarithmically binned with constant 1 lnp, the slope of the
power law would be −β because dn/dlnp = pn(p). We fa-
vor logarithmically spaced bins as being better suited to de-
scribe the vast range of cloud sizes because linearly spaced
bins increase sampling uncertainty in large bins with few
counts (White et al., 2008).

The challenge of measuring cloud size distributions

For the power law exponent β, Garrett et al. (2018) found
β = 1.06± 0.02 in a comparison with a highly detailed nu-
merical simulation of a tropical cloud field, in close agree-
ment with the theoretically expected value of β = 1. Cloud
perimeter distributions have yet to be assessed observation-
ally, although cloud area distributions have been widely stud-
ied, generally revealing power law distributions in both satel-
lite observations (Cahalan and Joseph, 1989; Kuo et al.,
1993; Benner and Curry, 1998; Koren et al., 2008; Wood and
Field, 2011) and models (Neggers et al., 2003; Yamaguchi
and Feingold, 2013; Neggers et al., 2019; Christensen and
Driver, 2021), although not in every study (López, 1977).
Assuming both cloud areas and perimeters are power-law-
distributed, the two quantities can be related by the scaling
relationship

p = const.× aD/2. (4)

D is often interpreted to be the fractal dimension Df as it
is formally defined by the relation l ∝ ξ1−Df relating how the
measured length l of a fractal line such as cloud perimeter de-
pends on the “ruler length” (or resolution) ξ used to measure
it (Mandelbrot, 1982). Assuming the relationship D =Df
is valid, the fractal dimension can be determined by fitting
a linear regression between observations of ln

√
a and lnp

(e.g., Lovejoy, 1982; Cahalan and Joseph, 1989; Siebesma
and Jonker, 2000; Christensen and Driver, 2021).

Subsequent work has shown that, for clouds, D is not in
fact strictly equivalent to the fractal dimension Df. Batista-
Tomás et al. (2016) and Peters et al. (2009) pointed out that
adopting the equivalence D =Df requires holes in clouds to
be excluded from contributing to the cloud’s perimeter, as the
fractal dimension is a property of a single curve (a cloud’s ex-
terior perimeter) rather than an ensemble of curves (a cloud’s
exterior perimeter and the perimeter of each hole).

Furthermore, Imre (1992) showed that the constant pre-
factor in Eq. (4) often itself scales with a. In this case, fitting
a regression line to a scatterplot of ln

√
a vs. lnp would yield

a value for D that implicitly includes a scaling contribution
from the supposed “constant”.

Setting aside these details, a scaling of the form Eq. (4)
nonetheless can be used to empirically relate cloud areas and
perimeters, making the expression useful regardless of any
particular interpretation of D. Here, it permits the perimeter
size distribution Eq. (3) to be converted to a distribution in
cloud area. Since dlna ∝ dlnp, dn/dlna ∝ dn/dlnp, and so

n(a)≡
dn
da
∝ a−(1+α), α =

Dβ

2
, amin < a < amax. (5)

Adopting D ≈ 4/3 (Lovejoy, 1982; Siebesma and Jonker,
2000), noting that both higher (Cahalan and Joseph, 1989;
Christensen and Driver, 2021) and lower (Cahalan and
Joseph, 1989; Batista-Tomás et al., 2016) values have been
measured, and β = 1 as proposed by Garrett et al. (2018),
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Eq. (5) yields α ≈ 2/3. By contrast, widely conflicting val-
ues are observed for α, as well as for the location of the
scale break amax. Cahalan and Joseph (1989) and Benner and
Curry (1998) found in satellite observations values for amax
ranging from 4 km2 to between 0.28 and 0.62 km2, respec-
tively. In large-eddy simulations, Neggers et al. (2003) found
scale breaks between 0.16km2

≤ amax ≤ 1.6 km2.
For larger domains considered in other studies amax tends

to be larger. Wood and Field (2011) found using MODIS
satellite data that α = 0.87± 0.03 and amax & 106 km2. Pe-
ters et al. (2009) found a scale break in mesoscale con-
vective clusters at amax ∼ 105 km2, although it depended
on the value of a threshold based on column water vapor.
Conversely, Christensen and Driver (2021) found amax ∼

106 km2 for tropical deep convection. There is also variation
in calculated values for α, with Koren et al. (2008) finding
α = 0.3± 0.1 and Yamaguchi and Feingold (2013) finding
α = 0.59. Neither found evidence for a scale break amax, al-
though they considered smaller domains.

These conflicting results could reflect meteorological dif-
ferences, as there is some evidence that D, or α through
Eq. (5), is itself dependent on cloud type and size (Cahalan
and Joseph, 1989; Batista-Tomás et al., 2016). However, a
largely overlooked explanation for the surprising variance in
values for α and amax is one of sampling bias. Larger clouds
are more likely to be truncated by the edge of the measure-
ment domain than small clouds, and if they are removed from
the analysis, as is sometimes done, there can be a spurious
scale break introduced to the size distribution. Such a scale
break would depend only on the size of domain considered,
rather than some intrinsic physical property of the cloud field
itself. This spurious effect of domain size has also been found
to influence the measured power law exponent for idealized
1D cloud sizes (Wood and Field, 2011).

Past studies generally do not mention how clouds trun-
cated by the domain edge are treated, or, in some cases, they
simply remove them from analysis (e.g., Peters et al., 2009;
Christensen and Driver, 2021). Plausibly, some of the in-
consistencies seen in measured values of amax and α could
owe to this measurement problem. For example, one seem-
ing solution is to retain clouds that are truncated by the do-
main edge but measure only the portion of the cloud area that
lies within the domain. With this approach, a portion of the
given cloud’s area is necessarily omitted, likely placing it in a
smaller size bin where counts are consequently oversampled.

3 Methods

Our goal here is to test in satellite observations and mod-
els the hypotheses proposed by Garrett et al. (2018), namely
that β = 1 as specified by Eq. (3) and that the value of β is
the same for any cloud field in a steady state. Second, we at-
tempt to address inconsistencies in previous observations of
α and amax by appropriately accounting for bias introduced

by the treatment of clouds truncated by the edge of a satellite
measurement domain.

3.1 Satellite datasets

The satellite platforms used to image clouds in this study fall
into two broad categories: full disk and polar-orbiting. Full-
disk images are effectively a snapshot of Earth taken from
geostationary orbit or, in the case of EPIC, the L1 Lagrange
point. Polar-orbiting sensors continuously scan a rectangular
swath as they move poleward. Details about the datasets are
summarized in Table 1.

For most of the satellite datasets described in Table 1, indi-
vidual clouds are identified from pre-processed binary cloud
masks designed to distinguish cloudy and clear sky. The def-
inition of a cloud is somewhat subjective, and so inevitable
differences in cloud identification algorithms and sensor ca-
pabilities lead to variations in global cloud coverage esti-
mates between datasets. Even for a given satellite dataset,
estimates of global cloud fraction depend on the choice of
viewing angle, increasing with more oblique perspectives
(Maddux et al., 2010). To mitigate this concern, images are
truncated to exclude cloud imagery where the sensor zenith
angle is greater than 60◦, a choice intended as a compromise
between limiting sensitivity to viewing angle while retaining
a large domain area.

To test the sensitivity of measured distributions of cloud
sizes to cloud definition, we also use a simple cloud mask
based on MODIS band 1 optical reflectance R, which is sen-
sitive to wavelengths between 620 and 670 nm and has a res-
olution at nadir of 0.25 km. We examine 13 tropical maritime
granules, each centered between approximately 10◦ S and
20◦ N and 115◦W and 140◦W and covering an area approx-
imately 1950 km wide by 2030 km long. Images from each
granule were visually inspected for artifacts from sun glint,
and several additional granules were omitted from the analy-
sis due to sun glint contamination. Figure 1 compares several
example cloud masks generated using various thresholds in
R alongside the pre-processed cloud mask and an RGB im-
age.

3.2 SAM numerical simulations

For numerical simulations of cloud fields, we use out-
put from the System for Atmospheric Modeling (SAM)
(Khairoutdinov and Randall, 2003). SAM was initialized
and forced by large-scale thermodynamic tendencies derived
from mean conditions during the GATE Phase III field ex-
periment (Khairoutdinov et al., 2009) and run with pre-
scribed radiative heating and diagnostic subgrid-scale turbu-
lence. From two prognostic hydrometeor variables (precip-
itating and non-precipitating), cloud water, cloud ice, rain,
snow, and graupel are diagnosed. The simulation’s domain
size is 204.8 km× 204.8 km with 100 m horizontal grid spac-
ing and a 2 s time step. The vertical grid spacing is 50 m be-
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Table 1. Satellite datasets used in this study.

Dataset
name

Sensor
name

View type Approx. nadir
resolution

Longitude
at nadir

Dates examined Description of
cloud mask
algorithm

GOES
−137◦

ABI Full disk 2 km 137◦W 1 January 2021 to
1 January 2022

Derrien and Gléau
(2005, 2010)

GOES
−75◦

ABI Full disk 2 km 75◦W 1 January 2021 to
1 January 2022

Derrien and Gléau
(2005, 2010)

MSG 0◦ SEVIRI Full disk 3 km 0◦ 1 January 2021 to
1 January 2022

Derrien and Gléau
(2005, 2010)

MSG 42◦ SEVIRI Full disk 3 km 42◦ E 1 January 2021 to
1 January 2022

Derrien and Gléau
(2005, 2010)

Himawari
141◦

AHI Full disk 2 km 141◦ E 1 January 2021 to
1 January 2022

Derrien and Gléau
(2005, 2010)

EPIC EPIC Full disk 8 km – 1 January 2017 to
1 January 2018

Yang et al. (2019)

VIIRS VIIRS Polar-Orbiting 0.75 km – 1 January 2021 to
1 January 2022

Kopp et al. (2014)

MODIS
1 km

MODIS Polar-Orbiting 1 km – 1 January 2012 to
1 January 2013

Ackerman et al.
(1998, 2008)

MODIS
0.25 km

MODIS Polar-Orbiting 0.25 km – 1 January 2021 to
10 January 2021

Sect. 3.1

POLDER POLDER Polar-Orbiting 1/18◦ – 1 January 2012 to
1 January 2013

Buriez et al.
(1997)

low z= 1.2 km and increases to 100 m at z= 5 km. There are
a total of 210 vertical levels.

Shallow cumulus form in the first hour of the simulation,
gradually deepening into deep convection by hour 6. Be-
yond approximately hour 12, a steady-state period is reached
where the convection is in quasi-equilibrium with the pre-
scribed large-scale forcing (Arakawa and Schubert, 1974;
Lord and Arakawa, 1980; Lord, 1982). During this steady-
state period, the precipitation rate and cloud cover fluctuate
without significant trends, and the simulation does not self-
aggregate (Khairoutdinov et al., 2009). We analyze hourly
3D model output from hours 12 to 24. Output from this sim-
ulation was also used in Garrett et al. (2018) and is described
in full detail in Khairoutdinov et al. (2009).

A cloud mask for each horizontal layer in the simulation
was applied by setting all grid cells with non-precipitating
cloud condensate mixing ratios qn (including both liquid and
ice) in excess of 1 % of the saturated mixing ratio q? to
cloudy and the remainder to clear. Once every grid cell is
defined as either cloudy or clear, 2D images were created by
isolating each individual height level in the domain, creating
210 images for every time step. These images were then an-
alyzed separately using the same method as the satellite im-
agery (described below). Isolating individual horizontal lay-

ers in this manner provides an approximate method of isolat-
ing constant h? surfaces (Garrett et al., 2018). After perime-
ters were calculated and binned for each layer, counts were
summed over all layers. We also create a “satellite-like” im-
age from the simulation, which is described in Sect. 5.

3.3 Cloud identification and filtering

Both the satellite and model datasets yield 2D binary cloud
masks where grid cells or pixels are either cloudy or clear.
Individual clouds are defined as connected cloudy regions,
identified by applying a convention that adjacent cloudy
pixels are connected, whereas diagonal cloudy pixels are
not (termed “4-connectivity”; Wood and Field, 2011; Chris-
tensen and Driver, 2021), although the analysis is not signifi-
cantly affected by this choice (Kuo et al., 1993). In the satel-
lite datasets, the pixel lengths in the x and y directions are
determined independently as a function of satellite distance
and sensor zenith angle.

The cloud perimeter is then computed by summing all
pixel side lengths along the edge of the cloud and cloud
area by summing the areas of each individual cloudy pixel.
Cloud holes add to the cloud’s perimeter but reduce its area,
which as described above implies D 6=Df in Eq. (4). Clouds
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Figure 1. Example RGB image, pre-processed cloud mask, and cloud masks created from various thresholds in optical reflectance R for
a single MODIS granule. In the reflectance-based cloud masks, pixels with reflectance higher than the threshold are set to cloudy (white),
while the others are set to clear (dark blue). The image is centered at approximately 1◦ S, 130◦W and was taken on 1 January 2021 at
approximately 19:05 UTC. Note that pixels are depicted here as being uniform in size but that cloud size calculations account for pixel size
increasing away from nadir.

consisting of a small number of pixels are more Euclidean
than fractal (Christensen and Driver, 2021), which leads to
an inaccurate estimate of the small portion of the size dis-
tribution. We therefore truncate number distributions to ex-
clude cloud perimeters≤ 10× (resolution at nadir) or ar-
eas≤ 10× (resolution at nadir)2.

Unexpectedly the smaller portion of the size distributions
obtained using EPIC display non-power-law behavior, in
contrast to all other satellite datasets over similar scales. To
ensure values for α and β were calculated over only the
power law regime, thresholds used for EPIC clouds were
increased to exclude perimeters≤ 30× (nadir resolution) or

areas≤ 1000× (nadir resolution)2. Conceivably, the discrep-
ancy is caused by a compression algorithm that averages 2×2
pixel regions before data transmission. The regions are sub-
sequently interpolated back to the original resolution, which
may smooth cloud perimeters (see Appendix A for further
discussion).

To account for possible scale breaks in size distributions
introduced by clouds truncated by the edge of the measure-
ment domain, area or perimeter bins in which the number of
clouds truncated by the edge is greater than 50 % of the total
in that bin are removed from consideration. For the observed
cloud fields, such bins tend to be those in the larger end of
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the size spectrum as large clouds are most likely to touch
the domain edge. The threshold choice of 50 % represents a
compromise, removing bins most sensitive to truncation ef-
fects while allowing for a large range of cloud sizes to be
studied. Calculated values for α and β are relatively insensi-
tive to more stringent thresholds less than 50 %.

We calculate the power law exponents α and β by per-
forming a linear regression in logarithmic space since from
Eqs. (3) and (5) lnn(p)=−(1+β) lnp+const. and lnn(a)=
−(1+α) lna+const.. It has been argued this method can lead
to underestimates of the exponent (Clauset et al., 2009), but
there is no straightforward alternative when presented, as is
the case here, with a power law that has both an upper and
lower bound (Hanel et al., 2017). We evaluate uncertainties
as 95 % confidence intervals corresponding to 2 standard er-
rors of the regression. We report numerical values of plotted
data in the Supplement.

4 Measured cloud size distributions

In satellite observations examined here, both cloud areas and
perimeters are well described by a power law distribution.
For cloud areas, Fig. 2 shows measured values of α ranging
between α = 0.90± 0.02 (POLDER and MODIS 0.25 km)
and α = 0.99±0.02 (GOES−75◦ and Himawari 141◦) and a
mean value, across all satellite datasets, of 〈α〉 = 0.95±0.08.
These values are largely in agreement with several previous
studies (e.g., Cahalan and Joseph, 1989, Benner and Curry,
1998, and Wood and Field, 2011).

For cloud perimeters, Fig. 3 shows values of β ranging
from β = 1.22±0.02 (MODIS 1 and 0.25 km) to β = 1.316±
0.008 (GOES−75◦), with a mean across all satellite datasets
of 〈β〉 = 1.26± 0.06. This value differs from that found in
SAM horizontal levels, where β = 0.98±0.03, and from the
theoretically derived value of β = 1 (Eq. 3).

These mean values of α and β imply, from Eq. (4), that
D = 1.5±0.1, which is in good agreement with prior studies
that have generally found values of D slightly greater than
4/3, e.g., D = 1.35 (Lovejoy, 1982), 1.25≤D ≤ 1.59 (Ca-
halan and Joseph, 1989), orD = 1.4 (Christensen and Driver,
2021).

After omitting bins containing 50 % or more clouds trun-
cated by the domain edge, a scale break amax is no longer
evident in the area distributions. In several cases, the distri-
butions exhibit scale invariance extending to areas larger than
105 km2, with the largest to at least ∼ 3× 105 km2 (EPIC).
We find that amax must therefore have a value larger than
roughly 3× 105 km2, corresponding to an effective diame-
ter of ∼ 600 km, substantially larger than some have pre-
viously suggested (e.g., Cahalan and Joseph, 1989; Benner
and Curry, 1998; Neggers et al., 2003), with Wood and Field
(2011) extending amax to 106 km2.

Variability with seasonality, latitude, and surface type

The perimeter size distribution, given by Eq. (3), was derived
without explicit consideration of local climatological charac-
teristics such as season, surface type, or latitudinal location
(Garrett et al., 2018). In satellite observations, the sensitiv-
ity of β to such considerations is shown in Figs. 4, 5, and 6.
Comparisons between latitude bands shown in Figs. 4 and 5
are restricted to observations using the polar-orbiting satel-
lites MODIS and VIIRS because imagery from these sen-
sors, regardless of latitudinal location, is both similar in do-
main area and always centered directly below the satellite.
These conditions reduce the likelihood of bias due to dif-
fering viewing geometry, and neither condition holds for the
full-disk images. POLDER has been omitted from Figs. 4, 5,
and 6 because, when limited to smaller domains, its smaller
sample size introduces significant statistical variability.

Independent of sensor, measured values of β appear robust
across latitudinal regions, land–ocean contrasts, and seasons.
Figure 5 does show modest variability in the value of β by
month in the midlatitude regions 60–30◦ S and 30–60◦ N be-
tween a minimum value of β = 1.21±0.03 (MODIS; March,
May, June; northern midlatitudes) and a maximum value of
1.32±0.02 (MODIS; June, July; southern midlatitudes). An-
nual mean values of β for the midlatitude and equatorial re-
gions in Fig. 4 show similar values ranging from β = 1.22±
0.03 for MODIS at northern midlatitudes to β = 1.28±0.03
for VIIRS in all regions and MODIS at southern midlati-
tudes. Separating clouds by marine and continental regions
in Fig. 6, mean values for β are 1.25± 0.05 for land and
1.28± 0.04 for ocean. All values are consistent with the
global mean value across datasets of 〈β〉 = 1.26± 0.06.

5 Discussion

After accounting for spurious scale breaks introduced by the
problem of attempting to measure the extent of scale invari-
ance with a finite domain, we find that a power law describes
the distributions of both cloud perimeters and areas for a size
range spanning 4 and 5 orders of magnitude, respectively,
and likely extends even further. This result is perhaps all the
more remarkable for the fact that the value of the exponent
β appears to be robust to such local climatological character-
istics as season, latitude, land–ocean contrasts, and latitude,
which might be related to surface temperature, the Coriolis
force, dominant cloud type, or aerosol loading. In this sense,
the observations appear to lend support to the general theo-
retical “mixing engine” approach employed by Garrett et al.
(2018) to obtain Eq. (3), where β was derived only by con-
sidering mixing processes at the cloud edge.

However, a puzzle remains: the global mean value of
〈β〉 = 1.26± 0.06 in satellite observations is higher than the
value of β ' 1 obtained both theoretically (Eq. 3) and from
SAM model simulations (Fig. 3). The difference is signifi-
cant given the range of scales in cloud sizes involved. For
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Figure 2. (a) Logarithmically binned histograms of cloud areas for satellite datasets. (b) Measured values of the power law exponent α
(Eq. 5) with associated mean (gray line) and 95 % confidence interval (gray box). Counts have been vertically offset for clarity. Uncertainties
represent 95 % confidence intervals, derived from a linear regression standard error analysis.

Figure 3. As in Fig. 2, but considering cloud perimeters (Eq. 3) and including results from SAM horizontal levels. The gray line and box
in (b) represent the mean and 95 % confidence interval, respectively, across only the satellite datasets (excluding SAM).

Figure 4. Measured values of β (Eq. 3), separated into the northern
midlatitude region (a), the equatorial region (b), and the southern
midlatitude region (c). The gray line and box represent the global
mean and 95 % confidence interval, respectively, from Fig. 3.

example, for a roughly 3-order-of-magnitude measured range
for cloud perimeters, the discrepancy would imply an order-
of-magnitude difference in cloud counts.

The most obvious inference is that the theory is miss-
ing something fundamental about what determines cloud
perimeters, even if it produced perimeter distribution values
of β very close to those seen in a highly detailed numeri-
cal cloud model. Alternatively, one important distinction that
may be made between the two approaches is simply one
of perspective. Perimeter distributions from the numerical
model SAM shown in Fig. 3 and previously in Garrett et al.
(2018) were calculated by treating every individual horizon-
tal layer in the SAM volume as an independent 2D image.
Only after each cloud perimeter was calculated and binned
were the counts summed over all layers to create a single
histogram, with no account made for cloud overlap. We term
this method “layers”.

Satellite imagery differs, as it offers a two-dimensional
representation of a cloud field as seen from above rather
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Figure 5. Measured values of β (Eq. 3), for the northern midlatitude region (a) and the southern midlatitude region (b), separated by month.
The equatorial region (not shown) shows similar variability around a mean value shown in Fig. 4. The gray line and box represent the global
mean and 95 % confidence interval, respectively, from Fig. 3.

Figure 6. Measured values of β (Eq. 3), separated into clouds over
land (a) and clouds over ocean (b). The gray line and box represent
the global mean and 95 % confidence interval, respectively, from
Fig. 3.

than within. Any vertical cloud overlap is effectively “com-
pressed” into a single horizontal plane before individual
cloud perimeters are calculated. No distinction is made be-
tween overlapping clouds and vertically continuous clouds.

For example, the idealized cloud field in Fig. 7 yields a
single cloud with p = 12 in the compressed satellite view
(panel b), whereas a layer analysis would see three clouds,
two in panel c, each with p = 4, and one in panel d, with
p = 10. A priori, we might therefore expect a compressed
image to yield relatively fewer small clouds than the layer
case, as is the case in the example. This would result in a
smaller value of β for the compressed case relative to the
layer case. Counterintuitively, however, the opposite appears
true: the value of β is larger in the compressed satellite
perimeter distribution than in the layered SAM distribution.

The difference between the two perspectives can be man-
ufactured in SAM by creating vertically compressed images
as they might be seen by a satellite from above. Here, this

is accomplished by creating a 2D vertically summed optical
depth (τ ) field, to which a range of optical depth thresholds
are applied to create a selection of cloud masks. Once binary
cloud masks are created, clouds are identified and analyzed,
as described in Sect. 3.3.

Figure 8 shows that values of β, calculated using the
“layer” method in SAM, are consistent with the theoretical
prediction β = 1 regardless of the threshold used to define
clouds; however, the value of β does indeed increase when
the perspective is switched to one in which the clouds are
vertically compressed as they might be seen from space.

On the other hand, as the compressed threshold in τ grows,
β decreases, reaching a value of roughly 1 at τ & 10. Such
sensitivity of β to optical depth threshold is at odds with
observations, given that cloud masks specified by thresh-
olds in reflectance between R = 0.1 and R = 0.7 for MODIS
0.25 km data show very little trend in calculated β. Note, for
comparison, that the range of reflectance thresholds consid-
ered is roughly equivalent to a range of optical depths be-
tween τ = 1 and τ = 10 and that the reflectance thresholds
in MODIS 0.25 km data generally produce values of β that
are consistent with the global mean value derived from the
pre-processed MODIS cloud mask.

6 Conclusions

By considering cloud edges as a surface across which cloudy
and clear skies compete for available convective potential en-
ergy through small-scale mixing processes in a “mixing en-
gine”, Garrett et al. (2018) derived a cloud perimeter distribu-
tion that follows a power law n(p)∝ p−(1+β), where β = 1
(Eq. 3), for perimeters evaluated within thin isentropic lay-
ers. The prediction is independent of such considerations as
the details of cloud microphysics or climatological state. We
find in a detailed numerical simulation of a tropical cloud
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Figure 7. Example comparison of two methods of measuring perimeters of a 3D cloud in SAM. The “compressed” method creates a 2D
image by vertically summing cloud properties, resulting in a single image for each volume representing how clouds might be seen from
above. In contrast, the “layers” method used in Garrett et al. (2018) considers each horizontal slice as a separate image such that for n
horizontal layers, n individual images would be produced and analyzed as independent images. In the example, the “compressed” method
would produce one cloud with p = 12 pixels, and the “layers” method would produce three clouds, one with p = 10 and two with p = 4.

Figure 8. (a) Measurements of β for individual horizontal layers (“layers”) in SAM for varying thresholds in total cloud condensate qn,
normalized by the saturated mixing ratio q?. (b) Measured values of β for “compressed” images in SAM for varying model τ thresholds,
created by vertically summing modeled τ . The middle inset displays β vs. τ for the compressed SAM data, using a logarithmically scaled
abscissa, over a larger range in τ . (c) Measured values of β for cloud masks of varying reflectance (R) thresholds for MODIS 0.25 km data.
See Fig. 7 for a visualization of the difference between “compressed” images and “layers”. The gray line and box indicate the global mean
〈β〉 = 1.26± 0.06 (Fig. 3). Histograms from which values for β are calculated are shown in Sect. S2 in the Supplement.

field that β = 0.98± 0.03, which is consistent with the pre-
diction.

In a wide range of satellite observations, however, the
picture is more nuanced. Within measurement uncertainty,
values of β are insensitive to zonal band, land–ocean con-
trasts, and season, conditionally supporting the small-scale
mixing engine hypothesis. However, the globally averaged
value across all satellite datasets is significantly higher than
predicted by either theory or models, with a value of β =
1.26± 0.06.

The discrepancy likely owes to a difference in perspective
between cloud size distributions measured within individual
quasi-horizontal moist isentropic layers, as was done with the
numerical simulation, and those seen looking from above,

as was calculated using satellite observations. The precise
explanation remains a puzzle. We do see that values of β
are higher in numerical simulations when the perspective is
changed to one looking from above where clouds are defined
by a threshold in vertically summed optical depth. This may
seem to help resolve the matter. But even here the picture is
unclear since β approaches unity as the optical depth thresh-
old increases, and there is no similar sensitivity to reflectance
threshold seen in MODIS observations.

Our results also suggest a warning for how future satel-
lite missions are designed. The data compression algorithm
used prior to transmission of EPIC data averages 2× 2 pixel
regions and then interpolates them back to the original res-
olution in post-processing. We argue that this approach may
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produce erroneous cloud size distributions that do not follow
a power law. Further work could determine whether the inter-
polation adversely impacts other calculated cloud properties.

Regardless, scale invariance appears to be a defining fea-
ture of clouds over at least 4 orders of magnitude in perimeter
and 5 in area. We find, in satellite observations, that the upper
limit of scale invariance in cloud area distributions amax has a
value larger than 3×105 km2, a scale much larger than some
other studies have suggested (e.g., Cahalan and Joseph, 1989;
Benner and Curry, 1998; Neggers et al., 2003) and close to
that found in Wood and Field (2011).

The distribution of cloud areas at large scales remains
difficult to measure due to domain size limitations. An in-
triguing possibility might be to synthesize geostationary data
to produce a quasi-global cloud mask product. The product
would be similar to existing aerosol optical depth maps (Cea-
manos et al., 2021).

With a better understanding of cloud perimeter and area
distributions, at least statistically speaking, it may only be
necessary to simulate the counts of the largest clouds to pre-
dict the numbers of the smallest.

Appendix A: EPIC data

Due to the inaccuracy of measuring cloud perimeters
and areas consisting of a small number of pixels (Chris-
tensen and Driver, 2021), we remove all clouds with
perimeters≤ 10× (nadir resolution) or areas≤ 10× (nadir
resolution)2 (Sect. 3.3). If these same minimum thresholds
are used for EPIC’s cloud size distributions, results show
non-power-law size distributions for both area and perime-
ter at the small end of the size distribution (Fig. A1). This
is in contrast to all other satellite datasets over similar size
ranges (Figs. 2 and 3).

Figure A1. Cloud perimeter (a) and area (b) histograms for EPIC, omitting data with perimeters≤ 10× (nadir resolution) or ar-
eas≤ 10× (nadir resolution)2. These thresholds are the same as those used for other datasets; however, EPIC displays non-power-law
behavior over the range left of the gray lines. In Figs. 2 and 3, we instead use the gray lines as minimum thresholds (that is, we omit
perimeters≤ 30× (nadir resolution) or areas≤ 1000× (nadir resolution)2).

As a possible explanation for this discrepancy, EPIC im-
agery is compressed prior to transmission to Earth by av-
eraging 2× 2 pixel regions. These regions are then interpo-
lated back to their original resolution in post-processing, ar-
tificially smoothing out the details of cloud perimeters. Since
cloud perimeter lengths are resolution-dependent, this results
in an inaccurate perimeter measurement given EPIC’s res-
olution. Likewise, if the cloud signal in a cloudy pixel is
“spread out” into neighboring clear pixels by the smoothing
process, pixels that were originally cloudy may become clear
or vice versa, so individual cloud areas are likely not con-
served through the compression process. Conceivably, these
effects may explain the anomalous EPIC area and perimeter
distributions, though other differences in, for example, the
cloud masking algorithm used may contribute.

It appears that interpolation predominately affects mea-
surements of area and perimeter in small clouds. To account
for this inconsistency, we instead truncate EPIC’s size dis-
tributions where perimeters ≤ 30× (nadir resolution) or ar-
eas≤ 1000× (nadir resolution)2. With these revised thresh-
olds, results from EPIC roughly agree with those from other
datasets (Figs. 2 and 3).
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Code and data availability. Python code to analyze all data and
generate all figures is available from the first author upon request.
The VIIRS and EPIC datasets were downloaded from NASA Earth-
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