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Abstract. The advancement of analytical techniques, such as comprehensive two-dimensional gas chromatog-
raphy coupled with mass spectrometry (GC×GC–MS), enables the efficient separation of complex organics. De-
veloping innovative methods for data processing and analysis is crucial to unlock the full potential of GC×GC–
MS in understanding intricate chemical mixtures. In this study, we proposed an innovative method for the semi-
automated identification and quantification of complex organic mixtures using GC×GC–MS. The method was
formulated based on self-constructed mass spectrum patterns and the traversal algorithms and was applied to
organic vapor and aerosol samples collected from the tailpipe emissions of heavy-duty diesel vehicles and the
ambient atmosphere. Thousands of compounds were filtered, speciated, and clustered into 26 categories, in-
cluding aliphatic and cyclic hydrocarbons, aromatic hydrocarbons, aliphatic oxygenated species, phenols and
alkylphenols, and heteroatom-containing species. The identified species accounted for over 80 % of all the eluted
chromatographic peaks at the molecular level. A comprehensive analysis of quantification uncertainty was under-
taken. Using representative compounds, quantification uncertainties were found to be less than 37.67 %, 22.54 %,
and 12.74 % for alkanes, polycyclic aromatic hydrocarbons (PAHs), and alkyl-substituted benzenes, respectively,
across the GC×GC space, excluding the first and the last time intervals. From a source apportionment perspec-
tive, adamantane was clearly isolated as a potential tracer for heavy-duty diesel vehicle (HDDV) emissions. The
systematic distribution of nitrogen-containing compounds in oxidized and reduced valences was discussed, and
many of them served as critical tracers for secondary nitrate formation processes. The results highlighted the
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benefits of developing self-constructed models for the enhanced peak identification, automated cluster analy-
sis, robust uncertainty estimation, and source apportionment and achieving the full potential of GC×GC–MS in
atmospheric chemistry.

1 Introduction

Improved sampling strategies, coupled with innovative mea-
surement techniques, are imperative to capture the dynamic
nature of atmospheric chemistry, particularly in the context
of climate change and health risks (Franklin et al., 2023,
2022; Huo et al., 2021; Phillips et al., 2018). Comprehensive
two-dimensional gas chromatography coupled with mass
spectrometry (GC×GC–MS) has emerged as a powerful tool
for compound detection and identification, benefiting from
the combination of two columns with orthogonal selectivity
(Alam et al., 2013; Franklin et al., 2022).

Despite its capabilities, GC×GC–MS encounters
formidable challenges in data analysis, which can be
extremely complicated and demanding. Efforts have been
made to handle the deluge of data generated by GC×GC–
MS. Traditionally, mass spectra were deconvoluted and
compared to spectra from the National Institute of Standards
and Technology (NIST) library for peak identification with
pre-defined criteria (Guo et al., 2016; Piotrowski et al.,
2018). Retention indices (RIs) were further introduced to
distinguish homologous compounds with resembling mass
spectra. A pioneering and instructive work for searching
criteria to classify GC×GC peaks was published in 2003
(Welthagen et al., 2003). Welthagen et al. (2003) incorpo-
rated the mass fragmentation patterns to classify compounds
in atmospheric aerosol samples. Compounds belonging to
the same chemical group are related to one another in the
GC×GC space and are distributed in a structured pattern.
They successfully identified seven groups of compounds, in-
cluding alkanes, alkenes and cycloalkanes, alkyl-substituted
benzenes, alkyl-substituted polar benzenes, hydrated naph-
thalenes and alkenyl benzenes, alkylated naphthalenes, and
alkane acids, occupying more than 60 % of the total peak
area. This work set a good example of how user-defined
rules could facilitate the identification of specific compound
groups.

Recent advances in chemometric tools for GC×GC–
MS analysis involving machine learning and deep learn-
ing renovate multi-dimensional chromatography fields (Ste-
fanuto et al., 2021). Bendik et al. (2021) developed a pro-
gramming suite for high-confidence and fast compound
identification using GC×GC coupled with time-of-flight
mass spectrometry (ToF-MS) (Bendik et al., 2021). He et
al. (2022a, b) extracted featured mass spectrometric infor-
mation of the intermediate-volatility and semi-volatile or-
ganic compounds (I/SVOCs) by integrating algorithmic ap-
proaches into GC×GC–MS data (He et al., 2022a, b). A

novel pixel-based multiway principal component analysis
method was employed in Song et al. (2023) to identify key
tracers during incense burning (Song et al., 2023). Never-
theless, interpreting GC×GC–MS data requires advanced
computational tools and expertise, and the investigation of
unknown compounds remains challenging due to the inad-
equate validation procedures, overreliance on manual data
processing, limited access to computational resources, and
the insufficient expertise in handling complex chromato-
graphic data effectively.

Bridging this gap requires further development of sophis-
ticated algorithms and analytical approaches to unlock the
full potential of GC×GC. This study proposes a bottom-up
method for cluster analysis and quantification of organic va-
pors and aerosols within complex atmospheric mixtures. The
scripts were initiated with the recognition of the common
mass spectral features of specific species and were tailored
to a wide range of compound clusters. The scripts were then
trained, iterated, and optimized using real sample data un-
til robust outputs were achieved. The new strategy reduces
the ambiguity often associated with identifying compounds
in complex mixtures.

The proliferation of heavy-duty diesel vehicles (HDDVs)
has raised significant concerns due to their increasing role
in freight transport and in various industrial operations (Yan
et al., 2022; Cheng et al., 2022). Despite their low reten-
tion rate, HDDVs release substantial amounts of particu-
late matter, nitrogen oxides, ammonia, and carbon monoxide
into the atmosphere compared to other vehicle types (Wang
et al., 2023; Silva et al., 2023; Chang et al., 2022; Stan-
imirova et al., 2023; Hamilton and Harley, 2021; Kruve et
al., 2014). To address this, gas and aerosol samples were
collected from representative HDDV tailpipes and the ambi-
ent environment and then analyzed using GC×GC–MS. The
proposed bottom-up method was employed for a comprehen-
sive analysis of the complex organic mixtures, resulting in
the identification of 26 compound categories, including hy-
drocarbons in multiple forms, oxygenated components, and
species containing heteroatoms. Over 80 % of all the chro-
matographic peaks were identified and assigned to a com-
pound cluster using the proposed method, leaving a minor
portion of organic matrix unresolved. Different compound
clusters occupied separate positions in the GC×GC space,
and distinctive distribution patterns within diverse samples
and their contribution fractions were revealed. Quantifica-
tion uncertainties were addressed thoroughly, and the sig-
nificant potential deviation when using n-alkanes as semi-
quantification surrogates was highlighted. Overall, integrat-
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ing automated algorithms with GC×GC data analysis holds
significant implications for advancing our understanding of
atmospheric chemistry, improving secondary organic aerosol
(SOA) estimation, and guiding the formulation of environ-
mental policies.

2 Materials and methods

2.1 Sample collection, treatment, and instrumental
analysis

For the collection of HDDV tailpipe emissions, chassis dy-
namometer experiments were conducted at the China Au-
tomotive Technology & Research Center (CATARC) in
Guangzhou, China. Exhaust emissions from HDDVs were
diluted in a constant volume sampler (CVS, CVS-ONE-MV-
HE, Horiba), following the China heavy-duty commercial
vehicle test cycle for tractor trailer (CHTC-TT) driving cy-
cles. Two HDDVs equipped with the selective catalytic re-
duction (SCR) system were recruited. The two HDDVs met
the China IV national emission standard and were manufac-
tured in 2021. More information is summarized in Table S1
in the Supplement. The average temperature in the sampling
train was precisely controlled at 47 °C, while airflow, rela-
tive humidity, and pressure were monitored simultaneously.
The speed trace and characteristics of CHTC-TT are shown
in Fig. S1 in the Supplement.

Gaseous exhausts were collected using two adsorbent ther-
mal desorption (TD) tubes in series (Tenax TA, C1-AXXX-
5003, Markes International) after passing through a Teflon
filter. Particulate exhausts were deposited on a 47 mm quartz
filter (Grade QM-A, Whatman). Ambient PM2.5 filter sam-
ples were collected on the rooftop of a five-story building
on the campus of Shenzhen University (22.60° N, 114.00° E)
during November 2023 in western Shenzhen, approximately
25 m above the ground. The sampling site was surrounded
by the campus, residential areas, greenbelts, and a golf park,
as shown in Fig. S2 in the Supplement. Previous studies
demonstrated that the PM2.5 concentration in this area rep-
resented the average pollution scheme in Shenzhen (Huang
et al., 2018; Yu et al., 2020). The sampling strategy fol-
lowed a regular schedule of one 24 h sample every day us-
ing a high-volume sampler (Th-1000c II, Wuhan Tianhong
Environmental Protection Industry Co., Ltd). In total, 55 TA
tube samples (including 11 field blank samples), 20 HDDV
aerosol samples (including 3 field blank samples), and 6 am-
bient aerosol samples (including 1 blank sample) were col-
lected. The list of ambient samples and the relevant PM con-
centrations are listed in Table S2 in the Supplement. The sor-
bent tubes were well sealed and stored dry at room tempera-
ture, and quartz filters were frozen at−18 °C before analysis.
All sampling materials were pre-baked thoroughly to remove
potential carbonaceous contamination.

TD samples were injected with 2 µL of deuterated inter-
nal standard (IS) mixing solution through a mild N2 blow

(CSLR, Markes International). The list of deuterated ISs is
shown in Table S3 in the Supplement. A precise portion of
1 cm2 (1cm× 1cm) filter sample was isolated and cut into
strips. They were spiked with 2 µL of IS mixing solution and
inserted into a passivated quartz tube. All TD samples and
quartz tubes were loaded onto a thermal desorption autosam-
pler (ULTRA-xr, Markes International), thermally desorbed
(UNITY-xr, Markes International), and subjected to GC×GC
separation (Agilent 8890, Agilent Technologies; Solid State
Modulator1810, J&X Technologies) and mass spectrometry
detection (Agilent 5977B, Agilent Technologies).

The thermal desorption system heated the TD tubes to
320 °C (quartz tubes to 330 °C) for 20 min, while the trap re-
mained at 20 °C. Following tube desorption, the trap temper-
ature was raised to 330 °C (340 °C for quartz tubes) for 5 min
at the maximum heating rate, and the vaporized analytes
were purged into the first GC column with a desorb split flow
of 6 mLmin−1. Separation of the analytes was carried out us-
ing a DB-5ms capillary column (30m× 0.25mm× 0.25µm,
Agilent Technologies) as the primary column and a DB-17ms
capillary column (1.2m×0.18mm×0.18µm, Agilent Tech-
nologies) as the secondary column. The modulation column
consisted of a VF-1ms capillary column (0.7m×0.25mm×
0.10µm, Agilent Technologies) connected to the first col-
umn and an Ultimate Plus Deactivated Fused Silica tubing
(0.6m× 0.25mm, Agilent Technologies) connected to the
second column.

Initially, the GC oven was set at 50 °C for 3 min, followed
by a gradual increase at a rate of 5 °Cmin−1 until it reached
310 °C, where it was maintained for an additional 5 min. The
entry and exit hot zones were set +10 °C higher than the
GC oven temperature, while the trap zone was maintained
at −50 °C. The modulation cycle had a period of 4 s. Carrier
gas flow was set at 1.2 mLmin−1. The MS had an integer res-
olution and was conducted in electron impact positive (EI+)
mode (70 eV). It was operated over a range of 20–350 amu,
and the temperature of the transfer line, ion source, and MS
quadrupole was 300, 250, and 170 °C, respectively.

2.2 Data collection, alignment, and parsing

GC×GC–MS data acquisition was performed using En-
hanced MassHunter (version 10.0, Agilent Technologies)
and SSCenter (version 2.4.0.0, J&X Technologies). All data
utilized to develop and test the scripts were processed by
Canvas Browser (version 2.5, J&X Technologies), which in-
cluded baseline correction, mass spectra deconvolution, and
peak smoothing. Baseline correction and peak smoothing en-
hanced the signal-to-noise ratio (S/N ) and improved overall
data quality.

Chromatographic peaks were filtered using the following
criteria: baseline noise= 150 and S/N > 50. For each indi-
vidual sample, after isolating all compounds of interest, a
peak table was exported with first retention time (RT) and
second RT, peak area, peak height, peak width, and decon-
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voluted mass spectra, arranged in first RT sequential order.
These quantitative variables were further processed for tar-
geted and non-targeted “omics”-oriented analysis.

As expected, the chromatographic variables experienced
RT shifts due to column degradation, routine maintenance
(e.g., cutting column), and system fluctuations (e.g., varia-
tions in carrier gas pressure). The initial tolerance for RT
shifts in adaptive cluster matching was set at one period
of modulation in the first dimension and 0.1 s in the sec-
ond dimension. Additionally, a 2D shift cluster consisting
of C16D34, C24D50, and C32D66 was configured, with the
merit of correcting the second RT shift. Data correction or
data alignment is critical for accurate and consistent peak in-
tegration.

2.3 Algorithmic development

EI spectra are typically characterized by a molecular ion
(M+) peak plus a collection of fragment ion peaks. The M+

may dominate the mass spectrum in some cases (e.g., un-
substituted polycyclic aromatic hydrocarbons (PAHs)), but
more frequently it presents at a relatively low intensity. The
EI spectra are highly comparable among different instrument
systems and experimental conditions, making them an ex-
cellent measure for identifying compounds. The characteris-
tic ions and their relative intensities depend on the intrinsic
nature of the targeted compounds, necessitating knowledge
of basic rules and common fragmentation routes to interpret
EI mass spectra. Figure 1 illustrates the workflow for estab-
lishing computational strategies for robust and reproducible
GC×GC–MS data processing.

Functional groups significantly affect the fragmentation
patterns observed in mass spectrometry, and some ions are
typical of given structures. Isotopic peaks (e.g., hydrogen and
chlorine) provide additional information about the molecules
(Du and Angeletti, 2006; Fernandez-de-Cossio et al., 2004).
These pieces of information form the foundation for build-
ing up the model for cluster analysis, which is addressed in
greater detail in the Supplement (Sect. S1). These indicative
reaction schemes have been incorporated into the model de-
velopment. Each critical step of model construction and val-
idation is described thoroughly. The quantitative variables in
the data alignment table, combining the chromatographic and
MS information, are properly exploited and determine the
overall speciation capacities.

Traditionally, compound identification relies on the elec-
tron ionization-based fragmentogram and the deconvoluted
mass spectra. Empirically, one-by-one compound identifica-
tion can be greatly intervened by neighboring peaks, espe-
cially those with similar structures, and can introduce con-
siderable uncertainties. A good example is the assignment of
homologous n-alkanes, of which the fragmentograms bear a
close resemblance (Fig. S6 in the Supplement). In such cases,
the similarity score (the measure of similarity between the
observed mass spectrum and the NIST library hit) could be

Figure 1. Flow diagram illustrating the multistep data processing
for establishing computational strategies for cluster analysis and
quantification of organic vapors and aerosols using GC×GC–MS
data.

erroneously inflated to 850 (out of 999) or higher. In contrast,
cluster analysis involves the comprehensive analysis of a spe-
cific type of compounds on a large scale, aiming to provide a
holistic understanding of the distribution and transformation
of the specific compound cluster being investigated.

Due to the complexity and remarkable peak capacities, so-
phisticated and detailed scripts for cluster identification were
constructed. Heteroatom-containing species, e.g., amides
and amines, were carefully examined. The scripts began by
recognition of the common mass spectra features of com-
pound cluster of interest and are addressed in more detail in
the following descriptive framework:

1. the Boolean value of characteristic ions

2. the intensity sequence of abundant ions in the whole
spectra

3. the retention time window restriction for certain com-
pound groups

4. the pattern of mass spectrometry variation with the in-
creased number of substituents or the extension of the
carbon chain
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5. an iteration framework that involved repetitive cycles
among all the tested samples.

The scripts were then trained, iterated, and optimized in-
corporating real sample data, and the parameters were ad-
justed accordingly until a robust output was achieved. The
extractor function built into the Canvas software was acti-
vated, and all the scripts were imported to facilitate auto-
mated cluster analysis. The scripts parsed all the files in
the given directory into the required structure and gener-
ated three reports in the form of PDF, CSV, and BMP. The
CSV file contained key information including the compound
name, compound cluster, first and second RTs, and peak area
(based on total ion current (TIC)).

Once exported, the peaks were further processed for
quantification/semi-quantification following the steps below.
First, calibration curves were prepared by spiking different
volumes of the standard solution mixture onto the blank TD
tubes and blank filters, respectively. Peak area ratios, i.e.,
peak area of authentic standards over that of the internal stan-
dards, were used to build the linear relationship, with the
merit of correcting system fluctuations. The selection of au-
thentic standards prioritized their wide distribution across the
entire chromatogram space, ranging from high to low volatil-
ity and weak to strong polarity, and meanwhile encompass-
ing a broader range of functional groups and heteroatoms.
The distribution and performance of all authentic standards
are summarized in Table S4 in the Supplement and Fig. S7
in the Supplement. Second, for the unquantified peaks, their
complied information (X, Y , Z), corresponding to first RT,
second RT, and compound cluster, is looped through the list
of all authentic standards in the following descriptive pseudo-
codes until the optimal authentic standard to semi-quantify
the target peak is exported. It should be emphasized that the
unquantified peak and the corresponding authentic standard
to semi-quantify it must belong to the same group due to their
physicochemical similarities.

2.4 Quality assurance/control and uncertainty
evaluation

It is common for thermal decomposition to occur in analyt-
ical methods involving heating processes, potentially lead-
ing to the erroneous detection of compounds that are either
not present in real samples or present in low concentrations.
Such artifacts need careful scrutiny, and the availability of
authentic standards covering the GC×GC space range is es-
sential for validation. Nevertheless, the possibility that some
observed analytes are decomposition products cannot be en-
tirely ruled out. Peaks of ISs were traced across all samples to
monitor the variations across several modules, and the results
are presented in Fig. S8 in the Supplement. Excellent stabil-
ity was clearly observed, demonstrating the robustness of the
testing system. Strong linear correlations were achieved for
this set of authentic standards between the peak area ratio
and the spiked mass, with Pearson’s R ranging from 0.97 to
0.99.

3 Results and discussion

3.1 Overall performance of the algorithm and compound
identification

The optimization of component identification remains chal-
lenging, and this work involves converting known chemical
compounds into molecular descriptors and utilizing cluster
analysis to predict the relationship between these descrip-
tors and structural information. After continuous trials to im-
prove reliability and data processing speed, a final solution
of 26 compound clusters stands out with high accuracy and
repeatability:

– aliphatic hydrocarbons, including n-/i-alkanes and
alkenes;

– cycloalkanes;

– alkyl-substituted benzenes, including C1–C6 alkyl-
substituted benzenes;
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– adamantanes;

– hopanes;

– 2–5-ring PAHs;

– acids;

– aliphatic alcohols;

– aliphatic aldehydes and ketones;

– oxy-PAHs;

– phthalates;

– phenols and alkyl-substituted phenols;

– phenol ethers;

– amides;

– amines;

– pyridines;

– nitro compounds, including organic nitrates and organic
nitrites.

Validation of the model output using field diesel samples
has been conducted and has shown high estimation accu-
racy and integrity. Generally, over 82 % of the peaks have
been successfully classified and assigned to the correspond-
ing compound groups, and their distribution in an example
GC×GC plot is shown in Fig. 2. To confirm the tentatively
identified heteroatom groups, their raw chromatogram, mass
spectra, and chemical structures of representative species are
displayed in Figs. S10–S16 in the Supplement. Less than
18 % of the chromatographic peaks were identified as un-
resolved components. Aliphatic hydrocarbons were gener-
ally located in the lowest positions in the GC×GC space,
except for column bleedings (Figs. 2a–c and S9 in the Sup-
plement), and their second RT drifted less than 1 s from the
far-left to the far-right side. Nitrogen-containing compounds
in oxidized and reduced valences, including amides, amines,
pyridines, and nitro compounds, were resolved simultane-
ously under respective filtering rules and occupied slightly
higher positions in the GC×GC space (Fig. 2f). Amines
and pyridines, being more volatile, eluted at early stages,
whereas nitro compounds and amides eluted at middle and
late stages sequentially. Due to their high volatility, C2–C6
alkyl-substituted benzenes also appeared at the beginning of
the GC×GC space and predominantly partitioned into the
gas phase. Their second RTs were comparable to those of
pyridines and amides, with a negligible drift in second RT.
Aliphatic oxygen-containing compounds, including acids, al-
cohols, and ketones, were found to be in the middle region
and covered a wide volatility range. There, aliphatic oxygen-
containing compounds affect the acidity of the atmosphere,

participate in aqueous phase reactions, and contribute signif-
icantly to the formation of SOA (Cope et al., 2021; Xu et al.,
2022). Phenols with one or more hydroxyl groups attached to
an aromatic benzene ring were observed in the middle of the
GC×GC space. Oxy-PAHs and PAHs were present in the up-
per middle of the GC×GC space, with their volatility range
extending towards the low volatility end. A clear trend tilt-
ing towards the upper-right corner was observed, suggesting
that aromaticity plays a significant role in the retention in the
secondary dimension.

3.2 Estimation of the uncertainty associated with the
(semi-)quantification

We conducted a systematic evaluation of the model out-
put, and the results are shown in Figs. 3 and 4. To ad-
dress this issue comprehensively and accurately, we selected
three types of standards including C7–C37 n-alkanes, C2–C6
alkyl-substituted benzenes, and 2–4-ring PAHs, representing
a full range of polarities and functionalities. The quantifica-
tion deviation was computed according to the principles of
the model. Chromatographic peaks were quantified either by
their authentic standards or the surrogates within the same
compound category after being classified into 1 of the 26
compound classes. For example, if the mass spectrum of
a chromatographic peak resembled the pattern of the com-
pound class of alkanes, it would be assigned to the alkane
group and quantified by its authentic standard if available or
by the n-alkane (n-alkane serving as the semi-quantification
surrogate in this case) that was closest to it spatially. Sim-
ilarly, if the mass spectrum of a chromatographic peak fol-
lowed the pattern of Cx alkyl-substituted benzenes, it would
be assigned to the Cx alkyl-substituted benzene group and
quantified by its authentic standard if available or by the
alkyl-substituted benzene (with alkyl-substituted benzenes
serving as the semi-quantification surrogate) that was clos-
est to it spatially. In light of this explanation, the deviation
of the slopes of the calibration curves of any pair of adjacent
authentic standards within the same compound category was
computed to represent the ceiling of the semi-quantification
uncertainty. Uncertainties are calculated using Eq. (1):

uncertainty (%)=
Abs(Sp− Ss)

smaller(Sp,Ss)
· 100, (1)

where Sp and Ss are the slopes of the previous and subsequent
compounds, respectively.

The slopes increased rapidly from 3.13 (C7 n-alkane) to
8.21 (C9 n-alkane), fluctuated slightly from 8.85 to 11.8 in
the range of C9 to C27 n-alkanes, and decreased gradually af-
ter C28 n-alkane to the end of C37 n-alkane. Throughout the
volatility range of C9–C37 n-alkanes, uncertainties were less
than 37.67 %, except for one interval between C8 and C9 n-
alkanes, where the quantification deviation reached 142 %. A
similar trend was observed for PAHs, with uncertainties less
than 22.54 %, except for the first and last intervals, where the
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Figure 2. The distribution of the 26 compound groups in an example GC×GC plot. For clear visualization, different compound groups
are displayed separately, except for 2–5-ring PAHs, C2–C6 alkyl-substituted benzenes, and nitrogen-containing species. Nitro compounds
include organic nitrates and organic nitrites, due to the co-existence of the characteristic ions at m/z 30 (NO+) and m/z 46 (NO2

+).

quantification deviations were 55.44 % and 81.59 %, respec-
tively, as shown in Fig. 3. Stable responses of C2–C6 alkyl-
substituted benzenes were monitored, and the uncertainties
were less than 12.74 %. In other words, for any given peak, it
would be quantified or semi-quantified by one authentic stan-
dard, and the upper limit of quantification uncertainty, origi-
nating from any pair of adjacent authentic standards, was as
discussed earlier.

It is reasonable that the uncertainty ranges of alkyl-
substituted benzenes were less than those of n-alkanes and
PAHs, given that alkyl-substituted benzenes eluted early in

the front half, whereas alkanes and PAHs covered the entire
volatility range. These trends illustrated that the responses of
GC×GC to the analysts were sensitive to the volatility dis-
tribution, with accurate quantification being more reliable in
the middle region. This also highlighted the utility of intro-
ducing more authentic standards and the benefits of enriching
compound categories. It can be speculated that the quantifi-
cation uncertainty would be further reduced with the addition
of more standard compounds.

Furthermore, we explored the uncertainty estimation of di-
viding the whole chromatogram into bins based on reten-
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Figure 3. Slope and Pearson correlation variation of (a) C7–C37 n-alkanes, (b) C2–C6 alkyl-substituted benzenes, and (c) 2–4-ring PAHs.
Brown diamonds represent slopes of different species and reference the left axis. Green circles denote the Pearson correlation of individual
species and reference the right axis. Pearson correlation values for n-alkanes, C2–C6 alkyl-substituted benzenes, and 2–4-ring PAHs range
from 0.936 to 0.999, 0.994 to 0.998, and 0.952 to 0.992, respectively. Uncertainties are computed using the equation provided in the main
text.

tion time, and all the species in the same bin were quanti-
fied, referring to the mass-to-signal responses of the Cn n-
alkanes (Zhao et al., 2015, 2014). This approach corrected
the signal variation of hydrocarbons in the GC–MS and was
widely adopted for quantifying unresolved complex mix-
tures (UCMs) (Shen et al., 2023; Zhao et al., 2022). We
chose four types of standards belonging to different com-
pound categories with similar first RTs and different sec-
ond RTs, including C19H40 (first RT= 34.6 min, second
RT= 1.03 s), 9,10-anthracenedione (first RT= 36.07 min,
second RT= 3.85 s), C19H40 (first RT= 36.54 min, second
RT= 1.07 s), and fluoranthene (first RT= 37.00 min, sec-
ond RT= 3.04 s), and assessed the deviation of slopes be-
tween each pair of the standards. Results shown in Fig. 4
indicate that the deviation between the three pairs of stan-
dards was 1809 % (C19 n-alkane vs. 9,10-anthracenedione),
1903 % (9,10-anthracenedione vs. C20 n-alkane), and 105 %
(C20 n-alkane vs. fluoranthene), respectively. Quantitative er-
rors in measuring unidentified chromatographic peaks using
n-alkane responses could reach 3 orders of magnitude, es-
pecially for oxygen-containing species. Errors in quantifying

aromatic components, e.g., PAHs, also exceeded 100 % in
some cases.

3.3 Cluster analysis in organic vapor and aerosol
samples

The model was applied to organic vapor samples from
HDDV tailpipe emissions (referred to as HDDV vapors),
aerosol samples from HDDV tailpipe emissions (referred to
as HDDV aerosols), and atmospheric aerosol samples (re-
ferred to as ambient aerosols) for cluster analysis. The re-
sults are shown in Fig. S17 in the Supplement, which dis-
plays the distribution of the top few species with a contri-
bution fraction exceeding 5 %, and in Fig. 5, which shows
the mass stacking. Overall, the identified chromatographic
peaks accounted for 85 %, 82 %, and 99 % for HDDV vapors,
HDDV aerosols, and ambient aerosol samples, respectively.
The unidentified peaks were less than 20 % and are addressed
in greater detail in the Supplement (Sect. S2).

Distinct cluster distribution features can be extracted. For
ambient aerosol samples, aliphatic ketones were the most
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Figure 4. Slope and uncertainty estimation for example compounds
with close first RTs and different second RTs: C19H40 (first RT=
34.6 min, second RT= 1.03 s), 9,10-anthracenedione (first RT=
36.07 min, second RT= 3.85 s), C20H42 (first RT= 36.54 min,
second RT= 1.07 s), and fluoranthene (first RT= 37.00 min, sec-
ond RT= 3.04 s). Brown diamonds represent the slopes of different
species and reference the left axis. Gray bars denote the uncertainty
estimation for these compounds and reference the right axis.

abundant cluster, contributing 27 % of all the peak sig-
nals, followed by alkanes and alkenes. A notable fraction
of 15.2 % of nitro compounds was observed exclusively in
ambient samples, indicating significant secondary nitrate for-
mation processes under atmospheric conditions. Aliphatic
acids and oxy-PAHs were also detected at high levels, with
the top six groups accounting for over 95 % of the total
classified peak signals. Minor but non-negligible fractions
included cycloalkane, aliphatic alcohols, and phenols and
alkyl-substituted phenols.

Similarly, aliphatic ketones ranked first for HDDV aerosol
samples, with mass intensity reaching 46 % of the total sig-
nals, followed by alkanes. Aliphatic alcohols and oxy-PAHs
were also detected at high levels, and the top four groups ac-
counted for over 88 % of the total classified peak signals. Cy-
cloalkanes, amides, phenols and alkyl-substituted phenols,
and alkenes were compound clusters with lower abundance,
ranging from 1 % to 4 %.

For HDDV vapors, the most abundant group was phenols
and alkyl-substituted phenols, constituting 34 % of the to-
tal peak signals. Compared with previous results, where the
most abundant group was reported to be alkanes (Wang et
al., 2022; Alam et al., 2019), the adoption of the innovative
model contributed to resolving the oxygenated fractions and
reduced inaccuracies in SOA simulation due to the lack of
species information. The compound cluster is confirmed by
(1) the retention time window, including first RT and sec-
ond RT, and (2) the mass spectra. Detailed information is
displayed in Fig. S16. The second RTs of the identified phe-
nols and alkyl-substituted phenols range from 1.45 to 1.78 s,
well above the hydrocarbon regions, where the second RTs
fall within the range of approximately 1.0 to 1.15 s. Their

mass spectra also feature the typical phenol ions atm/z= 94,
107, 121, 135, 149, and 191. Alkanes ranked as the second
top species, followed by C1 alkyl-substituted benzene. C1–
C6 alkyl-substituted benzenes were negligible in both am-
bient and HDDV aerosol samples but were present in no-
table abundance in HDDV vapor samples. This distribution
aligned with their placement in the GC×GC plot, indicat-
ing they were relatively volatile species and partitioned pre-
dominantly into the gas phase. Oxy-PAHs and aliphatic ke-
tones contributed 6 % of the total identified peak intensities,
followed by minor fractions, including C2 alkyl-substituted
benzene, cycloalkanes, and alkenes.

The model output illustrates the overall distribution of
compound clusters in various gas and aerosol samples, pro-
viding comparative insights. Carboxylic acids indicated a
higher oxidation state than other compound clusters and were
exclusively observed at a notable level in ambient samples
compared with “freshly emitted” source samples. The oxi-
dation state of dominant compounds in HDDV samples was
comparatively low. For example, a significant ketone fraction
was observed in HDDV samples, with the majority partition-
ing into the aerosol phase due to the long carbon chain skele-
ton and thus low volatility. Phenols and alkyl-substituted
phenols were the leading species in HDDV gas samples.
He et al. (2022a) reported that the oxygenated I/SVOCs ac-
counted for over 20 % of the total I/SVOC mass in HDDV
tailpipe emissions (He et al., 2022a). With the refinement
and improvement of model performance, e.g., further split-
ting mixed mixtures, the oxygenated fraction was elevated to
over 50 %.

This study highlighted the systematic presence and distri-
bution of nitrogen-containing compounds in both oxidized
valences (including nitro compounds) and reduced valences
(including amides, amines, and pyridines). Among them,
amines and amides were key precursors for new particle
formation processes in a polluted atmosphere (Saeki et al.,
2022; Cai et al., 2021), and pyridines, with the nitrogen atom
in the aromatic ring, were readily dissolved in water, partici-
pating in the global nitrogen cycle in ecosystems (Kosyakov
et al., 2020). Nitro compounds, which include a wide range
of organic compounds with NO or NO2 substituents, served
as critical tracers for secondary nitrate formation processes.
Amines and pyridines were volatile species occupying the
early section of the GC×GC space, while nitro compounds
and amides were distributed in the middle and rear space.
Individual nitrogen-containing species were present at trace
levels under atmospheric conditions and were difficult to de-
tect. Moreover, authentic standards or high-resolution mass
spectrometry were required to identify and quantify each
compound (Zhang et al., 2018). With the establishment of
an algorithmic solution, we were able to conduct a compre-
hensive scan of nitrogen-containing compound clusters.

In addition to common features, specific compounds were
identified in separate samples and could potentially serve as
markers or tracers for primary emissions. Adamantane and
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Figure 5. Fractional distributions of different compound clusters in ambient aerosol samples, HDDV tailpipe vapors, and HDDV tailpipe
aerosols. Numbers labeled on each column represent the fractions of the top few groups in different samples. Identified clusters are outlined
in light purple.

its derivatives, with the fusion of three cyclohexane rings
(chemical structure and mass spectrum shown in Fig. S18a
in the Supplement), are natural products in petroleum (Stout
and Douglas, 2004). They were volatile and had previously
been isolated using GC×GC-ToF-MS in crude oil (Wang
et al., 2013). Adamantanes were observed in HDDV vapor
samples, contributing 1.4 % to the identified peaks. Hopane
(chemical structure and mass spectrum shown in Fig. S18b)
is also a natural product in petroleum and bitumen and serves
as an important marker for vehicle emissions due to its per-
sistency and stability (He et al., 2022b; Wong et al., 2021).
Hopane was reported to survive heat treatment up to 460 °C
and was exclusively detected in HDDV aerosol samples, with
an intensity fraction of 0.3 % (Wu and Geng, 2016).

4 Conclusions and outlook

We presented an innovative method for optimizing the sep-
aration and identification of organic vapors and aerosols,
focusing on establishing molecular descriptors and cluster
analysis algorithms. The model outputs were validated us-
ing field samples with high accuracy and integrity. Less than
20 % of the peaks were unresolved components. The reten-
tion patterns of various compound groups and their distri-
bution in the GC×GC plot were resolved, and the influ-
ence of functional groups on fragmentation was thoroughly
addressed. We also provided a comprehensive analysis of
the quantification uncertainties of this new approach and
highlighted the significant quantitative errors when using n-
alkanes as semi-quantification surrogates. This model was

applied to various types of field samples, and the results re-
vealed distinctive distribution patterns of compound clusters
and contribution fractions, providing valuable insights into
the compositions of organic vapors and aerosols and offering
potential markers for specific emission sources.

Compound speciation in atmospheric chemistry continues
to be a dynamic and challenging field. Speciated compounds
enable models to consider the diversity of organic species
and dynamic chemical transformations in the atmosphere,
contributing to more accurate SOA simulation results. This
approach also allows for a more refined description of the
dispersion of pollutants, thereby assisting in the development
of localized air quality management strategies as we strive
for a more accurate and comprehensive understanding of at-
mospheric chemistry.
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