

Supplement of

Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe

Jia Sun et al.

Correspondence to: Nan Ma (nan.ma@jnu.edu.cn) and Alfred Wiedensohler (ali@tropos.de)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. Data coverage of PNSD data in the evaluated GUAN sites.

Figure S2: NPF occurrence frequency at the nine GUAN sites for each season in every year. The values in each year are, in turn, the frequencies of spring (MAM), summer (JJA), autumn (SON) and winter (DJF). The gray dotted line denotes the annual mean occurrence frequency.

Figure S3. Comparison in seasonal NPF occurrence frequency between GUAN sites (hatched pattern) and other European sites (Baalbaki et al., 2021; Boulon et al., 2011; Bousiotis et al., 2019; Bousiotis et al., 2021; Brines et al., 2015; Dameto De España et al., 2017; Herrmann et al., 2015; Hofman et al., 2016; Joutsensaari et al., 2018; Lee et al., 2020; Manninen et al., 2010; Németh et al., 2018; Nieminen et al., 2014; Plauskaite et al., 2010; Salma and Németh, 2019; Sellegri et al., 2019; Smejkalova et al., 2021; Vaananen et al., 2013; Vana et al., 2016).

Figure S4: Seasonal GR within the size range 10–25 nm collected from the present dataset and other studies in Europe (Boulon et al., 2011; Bousiotis et al., 2019; Bousiotis et al., 2021; Herrmann et al., 2015; Joutsensaari et al., 2018; Lee et al., 2020; Manninen et al., 2010; Németh et al., 2018; Nieminen et al., 2014; Plauskaite et al., 2010; Salma and Németh, 2019; Vaananen et al., 2013; Vana et al., 2016).

Figure S5: Mean PNSD with respect to NPF days/undefined days/non-event days for each GUAN site.

Figure S6: Mean PNSD with respect to NPF days/undefined days/non-event days for each GUAN site.

Figure S7: Starting time distribution of NPF events at each site.

Figure S8: Mean diurnal cycle of condensation sink during NPF days at GUAN sites.

Figure S9. The seasonal variation of relative contribution of NPF to N_{ccn} , taken the results with ss=0.4%.

Site category	Site	City & country	NPF	Time period	Reference
	name		occurrence		
			frequency		
Urban	LON	London, UK	36.0 %	2014-2015	Hofman et al., 2016
background	PRA	Prague, Czech Republic	30.0 %	2013-2017	Németh et al., 2018
	THI	Thissio, Greece	21.4 %	2017-2018	Joutsensaari et al., 2018
	BDP	Budapest, Hungary	21.0 %	2008-2019 & 2013-2018	Salma and Németh, 2019
	MAD	Madrid, Spain	19.0 %	2007-2008	Brines et al., 2015
	LTR	Leipzig, Germany	17.4 %	2009-2013	This study
	ANT	Antwerp, Belgium	17.0 %	2013-2015	Hofman et al., 2016
	AMS	Amsterdam, Netherland	16.0 %	2013-2015	Hofman et al., 2016
	LWE	Leipzig, Germany	15.5 %	2009-2013	This study
	BOS	Bösel, Germany	13.3 %	2009-2013	This study
	BCL	Barcelona, Spain	13.1 %	2012-2015	Bousiotus et al., 2021
	VIE	Vienna, Austria	13.0 %	2014-2015	Dameto de España et al., 2017
	LCT	Leicester, UK	13.0 %	2014-2015	Hofman et al., 2016
	ATH	Athens, Greece	8.5 %	2015-2018	Bousiotus et al., 2021
	KST	Kensington, UK	6.2 %	2009-2015	Bousiotus et al., 2019
	ROM	Rome, Italy	6.0 %	2007-2009	Brines et al., 2015
	COP	Copenhagen, Sweden	5.8 %	2008-2017	Bousiotus et al., 2021
	HEL	Helsinki, Finland	5.0 %	2008-2011 & 2015-2018	Bousiotus et al., 2021
Rural/regional	AMX	Agia Marina Xyliatos,	56.7 %	2018-2019	Baalbaki et al., 2021
background		Cyprus			
	SPC	San Pietro Capofiume, Italy	36.0 %	2002-2016	Joutsensaari et al., 2018
	CBW	Cabauw, Netherland	34.0 %	2008-2009	Manninen et al. 2010

Table S1. Annual frequency of NPF events in the present study and other studies in Europe, listed with the detailed information of the corresponding studies.

	VVH	Vavihill, Sweden	29.0 %	2008-2009	Manninen et al. 2010
	KPU	K-puszta, Hungary	27.7 %	2012-2013	Salma and Németh, 2019
	HYY	Hyytiälä, Finland	23.0 %	1997-2012	Nieminen et al., 2014
	MEL	Melpitz, Germany	20.9 %	2009-2013	This study
	JAR	Järvselja, Estonia	20.5 %	2013-2014	Vana et al., 2016
	NEU	Neuglobsow, Germany	19.5 %	2009-2013	This study
	WAL	Waldhof, Germany	19.1 %	2009-2013	This study
	PRE	Preila, Lithuania	15.0 %	2009-2013	Plauskaite et al., 2010
	MON	Montseny, Spain	12.0 %	2012-2015	Bousiotus et al., 2021
	LLV	Lille Valby, Denmark	7.9 %	2008-2017	Bousiotus et al., 2021
	HAR	Harwell, UK	6.9 %	2009-2015	Bousiotus et al., 2019
Low mountain	PUY	Puy de Dome, France	35.7 %	2007-2010	Boulon et al., 2011
range	OPM	Opme, Grance	20.8 %	2007-2010	Boulon et al., 2011
	SCH	Schauinsland, Germany	8.8 %	2009-2013	This study
	HPB	Hohenpeiβenberg, Germany	7.2 %	2009-2013	This study
High altitude &	CMN	Monte Cimone, Italy	28.0 %	2009	Sellegri et al., 2019
remote	ABI	Abisko, Sweden	24.0 %	2005–2007	Väänänen et al., 2013
	ZPL	Mt. Zeppelin, Norway	23.0 %	2016-2018	Lee et al., 2020
	JFJ	Jungfraujoch, Switzerland	14.5 %	2008-2014	Herrmann et al., 2015
	VAR	Värriö, Finland	8.5 %	2013-2014	Vana et al., 2016
	ZSF	Zugspitze, Germany	3.3 %	2009-2013	This study

Table S2. Annual growth rate (GR) and formation rate (J) of NPF events in the present study and other studies in Europe, listed with the detailed information of the corresponding studies.

Site category	Site	City &	GR i	n Jin	Time period	Reference	GR size range in	J size range in
	name	country	nm h ⁻¹	cm ⁻³ s ⁻¹			nm	nm
Urban	LTR	Leipzig,	4.37	2.83	2009-2013	This study	10 - 25	10 - 25
background		Germany						
	LWE	Leipzig,	4.42	2.89	2009-2013	This study	10 - 25	10 - 25
		Germany						
	BOS	Bösel,	4.1	1.90	2009-2013	This study	10 - 25	10 - 25
		Germany						
	COP	Copenhagen,	3.19	0.23	2008-2017	Bousiotus et al., 2021	5.8 - 30	10 - 25
		Sweden						
	HEL	Helsinki,	2.87	0.03	2008-2011 &	Bousiotus et al., 2021	3.4 - 30	10 - 25
		Finland			2015-2018			
	KST	Kensington,	4.4		2009-2015	Bousiotus et al., 2019	16.6 - 50	
		UK						
	BCL	Barcelona,	3.38	0.02	2012-2015	Bousiotus et al., 2021	10 - 30	10 - 25
		Spain						
	ATH	Athens,	3.68	0.05	2015-2018	Bousiotus et al., 2021	10 - 30	10 - 25
		Greece						
	THI	Thissio,	4.2	1.60	2017-2018	Kalkavouras et al., 2020	10 - 25	10 - 25
		Greece						
	PRA	Prague,	3.98		2013-2017	Smejkalova et al., 2021	10 - 100	
		Czech						
		Republic						

	UST	Ústí, Czech Republic	3.85		2013-2017	Smejkalova et al., 2021	10 - 100	
	BUD	Budapest, Hungary	5.1	2.1	2012-2013	Salma et al., 2016	6 - 25	6 - 25
Rural/regio nal	MEL	Melpitz, Germany	4.70	1.98	2009-2013	This study	10 - 25	10 - 25
background	NEU	Neuglobsow, Germany	4.30	1.16	2009-2013	This study	10 - 25	10 – 25
	WAL	Waldhof, Germany	4.13	1.59	2009-2013	This study	10 - 25	10 - 25
	LLV	Lille Valby, Denmark	3.19	0.03	2008-2017	Bousiotus et al., 2021	5.8 - 30	10 - 25
	MON	Montseny, Spain	3.62	0.02	2012-2015	Bousiotus et al., 2021	9 - 30	10 - 25
	FKL	Finokalia, Greece	3.78	0.005	2012-2018	Bousiotus et al., 2021	9 - 30	10 - 25
	HAR	Harwell, UK	3.4		2009-2015	Bousiotus et al., 2019	16.6 - 50	
	НҮҮ	Hyytiälä, Finland	2.5	0.84	1997-2012	Nieminen et al., 2014	3 - 25	3 – 25
	PRE	Preila, Lithuania	3.9	0.4	2009-2013	Nieminen et al., 2018	10 - 25	10 – 25
	JAR	Järvselja, Estonia	4.6	0.81	2013-2014	Vana et al., 2016	3 - 25	3 - 25
	KPU	K-puszta, Hungary	4.2	1.8	2012-2013	Salma et al., 2016	6 - 25	6 - 25

	CBW	Cabauw, Netherland	6.63	32.4	2008-2009	Manninen et al., 2010	7 – 20	2-3
	VVH	Vavihill, Sweden	3.94		2008-2009	Manninen et al., 2010	7 – 20	10 - 25
Low mountain range	HPB	Hohenpeiβen berg, Germany	3.67	0.62	2009-2013	This study	10 - 25	10 - 25
	SCH	Schauinsland , Germany	3.82	0.52	2009-2013	This study	10 – 25	10 - 25
	PUY	Puy de Dome, France	8.86	1.6	2007-2010	Boulon et al., 2011	7 – 20	2 – 3
	OPM	Opme, France	6.2	1.38	2007-2010	Boulon et al., 2011	7 – 20	2-3
High altitude or	ZSF	Zugspitze, Germany	3.81	0.43	2009-2013	This study	10 - 25	10 - 25
remote	JFJ	Jungfraujoch , Switzerland	3.6	1.0	2008-2014	Tröstl et al., 2015	5 - 15	3.2 - 1000
	ZPL	Mt. Zeppelin, Norway	2.85	0.1	2016-2018	Lee et al., 2020	7 – 25	3 - 7
	VAR	Värriö, Finland	2.7	0.15	2013-2014	Kyrö et al., 2014	8 - 25	8 - 25

ABI	Abisko,	3	0.05	2005-2007	Väänänen et al., 2013	10 - 25	10 - 25
	Sweden						

Reference

- Baalbaki, R., Pikridas, M., Jokinen, T., Laurila, T., Dada, L., Bezantakos, S., Ahonen, L., Neitola, K., Maisser, A., Bimenyimana, E., Christodoulou, A., Unga, F., Savvides, C., Lehtipalo, K., Kangasluoma, J., Biskos, G., Petäjä, T., Kerminen, V. M., Sciare, J., and Kulmala, M.: Towards understanding the characteristics of new particle formation in the Eastern Mediterranean, Atmos. Chem. Phys., 21, 9223-9251, doi: 10.5194/acp-21-9223-2021, 2021.
- Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M., Gómez-Moreno, F., Núñez, L., Artíñano, B., Costabile, F., Gobbi, G. P., Salimi, F., Morawska, L., Sioutas, C., and Querol, X.: Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities, Atmos. Chem. Phys., 15, 5929-5945, doi: 10.5194/acp-15-5929-2015, 2015.
- Boulon, J., Sellegri, K., Hervo, M., Picard, D., Pichon, J. M., Fréville, P., and Laj, P.: Investigation of nucleation events vertical extent: a long term study at two different altitude sites, Atmos. Chem. Phys., 11, 5625-5639, doi: 10.5194/acp-11-5625-2011, 2011.
- Bousiotis, D., Dall'Osto, M., Beddows, D. C. S., Pope, F. D., and Harrison, R. M.: Analysis of new particle formation (NPF) events at nearby rural, urban background and urban roadside sites, Atmos. Chem. Phys., 19, 5679-5694, doi: 10.5194/acp-19-5679-2019, 2019.
- Bousiotis, D., Pope, F. D., Beddows, D. C. S., Dall'Osto, M., Massling, A., Nojgaard, J. K., Nordstrom, C., Niemi, J. V., Portin, H., Petaja, T., Perez, N., Alastuey, A., Querol, X., Kouvarakis, G., Mihalopoulos, N., Vratolis, S., Eleftheriadis, K., Wiedensohler, A., Weinhold, K., Merkel, M., Tuch, T., and Harrison, R. M.: A phenomenology of new particle formation (NPF) at 13 European sites, Atmos. Chem. Phys., 21, 11905-11925, doi: 10.5194/acp-21-11905-2021, 2021.
- Dameto de España, C., Wonaschütz, A., Steiner, G., Rosati, B., Demattio, A., Schuh, H., and Hitzenberger, R.: Long-term quantitative field study of New Particle Formation (NPF) events as a source of Cloud Condensation Nuclei (CCN) in the urban background of Vienna, Atmos. Environ., 164, 289-298, doi: 10.1016/j.atmosenv.2017.06.001, 2017.

- Herrmann, E., Weingartner, E., Henne, S., Vuilleumier, L., Bukowiecki, N., Steinbacher, M., Conen, F., Collaud Coen, M., Hammer, E., Jurányi, Z., Baltensperger, U., and Gysel, M.: Analysis of long-term aerosol size distribution data from Jungfraujoch with emphasis on free tropospheric conditions, cloud influence, and air mass transport, Journal of Geophysical Research: Atmospheres, 120, 9459-9480, doi: 10.1002/2015JD023660, 2015.
- Hofman, J., Staelens, J., Cordell, R., Stroobants, C., Zikova, N., Hama, S. M. L., Wyche, K. P., Kos, G. P. A., Van der Zee, S., Smallbone, K. L., Weijers, E. P., Monks, P. S., and Roekens, E.: Ultrafine particles in four European urban environments: Results from a new continuous long-term monitoring network, Atmos. Environ., 136, 68-81, doi: 10.1016/j.atmosenv.2016.04.010, 2016.
- Joutsensaari, J., Ozon, M., Nieminen, T., Mikkonen, S., Lahivaara, T., Decesari, S., Facchini, M. C., Laaksonen, A., and Lehtinen, K. E. J.: Identification of new particle formation events with deep learning, Atmos. Chem. Phys., 18, 9597-9615, doi: 10.5194/acp-18-9597-2018, 2018.
- Lee, H., Lee, K., Lunder, C. R., Krejci, R., Aas, W., Park, J., Park, K. T., Lee, B. Y., Yoon, Y. J., and Park, K.: Atmospheric new particle formation characteristics in the Arctic as measured at Mount Zeppelin, Svalbard, from 2016 to 2018, Atmos. Chem. Phys., 20, 13425-13441, doi: 10.5194/acp-20-13425-2020, 2020.
- Manninen, H. E., Nieminen, T., Asmi, E., Gagné, S., Häkkinen, S., Lehtipalo, K., Aalto, P., Vana, M., Mirme, A., Mirme, S., Hõrrak, U., Plass-Dülmer, C., Stange, G., Kiss, G., Hoffer, A., Törő, N., Moerman, M., Henzing, B., de Leeuw, G., Brinkenberg, M., Kouvarakis, G. N., Bougiatioti, A., Mihalopoulos, N., O'Dowd, C., Ceburnis, D., Arneth, A., Svenningsson, B., Swietlicki, E., Tarozzi, L., Decesari, S., Facchini, M. C., Birmili, W., Sonntag, A., Wiedensohler, A., Boulon, J., Sellegri, K., Laj, P., Gysel, M., Bukowiecki, N., Weingartner, E., Wehrle, G., Laaksonen, A., Hamed, A., Joutsensaari, J., Petäjä, T., Kerminen, V. M., and Kulmala, M.: EUCAARI ion spectrometer measurements at 12 European sites analysis of new particle formation events, Atmos. Chem. Phys., 10, 7907-7927, doi: 10.5194/acp-10-7907-2010, 2010.
- Németh, Z., Rosati, B., Zíková, N., Salma, I., Bozó, L., Dameto de España, C., Schwarz, J., Ždímal, V., and Wonaschütz, A.: Comparison of atmospheric new particle formation events

in three Central European cities, Atmos. Environ., 178, 191-197, doi: 10.1016/j.atmosenv.2018.01.035, 2018.

- Nieminen, T., Asmi, A., Dal Maso, M., Aalto, P., Keronen, P., Petaja, T., Kulmala, M., and Kerminen, V.-M.: Trends in atmospheric new-particle formation: 16 years of observations in a boreal-forest environment, Boreal Environ. Res., 19, 191-214, 2014.
- Plauskaite, K., Ulevicius, V., Spirkauskaite, N., Bycenkiene, S., Zielinski, T., Petelski, T., and Ponczkowska, A.: Observations of new particle formation events in the south-eastern Baltic Sea, Oceanologia, 52, 53-75, doi: 10.5697/oc.52-1.053, 2010.
- Salma, I. and Németh, Z.: Dynamic and timing properties of new aerosol particle formation and consecutive growth events, Atmos. Chem. Phys., 19, 5835-5852, doi: 10.5194/acp-19-5835-2019, 2019.
- Sellegri, K., Rose, C., Marinoni, A., Lupi, A., Wiedensohler, A., Andrade, M., Bonasoni, P., and Laj, P.: New Particle Formation: A Review of Ground-Based Observations at Mountain Research Stations, Atmosphere, 10, 493, doi: 10.3390/atmos10090493, 2019.
- Vaananen, R., Kyro, E. M., Nieminen, T., Kivekas, N., Junninen, H., Virkkula, A., Dal Maso, M., Lihavainen, H., Viisanen, Y., Svenningsson, B., Holst, T., Arneth, A., Aalto, P. P., Kulmala, M., and Kerminen, V. M.: Analysis of particle size distribution changes between three measurement sites in northern Scandinavia, Atmos. Chem. Phys., 13, 11887-11903, doi: 10.5194/acp-13-11887-2013, 2013.
- Vana, M., Komsaare, K., Horrak, U., Mirme, S., Nieminen, T., Kontkanen, J., Manninen, H. E., Petaja, T., Noe, S. M., and Kulmala, M.: Characteristics of new-particle formation at three SMEAR stations, Boreal Environ. Res., 21, 345-362, 2016.