

Supplement of

Assessing the effectiveness of SO_2 , NO_x , and NH_3 emission reductions in mitigating winter $PM_{2.5}$ in Taiwan using CMAQ

Ping-Chieh Huang et al.

Correspondence to: Hui-Ming Hung (hmhung@ntu.edu.tw)

The copyright of individual parts of the supplement might differ from the article licence.

Contents of this file

Description of the relationship between S_{NOx,NO_3} and NO_2 concentration Tables S1 to S7 Figures S1 to S14

Relationship between *SNOx,NO3* **and NO² concentration**

The reduction in NOx emissions leads to a decrease in $NO₂$ concentration, subsequently reducing $HNO₃$ production through reaction R1:

$$
NO2 + OH \rightarrow HNO3
$$
 (R1)

The production rate of $HNO₃ (P_{HNO3})$ can be calculated by assuming that OH concentration is in the steady state as follows:

$$
\frac{d[OH]}{dt} = P_r - L = P - \sum k_i [A]_i [OH] - k_{NO_2} [NO_2][OH], \tag{1}
$$

where P_r and *L* are chemical production and loss of [OH], respectively, $\sum k_i [A]_i$ [OH] is the sum of reaction rates of all OH-consuming chemical reactions except reaction $(R1)$, k_i is the rate constant of each reaction.

The steady-state [OH] is estimated as follows:

$$
[OH]_{SS} = \frac{P_r}{\sum k_i [A]_i + k_{NO_2} [NO_2]}
$$
 (2)

Thus, the production rate of $HNO₃$ is:

$$
P_{HNO_3} = k_{NO_2}[NO_2][OH]_{SS} = \frac{P_r \times k_{NO_2}[NO_2]}{\sum k_i[A]_i + k_{NO_2}[NO_2]} \tag{3}
$$

The total [HNO₃] is contributed by the chemical process ([HNO₃]_{chem}) at a time frame of Δt and transported from outside the domain boundaries ($[HNO₃]_{trans}$) as follows:

$$
[HNO3] = [HNO3]chem + [HNO3]trans = \frac{P_r \times k_{NO_2} [NO_2] \Delta t}{\sum k_i [A]_i + k_{NO_2} [NO_2]} + [HNO_3]trans
$$
(4)

When $[NO_2]$ is sufficiently low, $[HNO_3]$ _{trans} becomes comparable with $[HNO_3]$ _{chem} to affect the total [HNO₃]. Assuming [NO₂] is proportional to the emission ratio (*Er*), we have [NO₂] = [NO₂]_{control_run} × *Er*,. With the assumptions of $P_r \times \Delta t = 3$ and $\sum k_i[A]_i : k_{NO_2}[NO_2]_{\text{control_run}} = 7 : 5$, the influence of transport term on the sensitivity, S_{NOx,NO_3} can be evaluated. Figure S14 shows HNO_3 concentration and S_{NOx,NO_3} under conditions with $[HNO_3]_{trans} = 0$, 0.2, and 0.53, representing no transported HNO_3 , transported HNO₃ equal to $[HNO₃]_{chem}$ at NO₂ = 0.1 and at NO₂ = 0.3, respectively. HNO₃ increases as *Er* increases, but the increase gradually slows down. Variations in transported $HNO₃$ do not alter the overall pattern of total $HNO₃$ but do introduce differences in values (Fig. S14a). However, the trend of *SNOx,NO3* is different (Fig. S14b). Without transported HNO3, *SNOx,NO3* increases as *Er* decreases. Conversely, when $[HNO₃]_{trans}$ is greater than 0, $S_{NOX,NO3}$ shows a transition point occurring at *Er*, corresponding to $[HNO₃]_{chem} similar to $[HNO₃]_{trans}$. The scatter plot of $S_{NOx,NO3}$, calculated from six$ discrete points with an interval of 0.2 to mimic the CMAQ simulation, shows a similar trend under the influence of non-zero $[HNO₃]_{trans}$.

Table S1: WRF-CMAQ model setting.

parameter	value	Description*
Temperature	291 K	
Cloud water	0.376 g kg ⁻¹	
CO _{2(g)}	400 ppmv	Constant
$SO_{2(g)}$	7.13 ppbv	${}^{b}SO_{2(g)}+{}^{c}dH_{2}O_{2}$
${}^{\bf a}H_2O_{2(g)}$	0.43 ppbv	
${}^{\mathrm{b}}\mathrm{O}_{3(g)}$	18.7 ppbv	
Total ^a NH ₃	73.4 ppbv \times ^d Er	$NH_{3(g)} + NH_4+(I+J+K)$
Total ^a HNO ₃	12.3 ppbv	$HNO3(g) + NO3(I+J+K)$
SO ₄ ²	$0.088 \,\mathrm{\mu g\ m^3}$	${}^{b}SO_{4}{}^{2}$ ⁻ $(I+J+K) – {}^{c}dH_{2}O_{2}$
${}^{\bf a}$ Fe ³⁺	$0.0238 \,\mathrm{\upmu g\;m^3}$	Fe(III) available for sulfate oxidation
${}^{\mathrm{a}}\mathrm{M} \mathrm{n}^{2+}$	$0.035 \,\mathrm{\mu g\ m^3}$	Mn(II) available for sulfate oxidation
a Na ⁺	0.48	$I+J+K$
${}^a{\rm K}^+$	0.82	$J+K$
${}^{\bf a}$ Ca ²⁺	1.38	$J+K$
${}^{\rm a}$ Mg ²⁺	1.00	$J+K$
$\rm ^{a}Cl^{-}$	0.64	$\mathbf{I} + \mathbf{J} + \mathbf{K}$

Table S3: Box model initial conditions.

* I, J, K denotes Aitken, accumulation, and coarse modes in particle phase from CMAQ output.

* Condition: a grid point along the coast of Taichung $(24.203^{\circ} \text{ N}, 120.5053^{\circ} \text{ E},$ the second layer, ~ 68.5 m a.s.l) at 8:00 am local time on 3rd December 2018 from CMAQ.

^aThe concentration from the control run.

^bThe concentration from the NH3_02x run (NH₃ emission reduced to 0.2x of control run).

 c dH₂O₂ is the H₂O₂ difference concentration (control run – NH3-02x run).

^d *Er* ranges from 0.2 to 1.0 at 0.1 intervals

	Dissolution reaction	Henry's constant (M atm ⁼¹)
1.	$CO2 + H2O \leftrightarrow CO2 \cdot H2O$	$H_{CO_2} = 0.034$
2.	$SO_2 + H_2O \leftrightarrow SO_2 \cdot H_2O$	$H_{SO_2} = 1.23$
3.	$HNO3(g) \leftrightarrow HNO3(g)$	$H_{HNO_3} = 2.1 \times 10^5$
4.	$NH_3 + H_2O \leftrightarrow NH_3 \cdot H_2O$	$H_{NH_2} = 62$
5.	$0_{3(g)} \leftrightarrow 0_{3(g)}$	$H_{O_3} = 1.14 \times 10^{-2}$
6.	$H_2O_{2(g)} \leftrightarrow H_2O_{2(gq)}$	$H_{H_2O_2} = 1 \times 10^5$
	Dissociation reaction	Rate constant (M)
7.	$CO2 \cdot H2O \leftrightarrow HCO3- + H+$ $HCO3- \leftrightarrow CO32 + H+$	$k_{c1} = 4.2 \times 10^{-7}$ $k_{c2} = 5.61 \times 10^{-11}$
8.	$SO_2 \cdot H_2O \leftrightarrow HSO_3^- + H^+$ $HSO3- \leftrightarrow SO32- + H+$	$k_{s1} = 1.3 \times 10^{-2}$ $k_{s2} = 6.6 \times 10^{-8}$
9.	$HNO3(aq) \leftrightarrow NO3- + H+$	$k_{a1} = 15.4$
10.	$NH_2 \cdot H_2O \leftrightarrow NH_4^+ + OH^-$	$k_{a1} = 1.7 \times 10^{-5}$
11.	H_2 SO4 \leftrightarrow HSO ₄ + H ⁺ $HSO4- \leftrightarrow SO42- + H+$	as a complete dissociation $k_{a2} = 1.2 \times 10^{-2}$
12.	$H_2O \leftrightarrow H^+ + OH^-$	
Aqueous oxidation reaction		Rate constant $(M^{-1}s^{-1})$
13.	$SO_2 + O_2 + H_2O \rightarrow SO_4^{2-} + O_2 + 2H^+$	$k_{0,1} = 2.4 \times 10^4$
	$HSO_3^- + O_3 \rightarrow SO_4^{2-} + O_2 + H^+$ $SO_3^{2-} + O_3 \rightarrow SO_4^{2-} + O_2$	$k_{O_3,2} = 3.7 \times 10^5$ $k_{O_3,2} = 1.5 \times 10^9$
14.	$HSO_3^- + H_2O_2 + H^+ \rightarrow SO_4^{2-} + 2H^+ + H_2O$	$k_{H_2O_2} = 7.45 \times 10^7$
15.	$S(IV) + \frac{1}{2}O_2 \xrightarrow{Mn^{2+}, Fe^{3+}} S(VI)$	$k_{Mn} = 750; k_{Fe} = 2600;$ $k_{Mn.Fe} = 1.0 \times 10^{10}$

Table S4: Reactions and rate constants used in the box model (from Seinfeld and Pandis (2006))

	Tamsui	Shalu	Taixi	Qianzhen		
Temperature (degree C)						
Mean value of MOENV	18.61	20.19	20.00	23.31		
Mean value of WRF	18.48	19.50	19.05	22.39		
Correlation coefficient	0.87	0.93	0.84	0.93		
Mean bias error	-0.18	-0.69	-0.95	-0.92		
Mean absolute error	1.33	1.10	1.47	1.34		
		RH (%)				
Mean value of MOENV	85.12	74.97	82.85	69.49		
Mean value of WRF	80.42	76.49	80.71	69.95		
Correlation coefficient	0.71	0.84	0.58	0.86		
Mean bias error	-4.23	1.52	-2.14	0.46		
Mean absolute error	7.31	6.23	6.75	4.78		
		CO (ppbv)				
Mean value of MOENV	331.98	355.42	258.98	644.20		
Mean value of CMAQ	137.84	143.09	129.03	266.13		
Correlation coefficient	0.59	0.53	0.46	0.62		
Mean bias error	-194.05	-212.32	-129.94	-377.72		
Mean absolute error	196.13	212.32	130.95	378.77		
$O3$ (ppbv)						
Mean value of MOENV	35.05	31.43	37.74	26.77		
Mean value of CMAQ	47.13	42.73	42.57	32.51		
Correlation coefficient	0.66	0.73	0.58	0.84		
Mean bias error	12.07	11.29 4.67		5.76		
Mean absolute error	13.0	12.93	8.94	11.05		
cc ₁	$\sum_{i=1}^{n} (m_i - \overline{m})(o_i - \overline{o})$					

Table S5: Statistics of air temperature, relative humidity, CO, and O³ of MOENV observation and model simulation results.

Correlation coefficient = $\frac{\sum_{i=1}^{n}(m_i-\overline{m})(o_i-\overline{o})}{\sqrt{am_n}}$ $\sqrt{\sum_{i=1}^{n}(m_i-\bar{m})^2}\sqrt{\sum_{i=1}^{n}(o_i-\bar{o})^2}$

Mean bias error = $\overline{(m_{i} - o_{i})}$; Mean absolute error = $\overline{|(m_{i} - o_{i})|}$

where m_i and o_i are the wind speed or concentrations of model and observation at time i, respectively, and \bar{m} and \bar{o} are their average over December 2018.

	Gas phase processes	Aqueous phase processes	Other processes
northern Taiwan	8.4%	21.5%	70.1%
Chu-Miao area	11.2%	28.5%	60.3%
central Taiwan	13.2%	30.5%	56.3%
Yun-Chia-Nan area	16.5%	27.6%	55.9%
Kao-Ping area	19.8%	23.7%	56.6%

Table S6: Mean contribution of sulfate formation in each air pollution zone (elevation below 200 m a.s.l.).

	$S_{NOX,PM_{2.5}}$		$S_{NH_3,PM_{2.5}}$			
	Mean	Q1	Q3	Mean	Q1	Q3
Northern Taiwan	0.15	0.12	0.19	0.12	0.11	0.14
Chu-Miao area	0.20	0.18	0.22	0.17	0.16	0.19
Central Taiwan	0.23	0.20	0.25	0.19	0.18	0.21
Yun-Chia-Nan area	0.33	0.30	0.36	0.19	0.18	0.20
Kao-Ping area	0.34	0.31	0.41	0.19	0.17	0.21

Table S7: Statistics of the sensitivity of emission reductions on PM2.5 concentration for NOx $(S_{NOx,PM_2,5})$ and NH₃ $(S_{NH_3,PM_2,5})$ in each air pollution zone (elevation below 200 m a.s.l.) under **current conditions (at NOx emission ratio of 0.9).**

Mean: arithmetic mean; Q1: 25th percentile; Q3: 75th percentile.

Figure S1: (a) WPS domain configuration. (b) CMAQ d04 domain. Red points (★**) are MOENV stations,** blue points (\star) indicate PM components measurement stations, and purple point (\star) is **Shalu station, having both MOENV data and PM components data.**

Figure S2: The comparison of wind field and PM2.5 between MOENV ground observations and CMAQ surface layer data.

Figure S3: Model results for (a) Average PM2.5 concentration (μg m-3). (b) The composition fraction and PM2.5 concentrations for different regions (different shading colors) for elevation less than 200 m a.s.l. (the regions from north to south are northern Taiwan (pink), Chu-Miao (purple), central Taiwan (red), Yun-Chia-Nan (blue), and Kao-Ping (orange)). The components are shown in legend. The color bar is the height above sea level. Conditions: average data for December 2018 at the surface layer.

Figure S4: Sulfate, ammonium, nitrate, and PM2.5 concentrations of control run (blue line, left yaxis) and the difference between control and NoAqChem runs (pink line, right y-axis). The left and right y-axes have the same scale but different ranges. Conditions: average data for central Taiwan at the surface layer.

Figure S5: The comparison of PM2.5 between observation and CMAQ surface layer data in central Taiwan (r: correlation coefficient).

Figure S6: The comparison of sulfate, ammonium, and nitrate between observation and CMAQ surface layer data in central Taiwan (the correlation coefficients indicated in parentheses).

Figure S7: (a) Average cloud water content within the planetary boundary layer. (b) Surface layer average sulfate source contributions in central Taiwan.

Figure S8: (a) PM2.5, (b) sulfate, (c) nitrate, and (d) ammonium average concentrations as a function of NOx (x-axis) and NH³ (y-axis) emission ratios. Conditions: average data of central Taiwan from 1 st to 14th December 2018 at the surface layer.

Figure S9: The difference in sensitivity map of (a) nitrate and (b) PM2.5 between NOx and NH³ under the current condition (at NOx emission ratio of 0.9). Red areas (positive) represent NOxsensitive, blue areas (negative) represent NH3-sensitive, and white areas represent neutral with values between -0.05 and 0.05. Conditions: average data for December 2018 at the surface layer.

Figure S10: Average in-cloud concentrations of (a) SO2, (b) sulfate, (c) H2O2, and (d) O³ as a function of NOx (x-axis) and NH³ (y-axis) emission ratios. Conditions: average data for the cloud grid points of western Taiwan land regions in domain 4 from 1 st to 14th December 2018.

Figure S11: Average in-cloud concentrations of (a) SO2, (b) sulfate, (c) H2O2, and (d) ozone as a function of NOx (x-axis) and NH³ (y-axis) emission ratios. Conditions: average data for the cloud grid points of sea regions, west of 121°E in domain 4, from 1 st to 14th December 2018.

Figure S12: (a) PM2.5 reduction efficiency and (b) reduction cost as a function of emission ratio for SO2, NH3, and NOx during the clean period of 6 th -12th December 2018.

Figure S13: (a) PM2.5 reduction efficiency and (b) reduction cost as a function of emission ratio for SO2, NH3, and NOx during the high pollution period of 16th -22 th December 2018.

Figure S14: (a) HNO³ concentration and (b) nitrate sensitivity coefficient of NOx (*SNOx,NO3* **) as a** function of NO₂ emission ratio for three conditions of $[HNO₃]_{trans} = 0, 0.2,$ and 0.53.

Reference

Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley, 2006.