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Abstract. Methane (CH4) is an important anthropogenic greenhouse gas, and its rising concentration in the
atmosphere contributes significantly to global warming. A comparatively small number of highly emitting per-
sistent methane sources are responsible for a large share of global methane emissions. The identification and
quantification of these sources, which often show large uncertainties regarding their emissions or locations, are
important to support mitigating climate change. Daily global column-averaged dry air mole fractions of atmo-
spheric methane (XCH4) are retrieved from radiance measurements of the TROPOspheric Monitoring Instru-
ment (TROPOMI) on board on the Sentinel-5 Precursor (S5P) satellite with a moderately high spatial resolution,
enabling the detection and quantification of localized methane sources. We developed a fully automated algo-
rithm to detect regions with persistent methane enhancement and to quantify their emissions using a monthly
TROPOMI XCH4 dataset from the years 2018–2021. We detect 217 potential persistent source regions (PPSRs),
which account for approximately 20% of the total bottom-up emissions. By comparing the PPSRs in a spa-
tial analysis with anthropogenic and natural emission databases, we conclude that 7.8% of the detected source
regions are dominated by coal, 7.8% by oil and gas, 30.4% by other anthropogenic sources like landfills or agri-
culture, 7.3 % by wetlands, and 46.5% by unknown sources. Many of the identified PPSRs are in well-known
source regions, like the Permian Basin in the USA, which is a large production area for oil and gas; the Bowen
Basin coal mining area in Australia; or the Pantanal Wetlands in Brazil. We perform a detailed analysis of the
PPSRs with the 10 highest emission estimates, including the Sudd Wetland in South Sudan, an oil- and gas-
dominated area on the west coast in Turkmenistan, and one of the largest coal production areas in the world, the
Kuznetsk Basin in Russia. The calculated emission estimates of these source regions are in agreement within
the uncertainties in results from other studies but are in most of the cases higher than the emissions reported
by emission databases. We demonstrate that our algorithm is able to automatically detect and quantify persis-
tent localized methane sources of different source type and shape, including larger-scale enhancements such as
wetlands or extensive oil- and gas-production basins.
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1 Introduction

Methane (CH4) is the second-most-important anthropogenic
greenhouse gas after carbon dioxide (CO2), and its increas-
ing concentration in the atmosphere, which has accelerated
in recent years, contributes significantly to global warming
(Lan et al., 2021). Due to its shorter lifetime and higher
global warming potential compared to CO2, the reduction
in methane emissions can contribute to mitigation of global
warming (Shoemaker et al., 2013).

Almost half of the global methane emissions originate
from anthropogenic sources, which are dominated by fos-
sil fuel exploitation, livestock, rice cultivation and landfills,
whereas the natural emissions mainly originate from wet-
lands (Saunois et al., 2020). To efficiently reduce methane
emissions, a comprehensive understanding of the natural and
anthropogenic methane sources and sinks is required. How-
ever, global methane emissions are characterized by large un-
certainties, as can be seen in bottom-up inventories, which
have uncertainties of 20 %–35 % for anthropogenic emis-
sions regarding agriculture, fossil fuel and waste and 50%
for wetland emissions (Saunois et al., 2020). These uncer-
tainties are strongly related to emissions from individual
sources, which are highly uncertain or even partly unknown,
especially on a regional scale (Saunois et al., 2020). Con-
sequently, explanation of the observed atmospheric methane
trends remains challenging. For example, the abundance of
atmospheric methane grew until 1998, remained at a con-
stant plateau until 2006 and then started to grow again. The
reasons for this unique behavior are still highly debated (Nis-
bet et al., 2016; Turner et al., 2019). Also, the accelerated in-
crease in recent years is still the subject of ongoing research,
with several studies concluding that the rise was dominated
by an increase in wetland emissions (Lan et al., 2021; Peng
et al., 2022; Zhao et al., 2020).

In particular, strongly emitting methane sources have a
substantial impact on global methane emissions. These in-
clude small-scale point sources, so-called super-emitters,
such as individual coal mines, natural gas compressor sta-
tions or landfills (He et al., 2024; Lauvaux et al., 2022;
Maasakkers et al., 2022; Schuit et al., 2023; Varon et al.,
2019). A comparatively small number of those super-emitters
are responsible for a large proportion of methane emissions
associated with oil and gas exploitation, coal mining and
waste (Frankenberg et al., 2016; Jacob et al., 2016; Lau-
vaux et al., 2022; Zavala-Araiza et al., 2015). In addition to
the super-emitters, larger-scale but localized source regions
also contribute a large share to global methane emissions.
These include large oil and gas fields, where smaller sources
can emit a huge amount of methane in aggregate, but also
regions with high agricultural productivity (rice cultivation,
livestock), as well as wetland areas (Buchwitz et al., 2017;
Chen et al., 2024; Naus et al., 2023; Pandey et al., 2021;
Schneising et al., 2020). The detection and quantification of
these small-scale super-emitters and larger-scale source ar-

eas is essential to assess the contribution of these sources to
the global methane emissions and to identify their inherent
potential for reducing the global emissions.

Ground-based and aircraft measurements have been used
to quantify localized methane sources but are limited in
time and/or space, making (frequent) observations of remote
source regions difficult (Borchardt et al., 2021; Franken-
berg et al., 2016; Krautwurst et al., 2021). Satellite mea-
surements, such as from the SCanning Imaging Absorp-
tion spectroMeter for Atmospheric CHartographY (SCIA-
MACHY; Burrows et al., 1995; Bovensmann et al., 1999) or
the Greenhouse gases Observing SATellite (GOSAT; Kuze
et al., 2009, 2016), offer the possibility of globally detecting
and quantifying localized emission sources through tempo-
rally frequent global measurements of atmospheric methane
(Buchwitz et al., 2017; Jacob et al., 2016, 2022; Sherwin
et al., 2024; Thorpe et al., 2023). One important break-
through in satellite remote sensing of methane in recent years
was achieved by the successful launch of the Sentinel-5 Pre-
cursor (S5P) satellite in October 2017. Onboard S5P is the
TROPOspheric Monitoring Instrument (TROPOMI), which
is a nadir-viewing spectrometer (Veefkind et al., 2012).
It provides observations in the shortwave infrared (SWIR)
spectral range with a spatial resolution of 5.5× 7km2, from
which column-averaged dry air mole fractions of atmo-
spheric methane (XCH4) can be retrieved. Due to the high
sensitivity to near-surface concentration changes and the
combination of daily global coverage with moderately high
spatial resolution, TROPOMI data have already been used to
quantify emissions on global and regional scales, including a
wide variety of methane sources, such as transient gas leaks,
oil and gas fields, coal mining, and urban areas, as well as
from wetland regions (Liu et al., 2021; Naus et al., 2023; Qu
et al., 2021; Pandey et al., 2019; Plant et al., 2022; Schneising
et al., 2020; Varon et al., 2023; Veefkind et al., 2023). In ad-
dition to emission quantification, various studies have shown
that TROPOMI can be used to identify point sources on a
global scale via plume detection (Lauvaux et al., 2022; Schuit
et al., 2023) or via combination with model forecasts (Barré
et al., 2021). For example, Barré et al. (2021) created a mon-
itoring methodology to detect CH4 concentration anoma-
lies by comparing TROPOMI data with high-resolution CH4
forecasts from the Copernicus Atmosphere Monitoring Ser-
vice (CAMS). This method can be used to detect missing, un-
derreported and overreported CH4 anomalies in the CAMS
data worldwide. Lauvaux et al. (2022) detected methane
super-emitters associated with oil and gas production and ex-
ploitation for 2019–2020 by analyzing daily TROPOMI data
using a plume detection algorithm based on the calculation
of local XCH4 enhancements and plume segmentation. The
super-emitters were mostly detected over the largest oil and
gas basins in Russia, Turkmenistan, the USA, Algeria and
the Middle East and amount to 8 %–12 % of the global oil
and gas emissions. Schuit et al. (2023) used TROPOMI data
to identify anthropogenic super-emitters including emissions
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from the coal, oil, gas and landfill sectors for 2021 using a
machine-learning approach based on a convolutional neural
network to detect plume-like structures and a support vec-
tor classifier to distinguish between real plumes and retrieval
artifacts. Methane plumes originating from super-emitters
worldwide were identified, mostly from persistent emission
clusters but also from transient sources.

The focus of the studies from Barré et al. (2021), Lauvaux
et al. (2022) and Schuit et al. (2023) is on the detection of
strongly emitting anthropogenic point sources, for example
via plume detection. But besides super-emitters, numerous
larger-scale strong source regions of different source types
exist, in which the emissions do not have a plume-like struc-
ture as the signals of individual sources within the regions
can interfere. This can be the case, for example, in large
oil and gas fields or wetlands (Lauvaux et al., 2022; Naus
et al., 2023; Pandey et al., 2021). To include such source
regions in a detection procedure was an important motiva-
tion for this study. Therefore, we developed an automated
algorithm to detect and quantify source regions of various
sizes, regardless of their source type, including small-scale
super-emitters such as coal mine ventilation shafts but also
larger-scale source areas such as wetland areas and large oil
and gas fields. Since source regions with strong and persis-
tent methane enhancements contribute significantly to global
methane emissions, we have focused on such source regions
in this study. TROPOMI has been providing a vast amount of
daily methane data since its launch in 2017. To allow for the
detection of methane source regions in this large dataset on a
global scale, we fully automated our detection algorithm. The
data-driven detection algorithm is based on several steps, in-
cluding high-pass filtering of the TROPOMI data and mask-
ing of regions with persistent methane enhancements by ap-
plying different threshold criteria. In addition to detection,
our algorithm includes a characterization of the source re-
gions, in which the dominant source type is assigned, and an
emission estimate for each source region is determined.

This study is structured as follows. In Sect. 2, we first
present the data that we used for the detection and character-
ization of the source regions. In Sect. 3, we describe the al-
gorithm. In Sect. 4, we present our results, including a global
overview of the detected source regions and a detailed anal-
ysis of the source regions with the 10 highest emission esti-
mates by comparing our results with emission databases and
results from recent studies. At the end, in Sect. 5, we present
our conclusions.

2 Data

2.1 TROPOMI/WFMD XCH4 data product

The Sentinel-5 Precursor (S5P) satellite with the TROPO-
spheric Monitoring Instrument (TROPOMI) on board was
launched in October 2017 in a near-polar, sun-synchronous
orbit with an equatorial crossing of the ascending node at

13:30 local solar time. TROPOMI is a nadir-viewing spec-
trometer and operates in a push-broom configuration with a
swath width of 2600km, enabling daily global coverage. It
measures solar radiation reflected at the Earth’s surface in the
ultraviolet (267–332 nm), ultraviolet-visible (305–499 nm),
near-infrared (661–786 nm) and shortwave infrared (2300–
2389 nm) spectral channels (Veefkind et al., 2012). The mea-
surements of TROPOMI in the shortwave infrared (SWIR)
spectral range enable the retrieval of column-averaged dry-
air mole fractions of atmospheric methane (XCH4), with a
horizontal resolution of 5.5×7km2 (7×7km2 before August
2019). The radiation backscattered from the earth’s surface
and measured at the top of the atmosphere has passed through
the planetary boundary layer. Therefore, TROPOMI’s mea-
surements yield the gas absorption throughout the atmo-
sphere and importantly close to the earth’s surface (Schneis-
ing et al., 2019). Consequently, the retrieved XCH4 can be
used to detect methane enhancements originating from lo-
calized methane sources at the Earth’s surface.

In this study, we use a multi-year (2018–2021) TROPOMI
XCH4 dataset retrieved with the Weighting Function Modi-
fied Differential Optical Absorption Spectroscopy (WFMD)
retrieval algorithm (Buchwitz et al., 2006; Schneising et al.,
2011, 2014), which has been adapted and optimized for
use on TROPOMI data (Schneising et al., 2019). We use
the latest version (v1.8) of the TROPOMI/WFMD product
(Schneising et al., 2023) and average the data to monthly
XCH4 maps with a spatial resolution of 0.1°× 0.1°. In ad-
dition to the XCH4, the dataset also includes two variables
that are needed for the detection and characterization of the
source regions. These variables are (i) the retrieved surface
albedo in the SWIR spectral range and (ii) for each monthly
averaged XCH4 grid cell, the number of days, Ndays, with
TROPOMI measurements from which the monthly mean was
calculated. In the following, we refer to this dataset consist-
ing of the 0.1°×0.1° monthly maps of XCH4, SWIR albedo
and Ndays as the XCH4 dataset.

2.2 Wind data

Wind data are required to calculate emissions. The European
Centre for Medium-Range Weather Forecasts (ECMWF) re-
analysis (ERA5) wind product (Hersbach et al., 2020) pro-
vides hourly wind data with a horizontal resolution of 0.25°×
0.25° on model levels. From this dataset, we computed
boundary-layer-averaged wind speed at the overpass time
of TROPOMI for each TROPOMI sounding. The resulting
winds are then gridded in the same way as the XCH4 dataset
to monthly maps with a spatial resolution of 0.1°× 0.1°. In
addition to the monthly averaged wind speeds, we computed
the standard deviation of the wind speed within the months
for each grid cell.
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2.3 Surface elevation and roughness

The Global Multi-resolution Terrain Elevation Data 2010
(GMTED 2010) is a dataset containing global surface ele-
vation data available at three different resolutions (approx-
imately 250, 500 and 1000 m) from various data sources
(Danielson and Gesch, 2011). We use the GMTED 2010 to
assign the mean surface elevation and the standard deviation
of the surface elevation (surface roughness) within the grid
cells to the 0.1°× 0.1° grid cells of the XCH4 dataset.

2.4 Emission databases

We use the following emission databases to determine the
dominant source types of the detected potential source re-
gions by comparing the emissions of the databases.

2.4.1 EDGAR

The Emissions Database for Global Atmospheric Research
(EDGAR) v6.0 (Ferrario et al., 2021) is a bottom-up in-
ventory providing detailed information about global anthro-
pogenic emissions of various air pollutants and greenhouse
gases. The yearly emission data have a spatial resolution of
0.1°× 0.1° and are available from 1970 to 2018. The emis-
sions of a specific gas are calculated using international ac-
tivity data and emission factors using the IPCC (Eggleston
et al., 2006) methodology. Activity data describe the activ-
ities producing emissions, such as the amount of fossil fuel
that is exploited or the number of animals on a farm. Emis-
sion factors are coefficients that relate the emitted amount of
a specific gas to a certain activity or process. The data re-
quired to calculate the emissions are collected from a variety
of sources, including international organizations such as the
International Energy Agency (IEA), national emission inven-
tories and industry reports. EDGAR is well-suited to deter-
mine the anthropogenic source types of the detected poten-
tial since this inventory provides sector-specific emissions,
which enables the differentiation between individual source
types within the source regions. For methane, EDGAR v6.0
provides sector-specific anthropogenic emissions from, for
example, enteric fermentation; landfills; rice cultivation; and
fossil fuel exploitation, which is further separated into coal,
oil, and gas emissions. We use the EDGAR v6.0 methane
data for 2018.

2.4.2 GFEI

The Global Fuel Emission Inventory (GFEI) v2.0 (Scarpelli
et al., 2022) is a methane emission database providing global
anthropogenic emissions for the fossil fuel sectors: coal,
oil and gas. The emission data are gridded to yearly maps
(2010–2019) with a resolution of 0.1°×0.1°. GFEI v2.0 uses
fossil-fuel-related emission data reported by countries to the
United Nations Framework Convention on Climate Change
(UNFCCC); separated into the sectors of coal, oil, and gas;

and assigned to the appropriate infrastructure locations like
coal mines or oil and gas wells. The infrastructure data are
taken from several databases. For countries that do not re-
port their emissions to the UNFCCC, the emissions are cal-
culated using the IPCC (Eggleston et al., 2006) methods and
activity data from the US Energy Information Administra-
tion (EIA). Due to the different methods and data used for
emission quantification in EDGAR v6.0 and GFEI v2.0, both
databases show differences in their fossil fuel emissions, es-
pecially on a regional scale. Therefore, GFEI v2.0 can be
used as a useful supplementary database to assign the appro-
priate fossil fuel source type to the detected source regions.
We use GFEI v2.0 data for 2019.

2.4.3 WetCHARTs

WetCHARTs v1.3.1 is a global wetland methane emission
ensemble that provides monthly emissions with a resolu-
tion of 0.5°× 0.5° for the time period of 2001–2019 (Bloom
et al., 2021). The ensemble is based on different wetland ex-
tent scenarios, multiple terrestrial biosphere models and var-
ious temperature dependence parameterizations, resulting in
18 different model configurations. We use WetCHARTs to
also include wetlands as a potential dominant source type
of a source region. To compare the wetland emissions from
WetCHARTs with the other emission databases, we create
a yearly averaged wetland emission map for 2019, with a
resolution of 0.1°× 0.1°, by averaging the emissions of all
configurations and months.

3 Methods

We have developed a data-driven persistent hotspot detection
(PHD) algorithm to automatically detect regions with persis-
tent XCH4 enhancements, to estimate their emissions and to
assign a source type to these regions. The individual steps
of the detection algorithm are shown in Fig. 1. As input to
the PHD algorithm, we use the XCH4 dataset (Sect. 2.1), the
wind dataset (Sect. 2.2), the surface elevation data accord-
ing to GMTED 2010 (Sect. 2.3), and the two anthropogenic
emission inventories EDGAR v6.0 and GFEI v2.0, as well as
the wetland emission dataset WetCHARTs v1.3.1 (Sect. 2.4).
First, we process the XCH4 dataset (Sect. 3.1). This step in-
cludes filtering out grid cells that contain XCH4 only in a few
days within a month. For the detection of localized enhance-
ments, we filter out large-scale XCH4 variations by apply-
ing a high-pass filter with five different kernel sizes to each
monthly XCH4 map (Sect. 3.2), resulting in five datasets that
contain the local anomalies, 1XCH4. In the next step, we
analyze the 1XCH4 datasets to detect persistent source re-
gions (Sect. 3.3). For this, we first identify individual grid
cells with persistent enhancement and then merge them into
potential source regions. Afterwards, we conservatively filter
out detected source regions, which may be false positives due
to challenging surface features. For each of the five 1XCH4
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datasets, we obtain one global map of the detected poten-
tial source regions. In the next step, we combine all of the
detected source regions into one map (Sect. 3.4) before we
estimate their emissions (Sect. 3.5). In the final step, we de-
termine the dominant source types of the source regions by
applying a spatial analysis based on the comparison of the
methane emission databases within the source regions. As a
result of the PHD algorithm, we obtain a list with the char-
acteristics of the detected source regions. The list includes
the locations, the estimated emissions and the assigned dom-
inant source types of the source regions. In the following, we
describe the steps of the algorithm in more detail.

3.1 Initial processing

To optimize the XCH4 dataset (Sect. 2.1) for the detection of
persistent XCH4 enhancements, we transform it into a new
dataset, XCH4*. For this, we apply filtering and a so-called
elevation correction, which are described in the following.
For the detection of persistent source regions, we only con-
sider grid cells in which the monthly XCH4 means were
calculated from more than 3 d of TROPOMI measurements
(Ndays > 3).

Changes in surface elevation and tropopause height lead
to variations in the tropospheric fraction of the XCH4 (Kort
et al., 2014; Buchwitz et al., 2017). Because the mean mix-
ing ratio of methane is higher in the troposphere than in the
stratosphere, the XCH4 over a valley is enhanced compared
to its surrounding area, even if the valley is not a source re-
gion. To correct for these topography-related variations, we
apply an elevation correction to the XCH4 (Buchwitz et al.,
2017). We normalize the XCH4 to mean sea level by adding
8.5ppb per kilometer above mean sea level to the XCH4 of
the grid cells. We calculated this value following the ap-
proach of Buchwitz et al. (2017). To determine the surface
elevation of the grid cells, we use the surface elevation data
described in Sect. 2.3.

We denote the filtered and elevation-corrected data
XCH4*. Figure 2 shows the global maps for 2018–2021 of
XCH4 and XCH4*. The data gaps in Fig. 2b are due to the
removal of grid cells that contain XCH4 only in a few days.
The effect of the elevation correction can be seen in Fig. 2b
in the higher XCH4 over areas with high surface elevation
(e.g., the Himalaya) compared to the uncorrected dataset. In
the following sections, we always refer to XCH4* when we
mention XCH4.

3.2 High-pass filtering

The spatial distribution of global methane concentration
shows large-scale methane variations, such as the interhemi-
spheric gradient (Fig. 2a). To better detect localized XCH4
enhancements, we minimize these large-scale variations by
applying a high-pass filter with five different kernel sizes to
each monthly XCH4 map (see Sect. 3.1). For each kernel

size, we obtain one dataset, which consists of monthly maps
showing only the local XCH4 variations. The high-pass fil-
tering comprises three steps and is applied to each grid cell
of a monthly XCH4 map as follows. First, we define an area
of size n°× n° around the grid cell considered, denoted the
high-pass filter area (HPFA(n)), with n ∈ {1,2,3,4,5}. Sec-
ond, the HPFA(n) has to be filled with at least 25% data.
Otherwise, the grid cell is removed. Third, we calculate the
so-called methane anomaly, 1XCH4, by calculating the dif-
ference in the XCH4 of the grid cell with the corresponding
median X̃CH4 in the HPFA(n):

1XCH4 = XCH4− X̃CH4|HPFA. (1)

The steps of the anomaly calculation are illustrated in
Fig. 3a–c. In the next sections, we use the anomalies to iden-
tify potential source regions. For this, the HPFA(n) used has
to be larger than the source region so that the HPFA(n) con-
tains XCH4 that is not enhanced. Otherwise, the anomalies
only describe the variations within the source regions and
not their enhancements. However, the HPFA(n) must not be
too large as it could contain XCH4 that is influenced by
other nearby sources. Since the potential source regions to
be detected have different spatial extents, ranging from small
point sources to larger-scale areas, we choose five different
HPFA(n) sizes from n= 1° to n= 5° to consider source re-
gions with various sizes.

Figure 4 shows two multi-year 1XCH4 maps on global
and regional scales, calculated with HPFA sizes of 1° and 5°
(panels c–f), and the corresponding XCH4 map (a–b). On the
left side, the global maps are shown. It can be seen that the
large-scale variations have been minimized in the 1XCH4
maps. The 1XCH4 maps contain less data compared to the
XCH4 map because grid cells whose HPFA(n) does not con-
tain the minimum amount of XCH4 data are filtered out. On
the right side of Fig. 4, we show a zoom to the South Sudan
region, which is a well-known source region (Pandey et al.,
2021). The strong wetland emissions of the region can be
seen in the resulting XCH4 enhancements (Fig. 4b). If we
compare the anomalies calculated with different HPFAs of
1° and 5° (Fig. 4d and f), we can see that the HPFA(1°) is too
small to detect the large-scale XCH4 enhancements of this
source region.

In addition to the anomalies, we calculate the standard de-
viation of the XCH4 in the corresponding HPFA(n) for each
grid cell. With that, we can determine if an anomaly is signifi-
cantly enhanced compared to the variation in the surrounding
XCH4. To reduce the impact of local XCH4 enhancements
on the standard deviation, we use only the XCH4 values of
the HPFA(n) that are smaller than the 95th percentile of the
XCH4 distribution. In addition, we ignore the XCH4 value
of the grid cell for which the standard deviation is calcu-
lated. The calculation of the standard deviation is illustrated
in Fig. 3d–e.
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Figure 1. Flowchart of the persistent hotspot detection (PHD) algorithm version 1.0. The colored boxes symbolize the steps in which data
are processed and analyzed. The gray boxes describe the input and/or output data of these steps. For a detailed description of the algorithm,
see Sect. 3.1–3.6.

Figure 2. (a) Multi-year (2018–2021) XCH4 and (b) the corresponding filtered and elevation-corrected XCH4*.

In total, we generate five anomaly datasets consisting
of monthly 1XCH4 maps and monthly standard deviation
(σ ) maps, each corresponding to one of the five selected
HPFA(n).

3.3 Detection of persistent potential source regions

In the third step of the PHD algorithm, we identify regions
with persistent 1XCH4 enhancement in each of the five
anomaly datasets calculated in Sect. 3.2. We refer to these re-
gions as potential persistent source regions (PPSRs). To de-

tect PPSRs in an anomaly dataset, we apply the following
steps.

1. We analyze the monthly anomalies of small areas to
mask PPSRs (Sect. 3.3.2).

2. We refine the detected PPSR masks (Sect. 3.3.3).

3. We filter out PPSRs with complicated surface properties
(Sect. 3.3.4).

As result, for each of the five anomaly datasets, we obtain
one global map containing the masks that define the PPSRs.
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Figure 3. Illustration of the steps to calculate the methane anomaly and standard deviation maps described in Sect. 3.2. (a) XCH4 for April
2020 for a region close to the border of Pakistan/India. The anomaly calculation process is illustrated for one grid cell shown in red. First,
the HPFA(n) is defined, which is 1°× 1° in this example. (b) The median of the XCH4 values in the HPFA is calculated, with the XCH4
of the grid cell considered excluded from the calculation. The anomaly of the grid cell considered is computed using Eq. 1. (c) 1XCH4
for April 2020 calculated using an HPFA of 1°× 1°. The anomalies illustrate the XCH4 enhancement in panel (a). (d) Illustration of the
process to calculate the standard deviation of the XCH4 values in the HPFA. First, the 95th percentile of the XCH4 values within the HPFA
is computed. All XCH4 values above the 95th percentile are excluded from the standard deviation calculation to reduce the impact of local
enhancements. (e) Standard deviation of the XCH4 in the HPFA of 1°× 1° for April 2020.

3.3.1 Definition of a PPSR

A PPSR is characterized by the appearance of enhanced
anomalies at a certain frequency over a certain time period.
Therefore, to define a PPSR, we have to specify the term en-
hanced anomaly and to introduce variables to quantify how
often the region shows enhanced anomalies. We define an
anomaly as enhanced if

1XCH4 ≥Nσ · σ. (2)

We set Nσ = 2. The σ is the standard deviation of the XCH4
in the HPFA(n) around the analyzed grid cell (Sect. 3.2).

To characterize the persistent enhancement of a certain re-
gion, e.g., consisting of several grid cells, we first define the
number of months in which the region contains at least one
anomaly (measurement) as Nmeas. In addition, the number of
months in which the region contains at least one enhanced

anomaly is defined as Nenh. As a measure for the persistence
of enhancements, we define the fraction Fenh =Nenh/Nmeas,
which characterizes in how many of the months with mea-
surements at least one of the anomalies is enhanced. Fig-
ure 5a–c illustrates the calculation of these variables for a
region of 3× 3 grid cells. We define a region as a PPSR if

Fenh ≥ Fenh,min, Nmeas ≥Nmeas,min. (3)

The parameters Fenh,min andNmeas,min define the lower limits
of Fenh andNmeas. We set Fenh,min = 0.5 andNmeas,min = 16.
This means that a region is defined as a PPSR if it contains
data in at least 16 of the 48 months and also contains an en-
hanced anomaly in at least half of the months in which an
anomaly is in the region.

We have chosen Fenh,min = 0.5 for the following reasons.
Persistent methane sources do not always show enhanced
methane anomalies in all months. For example, some sources
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Figure 4. Comparison of global (a, c, e) and regional (b, d, f) multi-year (2018–2021) XCH4 and 1XCH4 maps. (a) Same as Fig. 2b.
(b) Corresponding zoom of South Sudan. (c) 1XCH4 calculated with an HPFA of 1°× 1°. (d) Zoom of South Sudan for a 1°× 1° 1XCH4
map. (e) As (c) but for an HPFA of 5°× 5°. (f) Zoom of South Sudan for a 5°× 5° 1XCH4 map.

such as wetlands or rice paddies show seasonal variations
in emissions. Emissions from coal mines can also vary over
time, as they depend on mining activity. In addition, we
also want to take into account persistent sources in the de-
tection process that started emitting during 2018–2021 and
therefore do not show emissions over the entire period. With

Nmeas,min = 16, we also take into account regions that do not
contain data in all 48 months.

3.3.2 Mask potential persistent source regions

To detect PPSRs in an anomaly dataset, we define small
areas around every grid cell of the dataset and calculate
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Figure 5. Illustration of the process to identify a potential persistent source region (PPSR). (a) 2018–20211XCH4 calculated with an HPFA
of 1°× 1°. The detection process is illustrated for the blue-outlined grid cell. First, an area of 3× 3 grid cells (outlined in black) is defined
around the grid cell considered. (b) Next, the anomalies within the black-outlined area are analyzed for all monthly 1XCH4 and σ maps
from 2018 to 2021 to calculate Nmeas, Nenh and Fenh =Nenh/Nmeas (definition in Sect. 3.3.2). In addition, for each grid cell within the
3×3 area, Ngc

enh is counted. (c) Multi-year 1XCH4 with the results from the analysis described in (b). In each grid cell in the black-outlined
area, Ngc

enh is shown. The 3× 3 area fulfills the conditions for a PPSR from Eq. (3), since Fenh ≥ 0.5, Nmeas ≥ 16 and Ngc
enh of central grid

box ≥ 1. (d) Resulting mask (yellow grid cells) of the detected PPSR. Only the grid cells that have an enhanced anomaly in at least 1 month
are considered for the mask (Ngc

enh > 0). (e) Multi-year 1XCH4 with all detected PPSR masks in that region. The algorithm is applied to
each grid cell, resulting in an additional PPSR being detected (outlined in blue). (f) Multi-year 1XCH4 with the final PPSR mask, which is
created by merging PPSRs that are directly adjacent or overlapping.

for each of those areas the number of months with at least
one anomaly, Nmeas; the number of months with enhanced
anomalies, Nenh; and the fraction of months with enhanced
anomalies, Fenh, by analyzing the monthly XCH4 and σ

maps from 2018 to 2021. In detail, for each grid cell, we
apply the following steps, which are illustrated in Fig. 5. We
first define an area of 3× 3 grid cells consisting of the grid
cell itself and the directly adjacent grid cells (black-outlined
area in Fig. 5a). We are using a small 3× 3 area for the cal-
culation of Nmeas, Nenh and Fenh rather than only analyzing
a single grid cell for the following reason. The 1XCH4 en-
hancements within a persistent source region depend on the
source itself and on the meteorological conditions. There-
fore, enhancements show temporal and spatial variability.
Consequently, the1XCH4 enhancements can occur at differ-
ent grid cells in different months of the persistent source re-
gion. To account for this in the detection process, we analyze
the1XCH4 and σ maps of multiple grid cells simultaneously
rather than considering each grid cell independently. We use
an area of 3× 3 to take into account the fact that the varying
meteorological situations in the monthly XCH4 maps are not
as strong as in the daily XCH4 data. In the monthly maps, the

daily plumes, which vary with wind strength and direction,
typically average out and result in a XCH4 enhancement over
the source region, which shows only slight monthly variabil-
ity.

After defining the 3× 3 area, we analyze all monthly
1XCH4 and σ maps from 2018 to 2021 for the 3× 3 area to
calculateNmeas,Nenh and Fenh (Fig. 5b and c). We also count
the number of months,Ngc

enh, in which the anomaly in the grid
cell is enhanced for each grid cell in the 3× 3 area. If the
3×3 area fulfills the persistence conditions from Eq. (3) and
if the center grid cell shows an enhanced anomaly in at least
1 month, we mask the area as PPSR (yellow area in Fig. 5d).
To label a 3× 3 area as PPSR, we mark all grid cells within
the area that show an enhanced anomaly in at least 1 month
(Ngc

enh ≥ 1). Thus, grid cells with Fenh < 0.5 can also be part
of a PPSR if their enhancements contribute to the 3× 3 area
being marked as a PPSR. We only consider 3× 3 areas that
have no complicated topography (median of surface rough-
ness < 80m and standard deviation of the surface elevation
< 150m) as PPSRs. As can be seen in Fig. 5c, the analysis
of an area rather than a single grid cell enables the detection
of source regions in which the individual grid cells show no
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persistent enhancement, but the area does. This means that
the enhanced anomalies need not occur at the same grid cell
every month but can vary monthly within the area.

PPSRs that are directly adjacent or overlapping are merged
into one PPSR (Fig. 5e and f). For this, we apply a labeling
algorithm in which each individual PPSR is assigned its own
number, with directly adjacent or overlapping PPSRs getting
the same number. In the end, we get a global map contain-
ing the separated and labeled PPSRs of the anomaly dataset
considered.

We apply the detection process to the five anomaly
datasets and obtain five global maps with the detected PP-
SRs.

3.3.3 Refinement of PPSR masks

The detected PPSR masks describe the locations and shapes
of the corresponding source regions. However, some of the
masks do not cover the entire spatial extent of the source re-
gions. Therefore, in the next step, we refine the PPSR masks.
One example is shown in Fig. 6a. It can be seen that the two
PPSR masks do not contain all the grid cells that would be
identified by eye as part of the source regions because their
fractions Fenh do not exceed the threshold Fenh,min = 0.5 re-
quired for detection (Eq. 3). These grid cells are nevertheless
part of the source region since they have a high fraction of
Fenh and are located in the immediate surroundings of the
source regions. To add them to the source regions, we could
lower the Fenh,min parameter. But this would imply a change
in the persistence condition. To determine the total spatial
extent of the source regions without changing the persistence
condition, we choose the following approach. We add grid
cells to the PPSR masks that are in the immediate vicinity
and whose fractions Fenh indicate that they are part of the
source. For this, we identify all grid cells with Fenh ≥ 0.33
that also fulfill all other conditions from Eq. (3). We refer
to these grid cells as “toseeds” (green grid cells in Fig. 6b).
The grid cells detected with Fenh,min = 0.5 are called seeds
(yellow grid cells in Fig. 6b). We chose 0.33 as the lower
threshold, since Fenh ≥ 0.33 indicates that the grid cells show
enhanced anomalies in a certain number of months and are
therefore still strongly influenced by the sources within the
PPSR, although its Fenh is smaller than 0.5. Grid cells with
Fenh < 0.33 indicate a weaker influence of the sources on the
grid cells, which is why we did not include them in the re-
fining process. Next, we apply a random walker algorithm
(Grady, 2006) to assign the toseeds to the seeds. A ran-
dom walker algorithm is an image segmentation algorithm,
which can divide an image into several sections based on
threshold values. A first threshold is used to define the pix-
els of the image that represent the foreground of the image
and are called seeds (the grid cells detected with Fenh,min).
The seeds can have different labels so that the foreground
can be divided into different areas. With a second threshold,
which is below the first one, the pixels of the background

that are not to be considered further are defined. The pix-
els between the first and second threshold are the so-called
undefined pixels that the random walker algorithm assigns
to the corresponding seeds using a diffusion equation (the
grid cells with 0.33≤ Fenh ≤ 0.5). Based on the gradient be-
tween an undefined pixel, the different seeds and the distance
between them, the probability of which seed the respective
undefined pixel is assigned is calculated. The lower the gra-
dient, i.e., the more similar the values of the undefined pixel
and a seed are, the higher the probability that this pixel will
be assigned to this seed. Undefined pixels that do not have a
contiguous path to at least one seed are discarded. As the ba-
sis on which the grid cells detected with Fenh,min are assigned
to the PPSRs, we use the multi-year (2018–2021) 1XCH4
of the analyzed anomaly dataset. Figure 6c shows the mask
created by assigning the toseeds to the seeds. It can be seen
that the spatial extent of the source regions is now better de-
scribed by the masks and that grid cells connecting the sepa-
rate source regions are added. But some of the toseeds have
a low multi-year1XCH4 mean compared to the seeds. Here,
we only want to consider toseeds that have comparable high
multi-year 1XCH4 as part of the source region and remove
added toseeds with 1XCH4 smaller than 25% of the maxi-
mum 1XCH4 of the seeds. In the end, we obtain the refined
PPSR masks, which now describe the spatial extent of the
source regions better (Fig. 6d). We emphasize that the exam-
ple shown in Fig. 6, in which two PPSRs are first merged and
then separated, does not appear often. We only used it to il-
lustrate all the steps of the refinement process for one region.
Due to the refinement, the number of final PPSRs can differ
from the number of PPSRs detected in Sect. 3.3.2. On the
one hand, multiple PPSRs can be combined into one PPSR
by adding new grid cells to the masks. On the other hand, a
PPSR can be split into multiple PPSRs by removing grid cells
with 2018–2021 1XCH4 means that are too low. We apply
the refinement to each of the five global maps containing the
detected PPSRs (Sect. 3.3.2).

3.3.4 Filtering of potential false positives

Much effort was made to minimize systematic biases when
generating the WFMD v1.8 XCH4 data product (Schneising
et al., 2023). However, it is not guaranteed that the WFMD
v1.8 product is entirely unbiased. This means that despite
the good quality of the product, it is not certain that every in-
dividual XCH4 enhancement has its origin in a real methane
source. For example, localized XCH4 enhancements could be
caused by scenes with inhomogeneous albedo (e.g., coastal
regions, lakes and rivers) and complex topography. To take
this into account, the PPSRs are filtered for surface fea-
tures that could potentially lead to a false positive detection.
We use a conservative approach and prefer to accept false
negatives rather than false positives. We decide whether a
PPSR has challenging surface features based on the follow-
ing properties: the correlation between SWIR surface albedo
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Figure 6. Illustration of the process to refine PPSR masks. (a) Multi-year (2018–2021)1XCH4. In each grid cell, the fraction Fenh is shown,
which is calculated for the 3× 3 area of the respective grid cell (see Sect. 3.3.2). Grid cells that do not contain a fraction do not fulfill any of
the persistence conditions from Eq. (3). The detected PPSRs (black-outlined) are the result of the detection process described in Sect. 3.3.2.
Some grid cells with Fenh < 0.5 and a high multi-year 1XCH4 mean would be assigned by eye as part of the source region. To add them to
the masks we use the following steps. (b) First, we mark all toseeds (shown in green, definition in Sect. 3.3.3). The seeds are shown in yellow.
(c) The toseeds are assigned to the seeds using a random walker algorithm. (d) In the final step, the grid cells with a multi-year 1XCH4
mean less than 25% of the maximum multi-year 1XCH4 mean within the mask are removed from the mask. The final masks describe the
refined PPSRs.

and XCH4, the standard deviation of the surface elevation
within the PPSR mask, the frequency of months in which the
largest XCH4 enhancements occur in or adjacent to grid cells
with high surface roughness, the fraction of coastal grid cells
in the PPSR mask, and the frequency of months in which the
largest XCH4 enhancements occur over or next to water grid
cells. If a PPSR is identified by one of these criteria, then
it is filtered and not considered further. Excluded from this
are PPSRs in which very strong XCH4 enhancements occur.
By this, we ensure that important source regions are not ex-
cluded due to their surface features. As we focus in this study
on source regions that contribute significantly to the global
methane budget, we filter out PPSRs with weak XCH4 en-

hancements. Additionally, we filter out PPSRs that occur in
the Bodélé Depression in Chad. This is a region where strong
dust storms occur on average 100 d yr−1, always directed to-
wards the southwest and with a plume-like structure. Anal-
yses of the WFMD data product have shown that these spe-
cial conditions, which only occur in this region, can lead to
false-positive detections. We apply the filtering to each de-
tected PPSR of each anomaly dataset to obtain five global
maps comprising the refined and filtered PPSR masks.
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3.4 Combination of PPSRs from different anomaly
datasets

We used five different HPFA(n) for the calculation of the
1XCH4 maps to detect source regions of various sizes (see
Sect. 3.2). As a result, we identified different PPSRs in each
anomaly dataset. To consider all PPSRs collectively, we com-
bine them into one global map. For this, we must take into ac-
count the fact that the same source region can be detected in
multiple anomaly datasets and is thus described by more than
one mask. In such a case, we merge all detected masks of the
PPSR into one new mask. An example of the combination
process is illustrated in Fig. 7. Here we show the well-known
source regions in South Sudan (see Sect. 3.2), which we de-
tect in the HPFA(4°) and HPFA(5°) anomaly datasets, and
the combined masks of the individual source regions. Finally,
we obtain one global map, in which each detected source re-
gion is described by one mask. The masks of some PPSRs
are shown in Fig. 8, including some well-known source re-
gions such as the oil and gas fields in the Permian Basin in the
USA (Schneising et al., 2020; Zhang et al., 2020; Varon et al.,
2023; Veefkind et al., 2023), the natural gas fields Galkynysh
and Dauletabad in Turkmenistan (Schneising et al., 2020),
and the coal mining area in the Bowen Basin in Queensland
in Australia (Sadavarte et al., 2021).

3.5 Emission estimation

To compute emission estimates for each of the detected PP-
SRs, we apply the fast data-driven method of Buchwitz et al.
(2017). This method is designed to calculate averaged long-
term emission estimates from time-averaged XCH4 maps. It
uses a conversion factor to convert an XCH4 enhancement
over a source region into an emission estimate. This implies
the assumption that emissions from an isolated source re-
sult in an XCH4 enhancement, δXCH4, over the source re-
gion compared to the surrounding region. To determine the
monthly emission estimate, E (Mt yr−1), of a PPSR, we ap-
ply the method to the monthly averaged XCH4 maps using
the following equation:

E = δXCH4 ·M ·Mexp ·L ·V · 2. (4)

The δXCH4 (ppb) describes the XCH4 enhancement of the
PPSR and is calculated by computing the difference in the
mean XCH4 over the source region from the mean XCH4
over the surrounding region. The surrounding region is de-
fined as described in Fig. 9. We only consider the grid cells
in the surrounding region that are not part of other PP-
SRs in the surrounding region. We estimate the emissions
only if the PPSR as well as the surrounding region are each
filled with at least 25% data. To convert the mole fraction
change in δXCH4 over the source region into a methane
mass change per area, M and Mexp are used. M (5.345×
10−9 MtCH4 km−2 ppb−1) is the methane mixing ratio en-
hancement to mass enhancement conversion factor for stan-

dard conditions, i.e., for a surface pressure of 1013.25hPa.
Since the actual mass change Mi of the ith grid cell depends
on the surface pressure pi (hPa) of the grid cell, Buchwitz
et al. (2017) additionally used the dimensionless conversion
factor Mexp, which is defined as

Mexp =
<Mi >

M
≈
< pi >

1013.25
≈< e−zi/H >, (5)

with surface elevation zi (km) of the ith grid cell, the scale
height H (8.5km) and <> denoting the mean over all grid
cells of the source region. L (km) in Eq. (4) is the effective
length of the source region, which we calculate as the square
root of the PPSR size. V (kmyr−1) is the wind speed from
Sect. 2.2 averaged over the source region. The reason for
adding factor 2 is described in detail in Buchwitz et al. (2017)
but is briefly explained in the following. When an air parcel
travels with constant wind speed across the source region,
it accumulates methane, which results in an XCH4 enhance-
ment when it exits the source region (δXCH4,exit). However,
δXCH4 from Eq. (4) describes the mean XCH4 enhancement
over the source region and not δXCH4,exit. Assuming a linear
XCH4 increase while traveling across the source region (see
Fig. 3 in Buchwitz et al., 2017), these two enhancements are
linked via δXCH4 = 0.5 · δXCH4,exit. Therefore, the δXCH4
has to be multiplied by 2 to describe the XCH4 enhancement
of the air parcel that results from the emission of the source
region.

We calculate the 1σ uncertainty in the monthly emission
estimate E, uE , by computing the sum of the squared un-
certainties in the XCH4 enhancement, uδXCH4 , and the wind
speed, uv , with respect to their mean values via(uE
E

)2
=

(
uδXCH4

δXCH4

)2

+

(uv
V

)2
. (6)

We calculate uδXCH4 by varying the size of the surround-
ing region and calculating the standard deviation of the re-
sulting δXCH4 enhancements. We vary the region by adding
to the northernmost, southernmost, westernmost and eastern-
most coordinates of the surrounding region all possible com-
binations of 0 and 2×Lsurr, where Lsurr is the length used to
define the surrounding region (see Fig. 9). The square of the
uncertainty in the wind is the sum of the squared standard de-
viation of the monthly wind speeds within the source region
and the squared mean of the standard deviations of the wind
speeds within the months for each grid cell.

We calculate the averaged long-term emission estimate E
of a PPSR by averaging all monthly emission estimates for
the period 2018–2021. For the corresponding uncertainty in
the long-term emission estimate we use error propagation by
computing the ratio of the root of the sum of the squared
monthly uncertainties uE and the effective number of months
neff contributing to the mean estimate,

uE =

√∑
ju

2
E,j

neff
. (7)
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Figure 7. Example of PPSRs detected in two different anomaly datasets. (a) Multi-year (2018–2021) 1XCH4 of the South Sudan region
calculated with an HPFA of 4°× 4°. The detected PPSRs (outlined in black) have already been filtered (see Sect. 3.3.4). (b) Same as (a)
but for an HPFA of 5°× 5°. (c) Corresponding 2018–2021 XCH4. The final PPSR masks of the combined masks from different anomaly
datasets.

With neff, we consider the correlation between the monthly
emission estimates. neff equal to 1 means that all emission
estimates are correlated, and neff equal to the total number
of emission estimates means that all emission estimates are
uncorrelated. We choose neff with the assumption that the
blocks of quarter-yearly emission estimates are uncorrelated.
neff is therefore the number of quarter-yearly data blocks in
which at least one emission estimate contributes to the mean.

3.6 Assignment to source type

To determine the dominant methane source type in the de-
tected PPSRs, we compare sector-specific emissions from
different emission databases. We distinguish between the
source types coal, oil and gas, other anthropogenic sources,
wetlands, and unknown (see Table 1). We use the emission
data regarding coal and oil and gas from EDGAR v6.0 2018
and GFEI v2.0 2019 (Sect. 2.4). To determine the emissions
originating from other anthropogenic sources, we use anthro-
pogenic methane emissions from all sectors, excluding fos-
sil fuel from EDGAR v6.0 2018. For wetland emissions, we
use the ensemble of WetCHARTs v1.3.1 for 2019 (Sect. 2.4).
We assign the source type with the highest emissions as the
dominant source type of the corresponding PPSR. For this,
we sum up the emissions in the PPSR for each source type
using an expanded PPSR mask, which includes the directly
adjacent outer grid cells to account for variations in the lo-
cations of the sources in the databases. We assign the type
unknown to a PPSR if the total emissions in the respec-
tive PPSR mask are less than 50ktyr−1 for all three emis-
sion databases. It should be noted that no uncertainties are
specified in the databases used, which means that the uncer-
tainties cannot be considered in the source type assignment.
Therefore, we have only taken into account possible uncer-
tainties in the databases in the sense of underestimation of

emissions, by setting the threshold value to be exceeded for
source type assignment (50ktyr−1) to be significantly lower
than the lowest mean emissions estimate of 2018–2021 de-
tected by us (120ktyr−1). With 50ktyr−1, however, we also
ensure that the databases have a certain minimum emission
level when assigning a PPSR to a source type.

4 Results

In this section, we present the results of the PHD algorithm,
which we use to detect potential persistent source regions
(PPSRs). We provide a global overview of the detected PP-
SRs by describing the distribution of the PPSRs among the
different source types: coal, oil and gas, other anthropogenic
sources, and wetlands, as well as a rough total emission es-
timate of all the detected PPSRs (Sect. 4.1). We then ana-
lyze the 10 PPSRs with the highest emission estimates in
more detail (Sect. 4.2). These include the Sudd Wetlands in
South Sudan (Sect. 4.2.1), the west coast of Turkmenistan
(Sect. 4.2.2), the Iberá Wetlands in Argentina (Sect. 4.2.3),
several regions in China (Sect. 4.2.4 and 4.2.5), the city of
Dhaka in Bangladesh and its surrounding area (Sect. 4.2.6),
the Kuznetsk Basin in Russia (Sect. 4.2.7), and the Permian
Basin in the United States (Sect. 4.2.8).

4.1 Global overview

We applied the PHD algorithm as described in Sect. 3 and
detected a total of 217 PPSRs, whose global distribution and
assigned source types are shown in Fig. 10. Based on the
comparison of the emission databases, the fraction of dom-
inant source types is 7.8% coal, 7.8% oil and gas, 30.4%
other anthropogenic sources, 7.3% wetlands, and 46.5% un-
known.
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Figure 8. Final PPSR masks (outlined in red) after the filtering (Sect. 3.3.4) and combining (Sect. 3.4) processes, shown for several regions
of the world. (a) 2018–2021 XCH4 for the southwestern part of the USA and northern Mexico. Some of the PPSRs are located in well-known
oil and gas basins like the Permian, Anadarko, Barnett, Haynesville, Denver and San Joaquin basins. (b) Same as (a) but for Turkmenistan,
parts of Iran, Uzbekistan and Kazakhstan. One of the detected PPSRs includes two of the largest natural-gas fields in the world, Galkynysh
and Dauletabad. (c) Same as (a) but for parts of Queensland in Australia. Two PPSRs located in the Bowen Basin, a well-known coal mining
area, are detected.

Table 1. Dominant source types of PPSRs and the corresponding databases used to estimate the sector-specific emissions.

Source type Database

Coal EDGAR v6.0 2018 coal, GFEI v2.0 2019 coal
Oil and gas EDGAR v6.0 2018 oil and gas, GFEI v2.0 2019 oil and gas
Other anthropogenic EDGAR v6.0 2018 all sectors excluded fossil fuel
Wetland WetCHARTs v1.3.1 2019
Unknown No database shows emissions higher 50ktyr−1 in PPSR
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Figure 9. Illustration of the automated calculation of the surrounding area for a PPSR. (a) 2018–2021 XCH4. The detected and unfiltered
PPSRs in the HPFA(5°) anomaly dataset for the South Sudan region are shown (outlined in red). The surrounding region for the central PPSR
is calculated as follows. First the maximum extents of the PPSR in the meridional (merext) and zonal (zonext) directions are calculated.
(b) Next, a rectangle (black-outlined area) is defined around the PPSR by expanding the northernmost, southernmost, westernmost and
easternmost coordinates by Lsurr, which is half of the mean of merext and zonext. If Lsurr is smaller than 0.5°, we set it to 0.5° to provide a
reasonable size of the surrounding region. (c) In the last step, all grid cells outside the rectangle and all grid cells inside the source region are
removed. The grid cells with XCH4 are defined as the surrounding area of the central PPSR.

Figure 10. All PPSRs detected with the PHD algorithm grouped by the different dominant source types. The sizes of the circles scale with
the emission estimates of the PPSRs for 2018–2021. The 10 PPSRs with the highest emission estimates are indicated by a number.

Some of the detected source regions are well-known coal
production sites, which already have been subject of sev-
eral studies, such as the region of Shanxi in China (Chen
et al., 2022), the Bowen Basin in Queensland in Australia
(Sadavarte et al., 2021) and the Upper Silesia Coal Basin
in Poland (Tu et al., 2022). Other PPSRs related to coal
mining activities include the Kuznetsk Basin in Russia, re-
gions in and around Johannesburg in South Africa, the Ap-
palachian Coal Basin in the United States, and the Ekibas-
tuz Coal Basin in Kazakhstan. We also detect several PP-

SRs located in known oil and gas basins including the Per-
mian (Schneising et al., 2020; Zhang et al., 2020; Varon
et al., 2023; Veefkind et al., 2023), Uintah (de Gouw et al.,
2020), Haynesville (Shen et al., 2022) and Anadarko basins
(Schneising et al., 2020) in the USA, as well as two of the
world’s largest natural-gas fields, Galkynysh and Dauletabad
in Turkmenistan (Schneising et al., 2020). A large num-
ber of the detected PPSRs are assigned to the source type
other anthropogenic sources. These include regions used for
agriculture, such as the Po Valley in Italy, and regions in-
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cluding large cities, such as Dhaka in Bangladesh, Mum-
bai and Delhi in India, Madrid in Spain, Buenos Aires in
Argentina, and Rio de Janeiro in Brazil. The emissions in
these cities can originate from anthropogenic sources of dif-
ferent types. For example, Maasakkers et al. (2022) analyzed
the methane emissions of several cities, including Mum-
bai, Delhi and Buenos Aires, and showed that landfills con-
tribute a large amount to the total emissions of these cities.
In addition to anthropogenic source regions, we also de-
tected PPSRs in wetland regions. These include well-known
methane source regions like the Sudd Wetlands in South Su-
dan (Pandey et al., 2021), the Pantanal Wetlands in Brazil
and the wetlands formed by the Paraná River in Argentina
(Parker et al., 2018). Often, source regions contain multiple
sources of different types, which is not indicated in the global
map of Fig. 10. For example, we identified a source region
at Lake Chad where the emission databases indicate strong
anthropogenic emissions but also strong wetland emissions.
Another example is a source region in the Central Valley
in the USA, which is an oil and gas production site but is
also known for its livestock farming (Buchwitz et al., 2017).
Moreover, 46.5% of the identified PPSRs are not assigned
to any source type. By analyzing these in more detail, we
find that most of them occur in regions with wetlands but in
which WetCHARTs v1.3.1 shows emissions lower than the
threshold of 50ktyr−1, which needs to be exceeded to assign
a PPSR to the corresponding source type (see Sect. 3.6). For
example, we detected four PPSRs in Zambia, which are all
known wetland methane source regions (Shaw et al., 2022),
but only one of them was categorized as the wetland type,
while the others were assigned to the unknown type. We also
detected some unknown PPSRs that are located in fossil fuel
production regions, such as the Cesar–Ranchería Basin in
Colombia or the Surat Basin in Queensland, and some un-
known PPSRs in urban areas, such as in Tulsa (USA) or in
Calgary (Canada). As reported in Foy et al. (2023), the emis-
sions from urban areas are often underestimated in EDGAR,
which may be the reason that these PPSRs could not be as-
signed to the other anthropogenic type.

The sum of the 2018–2021 mean emission estimates of
all detected PPSRs is approximately 150Mtyr−1, of which
13.0% are associated with emissions from the coal source
type, 12.5% from the oil and gas type, 35.4% from the
other anthropogenic type, 11.9% from the wetland type, and
27.2% from the unknown type. We compared our total emis-
sion estimates with the calculated bottom-up methane bud-
get for 2017 from Saunois et al. (2020). The detected PP-
SRs account for 20.1% of the total bottom-up emissions
(747Mtyr−1), for 24.1% of the emissions related to anthro-
pogenic sources (380Mtyr−1) and for 4.9% of the emissions
related to natural sources (367Mtyr−1). An analysis of the
anthropogenic emissions shows that the PPSRs assigned to
fossil fuel account for 28.4% of the total fossil fuel emis-
sions (135Mtyr−1) reported in Saunois et al. (2020), describ-
ing 44.5% of coal-related emissions (44Mtyr−1) and 22.3%

of oil and gas-related emissions (84Mtyr−1). The other an-
thropogenic PPSRs account for 21.8% of the bottom-up
anthropogenic emissions that are not related to fossil fuel
(245Mtyr−1). Compared to Lauvaux et al. (2022) and Schuit
et al. (2023), the emissions of our source regions account
for a larger percentage of the reported anthropogenic emis-
sions. The oil and gas methane ultra-emitters detected by
Lauvaux et al. (2022) account for 8 %–12 % of the oil and gas
emissions reported by national inventories. In Schuit et al.
(2023), anthropogenic super-emitters are detected, account-
ing for 2.7% of the total anthropogenic emissions reported
by Saunois et al. (2020). In addition to the different method-
ology and data product, the higher percentage of emissions
detected in our study can be explained by the focus on per-
sistent methane sources and the additional consideration of
larger-scale source regions rather than only detecting point
sources.

We only detected a fraction of the total global emissions
because we only considered source regions that are localized
and have a persistent enhancement that is above a thresh-
old. In addition, the sources can only be detected if sufficient
TROPOMI measurements are available, which depends, for
example, on the presence of clouds in the region considered.
Thus, emissions from sources that do not meet these criteria,
such as source regions that only show strong emissions in 1
of the 4 years, cannot be detected with this method. For the
calculation of the total emissions, we have to consider that
a few of the detected PPSRs could be false positives, even
though we applied a filter to PPSRs in Sect. 3.3.4. If some of
the PPSRs are false positives, then the calculated total emis-
sions are overestimated.

Figure 11 shows the distribution of the 2018–2021 mean
emission estimates of all detected PPSRs and the correspond-
ing cumulative distribution. The majority of the detected PP-
SRs, 63.6%, have a mean emission estimate between 0.1 and
0.6Mtyr−1. Although the PPSRs with emission estimates
greater than 0.6Mtyr−1 account for only 36.4% of the de-
tected PPSRs, they are responsible for 66.8% of the total de-
tected emission estimates. Most of the PPSRs with a higher
emission estimate than 0.6Mtyr−1 were assigned to a source
type, which indicates that the emission databases also report
enhanced methane emissions in the corresponding regions. In
contrast, 64.5% of the PPSRs with emission estimates below
0.6Mtyr−1 are assigned to the unknown source type, which
accounts for 88.1% of all unknown PPSRs. In general, the
shape of the distribution is in agreement with other stud-
ies describing a heavy-tailed distribution of strongly emit-
ting methane emitters (Frankenberg et al., 2016; Jacob et al.,
2016; Lauvaux et al., 2022; Zavala-Araiza et al., 2015).

For several of the detected PPSRs the emission estimates
show good agreement with the emissions quantified in other
studies. These include, for example, the Upper Silesia Coal
Basin in southern Poland and the Bowen Basin in Queens-
land in Australia. The Upper Silesia Coal Basin in Poland is
one of Europe’s strongest methane emission hotspots due to
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Figure 11. Distribution of the 2018–2021 emission estimates of the
detected PPSRs, as well as the corresponding cumulative distribu-
tion (blue line). The frequency per 0.1Mtyr−1 bin associated with
the distribution of the emission estimates is shown on the left y axis,
and the percentage share of the cumulative emission estimate of the
total emission estimate is shown on the right y axis. In each bin, the
source types of the PPSRs contributing to that bin are shown in the
corresponding colors.

its intense coal mining activities. For the PPSR in this area,
we calculate an emission estimate of 0.59± 0.11Mtyr−1,
which is in good agreement with the emissions calculated
in Tu et al. (2022) of 0.50±0.02Mtyr−1 for the period from
November 2017 to December 2020 and with the emissions
quantified using methane observations conducted from air-
craft measurements in June 2018 during the CoMet (Car-
bon Dioxide and Methane Mission) campaign of 0.44±
0.14Mtyr−1 and 0.48±0.13Mtyr−1 (Fiehn et al., 2020; Fix
et al., 2018). Another well-known methane source region
is the Bowen Basin in Queensland in Australia, which is a
coal mining area. Here we detected two PPSRs for which
the combined emission estimate is 0.63± 0.16Mtyr−1 for
2018–2021, which also agrees well within the uncertainties
with the calculated emissions in Sadavarte et al. (2021) of
0.57± 0.10Mtyr−1 for 2018–2019.

4.2 PPSRs with the highest emission estimates

An overview of the results of the 10 PPSRs with the highest
emission estimates is summarized in Table 2. In the follow-
ing, each PPSR is discussed in detail, including the 2018–
2021 time series for the emission estimates; XCH4 enhance-
ments and mean wind speed; and a comparison of the re-
sults with the emissions from EDGAR v6.0, GFEI v2.0,
WetCHARTs v1.3.1, and related studies.

4.2.1 South Sudan – Sudd Wetland

The PPSR with the highest emission estimate for 2018–2021,
called PPSR 1, is detected in the Sudd in central South Su-
dan, one of the world’s largest wetlands. South Sudan, and in
particular its wetland region, is a well-known methane source
region that has been subject of several studies (Frankenberg
et al., 2011; Hu et al., 2018; Lunt et al., 2019; Pandey et al.,
2021). By comparing the emission databases within PPSR 1
as described in Sect. 3.6, we determine its dominant source
type as wetland, which corresponds to its location in the
Sudd. In Fig. 12 we show an overview of the PPSR 1 results.
Figure 12a shows the 2018–2021 XCH4 of the South Sudan
region, including the detected PPSR 1 mask, as well as one
other identified PPSR in eastern South Sudan. It can be seen
that the XCH4 within PPSR 1 is strongly enhanced compared
to its surroundings. The area outlined in black in Fig. 12a in-
dicates the surrounding region, which is used to calculate the
XCH4 enhancements δXCH4 of PPSR 1 (see Sect. 3.5). The
corresponding time series of the δXCH4 for 2018–2021 is
shown in Fig. 12c. The mean for the entire time period is
12.9± 1.3ppb, and the standard deviation is 10.3ppb. The
δXCH4 shows a seasonal cycle with its peak enhancement at
the end of each year, as well as a strong increase since the
end of 2020. Due to the frequent occurrence of clouds dur-
ing the wet season from April to November, only a few days
with data are available for this period of the year. In Fig. 12b
we show the emission estimates of PPSR 1 for 2018–2021,
which we calculated as described in Sect. 3.5. The mean of
the emission estimates is 4.5± 0.9Mtyr−1, where ± indi-
cates the long-term emission estimate uncertainty calculated
via Eq. (7). By comparing the time series in Fig. 12b–d, it
can be seen that due to the small variations in the mean wind
speed V , the δXCH4 variations determine the temporal varia-
tions in the emission estimates, including the strong increase
since the end of 2020. This strong increase is in good agree-
ment with the finding that tropical wetlands are a major con-
tributor to the strong methane growth rate in 2020 and 2021
(Peng et al., 2022; Lin et al., 2023).

Pandey et al. (2021) estimated the methane emissions of
the entire wetland region in South Sudan, including the Sudd
and other wetlands, to be 8.0±3.2Mtyr−1 for 2018–2019. In
a study from Lunt et al. (2019), emissions of the Sudd region
were estimated using GOSAT XCH4 data, resulting in 5.2–
6.9 Mt yr−1 for 2016. Our estimate is lower compared to the
two results, which can be explained by the smaller source
region of this study. By combining PPSR 1 with the PPSR
that we detected in the east of South Sudan (0.8±0.4Mtyr−1

for 2018–2021), we get a total emission estimate of 5.3±
1.3Mtyr−1, which is in agreement within the uncertainties
of the emissions calculated in Pandey et al. (2021) and Lunt
et al. (2019).

The emissions from the databases WetCHARTs v1.3.1,
EDGAR v6.0 and GFEI v2.0 for the South Sudan region
are shown in Fig. 12e–g. We compute the emissions of the
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Table 2. Summary of the results of the 10 PPSRs with the highest methane emission estimates detected by the PHD algorithm for 2018–2021.
The ± represents the corresponding uncertainty in the long-term emission estimate calculated via Eq. (7).

Source region Lat Long Emissions XCH4 Wind speed Area Source type
(°) (°) (Mtyr−1) (ppb) (ms−1) (×102 km2)

1 South Sudan – Sudd 7.95 30.15 4.5± 0.9 12.9± 1.3 3.9± 0.6 759.9 Wetland
2 Turkmenistan – coast 38.65 53.85 3.5± 0.9 17.5± 1.4 4.3± 1.0 198.3 Oil and gas
3 Argentina – Iberá −27.5 302.95 3.3± 1.0 8.9± 1.9 5.7± 1.3 406.5 Wetland
4 China – Liaoning 41.75 122.95 2.9± 0.9 8.2± 1.6 6.5± 1.4 290.4 Other anthr.
5 China – Shanxi 1 36.05 112.85 2.6± 0.8 25.1± 2.5 5.1± 1.5 80.0 Coal
6 China – Shanxi 2 37.85 113.45 2.6± 0.7 20.6± 1.8 5.9± 1.3 42.9 Coal
7 China – Shanxi 3 37.55 112.15 2.4± 0.7 22.3± 2.5 4.7± 1.2 63.8 Coal
8 Bangladesh – Dhaka 23.55 90.85 2.4± 0.5 21.4± 2.0 2.9± 0.6 137.0 Other anthr.
9 Russia – Kuznetsk Basin 54.25 86.95 2.4± 0.5 17.3± 0.6 4.3± 0.9 112.2 Coal
10 USA – Permian Delaware 31.85 256.35 2.2± 0.6 7.5± 0.6 5.8± 1.5 272.9 Oil and gas

Figure 12. Results for the South Sudan region. (a) The 2018–2021 XCH4 with the detected PPSR masks outlined in red. The 1 indicates that
this region is the PPSR with the highest emission estimate detected by the PHD algorithm for 2018–2021. The black-outlined area defines the
surrounding region used to calculate the XCH4 enhancements δXCH4. (b) Time series (2018–2021) of the emission estimates, E; (c) XCH4
enhancements, δXCH4; and (d) mean wind speed, V. (e) Methane emissions from WetCHARTs v1.3.1 for 2019, (f) from EDGAR v6.0
for 2018 and (g) from GFEI v2.0 for 2019. The emission estimate of the PPSR for 2018–2021 is 4.5± 0.9Mtyr−1, and the corresponding
emissions of the databases in this PPSR are 0.88Mtyr−1 for WetCHARTs, 0.17Mtyr−1 for EDGAR and 0.01Mtyr−1 for GFEI.
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databases in a PPSR by adding all emissions within the ex-
tended mask of the PPSR (see Sect. 3.6), which include
the directly adjacent outer grid cells of the PPSR, to con-
sider possible source location variations in the databases.
WetCHARTs emissions for 2019 in PPSR 1 are 0.88Mtyr−1.
EDGAR emissions for 2018 for PPSR 1, which are mostly
from the agriculture sector, combine to 0.17Mtyr−1 and the
emissions from GFEI for 2019 are 0.01Mtyr−1. It can be
seen that the emissions from the databases show a large dif-
ference from the emission estimates of this study and from
those of Pandey et al. (2021) and Lunt et al. (2019).

4.2.2 Turkmenistan – west coast

The PPSR with the second-highest emission estimate for
2018–2021, called PPSR 2, is detected on the west coast
of Turkmenistan, in the Balkan province that borders the
Caspian Sea. The dominant source type is determined as
oil and gas. The west coast of Turkmenistan is a methane
source region with oil and gas infrastructure over almost
the entire coastal belt, including oil and gas power plants,
compressor stations, and pipelines (Irakulis-Loitxate et al.,
2022). An overview of the results for PPSR 2, as well as
the mask that defines the PPSR, can be seen in Fig. 13. The
mean emission estimate for 2018–2021 is 3.5Mtyr−1 with
an uncertainty of 0.9Mtyr−1 and a standard deviation of
0.6Mtyr−1. All months except January and February 2018
contribute to the emission estimate. The mean of the δXCH4
for the time period is 17.5±1.4ppb and the mean wind speed
4.3± 1.0ms−1, where ± indicates the corresponding uncer-
tainties.

Methane emissions on the west coast of Turkmenistan
have been detected in recent studies (He et al., 2024; Irakulis-
Loitxate et al., 2022; Barré et al., 2021; Schuit et al., 2023;
Varon et al., 2019). In Irakulis-Loitxate et al. (2022), ar-
eas on the west coast were identified as hotspot regions us-
ing TROPOMI, where hyperspectral (ZY1 and PRISMA)
and multispectral (Sentinel-2) satellites detected several lo-
calized emission events in the range of kilotons per year
from January 2017 to November 2020. In Varon et al.
(2019), a methane source was detected at a compressor sta-
tion in Korpezhe, in the middle of the west coast of Turk-
menistan. Using TROPOMI data, the total emissions within
a 12× 12km2 region around this source were calculated to
be 0.45Mtyr−1 (0.19–0.75) for December 2017 to January
2019. The emissions calculated in these studies refer to in-
dividual events or to smaller regions of the west coast and
therefore cannot be directly used for comparison with the
emission estimates calculated in this study but provide an
overview of the magnitude of the emissions.

The spatial distribution of methane emissions from
EDGAR v6.0 for 2018 and GFEI v2.0 for 2019 for the re-
gion considered are shown in Fig. 13e–g. The emissions
from EDGAR of 0.64Mtyr−1 and GFEI of 0.62Mtyr−1 for
the entirety of PPSR 3 are significantly lower than our es-

timate of 3.5± 1.8Mtyr−1. Several studies suggested that
the inventories may underestimate Turkmenistan’s emissions
(Lauvaux et al., 2022; Buchwitz et al., 2017; Shen et al.,
2023). For example, Shen et al. (2023) calculated emissions
of 3.6± 1.3Mtyr−1 related to oil and gas in Turkmenistan
using TROPOMI, which are higher than the emissions re-
ported by GFEI of 1.5Mtyr−1. If we add the mean emission
estimates of all oil- and gas-related PPSRs in Turkmenistan,
we get a total emission estimate of 5.0± 1.4Mtyr−1, which
is in agreement within the uncertainties in Shen et al. (2023).

4.2.3 Argentina – Iberá Wetland

The PPSR with the third-highest emission estimate for 2018–
2021, called PPSR 3, is detected in the region of the border
between northeastern Argentina and southern Paraguay and
is assigned to the wetland type. PPSR 3 is located in the
northern part of the Paraná region, a well-known methane
source region, which extends from the Iberá Wetland in the
north, the second-largest wetland in the world, to the area
where the Paraná River flows into the Atlantic Ocean (Parker
et al., 2018). In Fig. 14 we show an overview of the results
of PPSR 3. The mean emission estimate for 2018–2021 is
3.3± 1.1Mtyr−1 with a standard deviation of 1.3Mtyr−1,
and the mean of the corresponding δXCH4 is 8.9± 1.9ppb.
The emissions show a seasonal cycle, which also can be seen
in the δXCH4 time series and which is in good agreement
with the wet season (Ortega et al., 2022; Parker et al., 2018).
Furthermore, the emission estimates show a slight decrease
from 2020 onward, which agrees with the results in Lin et al.
(2023), where methane emission changes between 2019 and
2021 are analyzed, including the emission changes in the
Paraná region.

WetCHARTs v1.3.1 shows enhanced methane emissions
for the entire Paraná region, especially for Iberá Wetland,
whereas the anthropogenic databases indicate only low emis-
sions (Fig. 14e–g). WetCHARTs emissions for PPSR 3 are
0.64Mtyr−1, which is below our emission estimate. Al-
though the Paraná region is a known methane source region,
until now, no studies have calculated the absolute values of
the emissions from this region that we can use to further as-
sess our emission estimates. For example, in Parker et al.
(2018), XCH4 retrieved from GOSAT observations is used to
analyze how well the methane interannual variability is de-
scribed by model simulations for several regions, including
the Paraná, without reporting explicit emission estimates.

4.2.4 China – Liaoning

The PPSR with the fourth-highest emission estimate for
2018–2021, called PPSR 4, is detected in Liaoning province
in northeast China and is assigned to type other anthro-
pogenic. Liaoning is known for its high agricultural produc-
tion (e.g., rice cultivation and livestock) as well as for its
large heavy industry, including strong coal mining activities.
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Figure 13. As Fig. 12 but for the west coast of Turkmenistan, where the PPSR with the second-highest emission estimate of 3.5±0.9Mtyr−1

for 2018–2021 is detected. The corresponding emissions from the databases in PPSR 2 are 0.0Mtyr−1 for WetCHARTs, 0.64Mtyr−1 for
EDGAR and 0.62Mtyr−1 for GFEI.

The results of PPSR 4 are shown in Fig. 15. The PPSR mask
covers the region of Liaoning province where most of the
rice production takes place and where a majority of the coal
mines are located (Ma et al., 2021; Sheng et al., 2019). The
mean emission estimate is 2.9Mtyr−1 with an uncertainty
of 0.9Mtyr−1 and a standard deviation of 1.0Mtyr−1. The
δXCH4 has a mean of 8.1± 1.6ppb and shows strong vari-
ability over the years with a standard deviation of 2.5ppb,
with the minimum usually in spring. In all months from 2018
to 2021, the PPSR as well as the background region are filled
with sufficient XCH4 values to calculate the δXCH4 and the
emission estimates.

So far, there are only a few studies that have analyzed or
identified methane emissions in the region considered. For
example, two plumes were detected in 2021 by Schuit et al.
(2023), which are located in the PPSR, with one plume as-
signed to the coal source type and one plume assigned to the
landfill type. In Sheng et al. (2019), coal-related emissions
in 2011 for China, including the Liaoning region, were esti-
mated by analyzing reports from over 10 000 coal mines in
China. For Liaoning, the coal-related emissions were calcu-

lated to be 1.04Mtyr−1. The different time periods, as well
as the larger region considered in Sheng et al. (2019), make it
difficult to compare the results with the results of this study.
In Foy et al. (2023) emissions of urban areas were estimated
using TROPOMI data and compared with EDGAR, includ-
ing the Shenyang region in Liaoning, where the emissions
were estimated at 1.6Mtyr−1. If we take into account the
fact that the Shenyang region is smaller than PPSR 5 and
thus some emissions from the surrounding area are not in-
cluded in the estimate, our result is in good agreement with
that of Foy et al. (2023).

It can be seen from Fig. 15e–g that anthropogenic emis-
sions are the dominant source type in this region. Emissions
from EDGAR for PPSR 4 are 1.3Mt in total for 2018, with
large emissions seen in Shenyang, the capital of Liaoning.
Of the 1.3Mt, 52% are from the category of other anthro-
pogenic sources, which is composed of emissions from sev-
eral sectors, such as rice cultivation or landfills. The remain-
ing emissions from EDGAR are related to the fossil fuel
sector, mainly to coal production, which is in the range of
the fossil-fuel-related emissions from GFEI in 2019 for the
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Figure 14. As Fig. 12 but for the Iberá Wetlands in Argentina, where the PPSR with the third-highest emission estimate of 3.3±1.0Mtyr−1

for 2018–2021 is detected. The corresponding emissions from the databases in PPSR 3 are 0.64Mtyr−1 for WetCHARTs, 0.18Mtyr−1 for
EDGAR and 0.0Mtyr−1 for GFEI.

PPSR of 0.49Mtyr−1. The emissions from the databases are
significantly lower than the emissions calculated in this study
of 2.9± 0.9Mtyr−1, which is also reported in Foy et al.
(2023) for their emission estimate of the Shenyang region.

4.2.5 China – Shanxi

The PPSRs with the fifth-, sixth- and seventh-highest emis-
sion estimates for 2018–2021, called PPSRs 5, 6 and 7, are
detected in the Shanxi province in north China. The Shanxi
province is a known methane source region with emissions
resulting primarily from heavy coal mining activity (Peng
et al., 2023). This corresponds to the dominant source type
of the three PPSRs that was determined, which is coal. An
overview of the results of the individual PPSRs is shown in
Fig. 16. Figure 16a shows the 2018–2021 XCH4 for Shanxi
and the surroundings, including the detected PPSR masks,
as well as the corresponding background regions for PP-
SRs 5, 6 and 7. It can be seen that the XCH4 in the PP-
SRs is enhanced compared to the XCH4 in the surrounding
regions. The time series of the δXCH4 for the PPSRs are

shown in Fig. 16c. PPSR 5 has a mean δXCH4 for 2018–
2021 of 25.1±2.5ppb, PPSR 6 of 20.6±1.8ppb and PPSR 7
of 22.3±2.2ppb, which are the highest mean δXCH4 values
of all detected PPSRs. The δXCH4 shows a strong variabil-
ity in all three PPSRs with standard deviations of 10.4ppb
for PPSR 5, 6.5ppb for PPSR 6 and 4.8ppb for PPSR 7. This
variability can also be seen in the emission estimates of the
PPSRs shown in Fig. 16b. The mean emission estimates are
2.6± 0.8Mtyr−1 for PPSR 5, 2.6± 0.7Mtyr−1 for PPSR 6
and 2.4± 0.7Mtyr−1 for PPSR 7, and in all three PPSRs al-
most all months contribute to the corresponding mean emis-
sion estimate.

Methane emissions in Shanxi have already been detected
in several studies. The main focus was on the detection of
individual plumes, which were identified, for example, by
analyzing TROPOMI data as in Schuit et al. (2023) and Lau-
vaux et al. (2022); by data from the Worldview 3 satellite as
in Sánchez-García et al. (2022); or by data from the PRISMA
satellite mission as in Guanter et al. (2021). The detected
transient plumes in these studies are not suitable for com-
parison with our emission estimates, which were evaluated
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Figure 15. As Fig. 12 but for the Liaoning region in China, where the PPSR with the fourth-highest emission estimate of 2.9± 0.9Mtyr−1

for 2018–2021 is detected. The corresponding emissions from the databases in PPSR 4 are 0.0Mtyr−1 for WetCHARTs, 1.3Mtyr−1 for
EDGAR and 0.49Mtyr−1 for GFEI.

for persistent hotspot regions for several years. But this is
the case for the study by Peng et al. (2023) in which the
coal-related methane emissions for the entire Shanxi region
for the years 2019 and 2020 were calculated by inversion of
TROPOMI data. Peng et al. (2023) estimated emissions for
2019 of 8.5± 0.6Mtyr−1 and for 2020 of 8.6± 0.6Mtyr−1.
To compare, we computed the sum of the emissions of all
the detected PPSRs in Shanxi (PPSRs 5, 6, 7 and one other
PPSR with a mean emission estimate of 1.1± 0.3 Mtyr−1

for 2018–2021; see Fig. 16a) and obtained an emission es-
timate of 8.8± 2.4 Mtyr−1 for the period 2018–2021, which
is in agreement within the uncertainties in the results from
Peng et al. (2023). Moreover, by considering the emission
estimates for 2019 and 2020, we obtained 8.5± 2.1 Mtyr−1

for 2019 and 8.7± 1.8Mtyr−1 for 2020 for the combined
PPSRs in Shanxi. In Peng et al. (2023), the entire Shanxi
region is considered, while we only focused on parts of the
region. However, if we assume that our identified hotspots in
the Shanxi region contain the majority of methane emissions,
the comparison of the two results is reasonable.

Figure 16e–g shows the methane emissions of
WetCHARTs v1.3.1, EDGAR v6.0 and GFEI v2.0 for
Shanxi and the surrounding area. It can be seen that the
region is dominated by anthropogenic emissions. The
emissions for 2018 from EDGAR are mainly related to coal
production and are 1.2Mtyr−1 for PPSR 5, 2.8Mtyr−1 for
PPSR 6 and 1.2Mtyr−1 for PPSR 7 in the corresponding
extended PPSR masks. In total, the EDGAR emissions of
all PPSRs in Shanxi combine to 5.2Mtyr−1, which is below
our emission estimate of 8.8± 2.4Mtyr−1 for 2018–2021.
The emissions from GFEI for 2019 are mostly related to the
coal sector and are concentrated in a few hotspots, which
correlate with the locations of the detected PPSRs. For PPSR
5, the GFEI emissions are 1.5Mtyr−1, 2.5Mtyr−1 for PPSR
6 and 1.9Mtyr−1 for PPSR 7. The total GFEI emissions
of the PPSRs considered are 5.9Mtyr−1, which is slightly
higher than the emissions reported by EDGAR but lower
than the emission estimates of this study and the study by
Peng et al. (2023).
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Figure 16. As Fig. 12 but for the Shanxi region in China, where the PPSRs with the fifth- (2.6± 0.8Mtyr−1), sixth- (2.6± 0.7Mtyr−1)
and seventh-highest (2.4± 0.7Mtyr−1) emission estimates for 2018–2021 are detected. The corresponding emissions of the databases in
PPSRs 5, 6 and 7 are 0Mtyr−1 for WetCHARTs; 1.2Mtyr−1 (PPSR 5), 2.8Mtyr−1 (PPSr 6), and 1.2Mtyr−1 (PPSR 7) for EDGAR; and
1.5 Mtyr−1 (PPSR 5), 2.5Mtyr−1 (PPSR 6), and 1.9Mtyr−1 (PPSR 7) for GFEI.

4.2.6 Bangladesh – Dhaka and surrounding area

The PPSR with the eighth-highest emission estimate for
2018–2021, called PPSR 8, is detected in a region encom-
passing Dhaka, the capital of Bangladesh, which is one of
the most populated cities in the world. The dominant source
type is determined to be other anthropogenic sources. Dhaka
and the surrounding area are a known methane source re-
gion with the main sources being agricultural production
(rice, livestock) and waste management (wastewater, land-
fills) but also with contributions from wetlands (Foy et al.,
2023; Toha and Rahman, 2023). The results for PPSR 8 are
shown in Fig. 17. The 2018–2021 XCH4 shows a strong en-
hancement in the PPSR, especially in and around Dhaka,
compared to the XCH4 of the surrounding area (see Fig. 17a).
The δXCH4 values for 2018–2021 are shown in Fig. 17c, av-
eraging to a mean of 21.4± 2.0ppb, which is in the range
of the enhancements of the PPSRs in the Shanxi region.
For the years considered, no XCH4 is present for the period
from March/April to October/November due to the monsoon
season and the resulting frequent high cloud coverage. Fig-

ure 17b shows the emission estimates for 2018–2021 with
a mean of 2.4± 0.5Mtyr−1 and increasing values from Oc-
tober/November until April/May of the following year. This
period is also one of two phases in which the rice is cul-
tivated in Bangladesh. The first phase is in summer, which
starts around June and ends in October with the harvest. The
second phase is during the winter from November to April,
when the fields are artificially irrigated (Rahman et al., 2023).

Methane emissions in Dhaka have already been detected
and quantified in several studies (Foy et al., 2023; Schuit
et al., 2023). Schuit et al. (2023) used TROPOMI data
to detect plumes worldwide and detected as many plumes
as in any other urban area in Dhaka. The emissions from
Dhaka are calculated in Foy et al. (2023) using TROPOMI
data and a two-dimensional plume model, resulting in emis-
sions of 1.3Mtyr−1, which is lower than our estimate of
2.4± 0.5Mtyr−1. It must be taken into account that our re-
gion is larger than that of Foy et al. (2023) and can therefore
include emissions from other cities in the surrounding area,
as well as wetland emissions from the Ganges delta.
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Figure 17e–g shows the emissions from WetCHARTs
v1.3.1, Edgar v6.0 and GFEI v2.0 for the Dhaka region. For
WetCHARTs, the emissions in the PPSR amount to 0.13Mt
for 2019; for EDGAR, 0.92Mt for 2018; and for GFEI,
0.02Mt for 2019. The emissions from EDGAR are mainly
from the agricultural sector, with 0.38Mtyr−1 from rice pro-
duction and 0.15Mtyr−1 from enteric fermentation, and are
lower than our calculated emission estimate. In Foy et al.
(2023), the calculated emissions were also higher compared
to EDGAR. They concluded that part of the difference be-
tween EDGAR and their emission estimate is due to the fact
that untreated wastewater is not taken into account, which
can be a major factor, especially in very densely populated
cities such as Dhaka.

4.2.7 Russia – Kuznetsk Basin

The PPSR with the ninth-highest emission estimate for
2018–2021, called PPSR 9, is detected in the Kuznetsk Basin
(also called Kuzbass) in southwestern Siberia, Russia. Its
dominant source type is determined to be coal, which co-
incides with the fact that Kuzbass is one of the largest coal
production areas worldwide (Labzovskii et al., 2022). Fig-
ure 18 shows an overview of the results for PPSR 9. In
the 2018–2021 XCH4 map shown in Fig. 18a, a strong en-
hancement can be seen in the entire PPSR mask compared
to the XCH4 of the surrounding area. To quantify the XCH4
enhancements within the PPSR, we computed the monthly
δXCH4 for the time period 2018–2021, which is on aver-
age 17.3± 0.6ppb with a standard deviation of 6.6ppb. The
mean emission estimate is 2.4Mtyr−1 with an uncertainty of
0.5Mtyr−1, which is computed from emission estimates of
30 months (Fig. 18b).

Even though the Kuzbass is one of the largest coal produc-
tion areas worldwide, there is still a need for studies reporting
methane emissions from this region. In Schuit et al. (2023),
methane plumes are detected in this region but not discussed
in more detail. Due to the limited number of studies, we only
compare our emission estimate with the emissions from the
databases, which are shown in Fig. 18e–g for the region con-
sidered. It can be seen that the emissions from the databases
are dominated by anthropogenic activity and that the emis-
sion hotspots reported by EDGAR and GFEI show a high
spatial correlation. EDGAR reports emissions of 1.6Mt for
2018 and GFEI of 1.4Mt for 2019, in which the emissions
from both databases are mainly related to the coal sector.
Compared to the emission estimate of this study, the emis-
sions from EDGAR and GFEI are lower but still within the
uncertainty range.

4.2.8 USA – Permian Basin

The PPSR with the 10th-highest emission estimate for 2018–
2021, called PPSR 10, is detected in the Permian Basin in the
USA and is assigned to the source type oil and gas. The Per-

mian Basin is the most prolific oil field in the USA and is
also a high-producing natural gas region, which is located in
western Texas and eastern New Mexico. The Permian Basin
consists of several sub-basins, including the Delaware Basin
in the west and the Midland Basin in the east, where mostly
non-conventional exploitation techniques, such as hydraulic
fracturing, are used. An overview of the results for PPSR 10
are shown in Fig. 19. It can be seen that we detect two re-
gions in the Permian Basin: PPSR 10 in the Delaware Basin
and a PPSR in the Midland Basin, which shows the 13th-
strongest emission estimate. Since the literature often refers
to the emissions of the entire Permian Basin, we analyze
these two PPSRs together. The monthly emission estimates
for 2018–2021 are shown in Fig. 19b. The mean emission es-
timate for PPSR 10 is 2.2±0.6Mtyr−1 and 2.0±0.5Mtyr−1

for PPSR 13, which leads to a combined mean emission es-
timate of 4.1± 1.1Mtyr−1 for 2018–2021 (taking into ac-
count the second decimal place). The δXCH4 time series for
2018–2021 for PPSRs 10 and 13 can be seen in Fig. 19c. The
mean δXCH4 enhancement for PPSR 10 is 7.5±0.6ppb with
a standard deviation of 3.3ppb and 7.2±0.6ppb for PPSR 13
with a standard deviation of 1.7ppb.

Methane emissions from the Permian basins have already
been quantified in several studies (Schneising et al., 2020;
Shen et al., 2022; Varon et al., 2023; Veefkind et al., 2023;
Zhang et al., 2020). In the studies by Schneising et al. (2020)
and Veefkind et al. (2023), emissions were calculated based
on the TROPOMI/WFMD XCH4 data product. Schneising
et al. (2020) used a Gaussian integral method and esti-
mated emissions of 3.2± 1.1Mtyr−1 for the period 2018-
2019, whereas Veefkind et al. (2023) calculated emissions of
3.0± 0.7Mtyr−1 for 2019 using a divergence method. The
emissions reported in the studies by Zhang et al. (2020),
Shen et al. (2022) and Varon et al. (2023) are based on
the operational TROPOMI data product and different inver-
sion frameworks. Zhang et al. (2020) calculated emissions of
2.9± 0.5Mtyr−1 for the period from May 2018 to March
2019, whereas Shen et al. (2022) estimated emissions of
2.9± 0.4Mtyr−1 for the period from May 2018 to Febru-
ary 2020 and of 3.7± 0.5Mtyr−1 for the same period but
with an adjusted prior. In Varon et al. (2023), the period from
May 2018 to October 2020 is considered and mean emis-
sions of 3.7± 0.9Mtyr−1 are reported, which is higher than
the previous emission estimates. The emission estimate of
4.1± 1.1Mtyr−1 for 2018–2021 calculated in this study is
slightly higher than the emissions of the other studies pre-
sented but agrees within the uncertainties.

The emissions from EDGAR v6.0, GFEI v2.0 and
WetCHARTs v1.3 are shown in Fig. 19e–g. For EDGAR,
the emissions within the extended PPSR mask (see Sect. 3.6)
are 1.2Mtyr−1 and 0.2Mtyr−1 for GFEI and relate to the oil
and gas sector. The emissions of both databases are signif-
icantly lower than the emission estimates of this study and
the other studies mentioned above. The emissions of these
two databases also differ from one another.
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Figure 17. As Fig. 12 but for the region in and around Dhaka in Bangladesh, where the PPSR with the eighth-highest emission estimate of
2.4±0.5Mtyr−1 for 2018–2021 is detected. The corresponding emissions from the databases in PPSR 8 are 0.13Mtyr−1 for WetCHARTs,
0.92 Mtyr−1 for EDGAR and 0.02Mtyr−1 for GFEI.

5 Conclusions

We developed an automated algorithm that uses TROPOMI
XCH4 data to identify potential persistent methane source
regions (PPSRs), to estimate their emissions and to assign
a source type to them. We applied the algorithm to a dataset
comprising monthly averaged XCH4 maps at 0.1°×0.1° spa-
tial resolution from 2018 to 2021, which we generated by
gridding the TROPOMI/WFMD v1.8 data product. The de-
tection process involves two key steps: (i) the generation of
monthly methane anomaly maps (1XCH4), which indicate
how high or low a local XCH4 value is compared to the me-
dian of the surrounding XCH4 and (ii) the analysis of these
anomaly maps. In the latter, we characterized each region by
several quantities, such as the number of months in which the
region shows enhanced anomalies, to then identify regions
with a persistent enhancement by defining threshold values
for the corresponding quantities. The algorithm is designed
in a way that the thresholds can be adjusted depending on the
focus of the source regions to be detected. For the automated
emission estimates of the individual PPSRs, we used a fast

data-driven mass balance method, which is designed to cal-
culate emission estimates from time-averaged XCH4 maps.
For more precise emission estimates, we recommend con-
ducting more detailed analyses based on daily data. To deter-
mine the dominant source types of the PPSRs, we compared
the emissions from several databases (WetCHARTs v1.3.1,
EDGAR v6.0 and GFEI v2.0) within the PPSR masks.

We detected a total of 217 PPSRs, of which 17 are as-
signed to the dominant source type coal, 17 are assigned
to the type oil and gas, 66 to the source type other anthro-
pogenic sources, 16 to the wetland type and 101 are assigned
to the unknown source type. We showed that TROPOMI data
can be used to detect a variety of well-known methane source
regions such as large oil and gas fields in Turkmenistan and
the USA but also small-scale source regions like coal mines
in Queensland in Australia. The emission estimates of all
detected PPSRs amount to about 150Mtyr−1, which corre-
sponds to approximately 20% of the bottom-up emissions re-
ported in Saunois et al. (2020). We found that the majority of
emissions (35.4%) are associated with PPSRs dominated by
other anthropogenic sources, followed by PPSRs of unknown
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Figure 18. As Fig. 12 but for the Kuznetsk Basin in Russia, where the PPSR with the ninth-highest emission estimate of 2.4± 0.5Mtyr−1

for 2018–2021 is detected. The corresponding emissions from the databases in PPSR 9 are 0.0Mtyr−1 for WetCHARTs, 1.6Mtyr−1 for
EDGAR and 1.4Mtyr−1 for GFEI.

type (27.2%), coal type (13.0%), oil and gas type (12.5%)
and wetland type (11.9%). The coal-dominated source re-
gions describe almost half (44.5%) of global coal emis-
sions of Saunois et al. (2020), while those from oil and gas
(22.3%), as well as other anthropogenic sources (21.8%),
also account for a large share of their sectors’ emissions.
This demonstrates that a comparatively small number of
high-emitting source regions contribute a large proportion to
the global methane emissions, underlining the importance of
their detection and quantification for improving the under-
standing of the global methane emissions. The detected wet-
land regions account for 4.9% of the total natural emissions
reported in Saunois et al. (2020). However, we note that in
some known wetland areas, such as Lake Chad or the Inner
Niger Delta (Mali), strongly emitting PPSRs were detected
but were assigned to other source types due to the compara-
tively lower emissions in the wetland database. In addition,
a more detailed analysis showed that many of the PPSRs
with the unknown source type are wetland regions. In total,
46.5% of the PPSRs show emissions of less than 50ktyr−1

in the emission databases and were thus labeled as source re-
gions with an unknown source type. The emission estimates

of the unknown PPSRs range from 0.12–1.2 Mt yr−1, indi-
cating that in these regions the emission estimates of this
study and the emissions in the databases have large differ-
ences. Some of the unknown PPSRs have been identified as
methane sources in other studies, such as the PPSRs we de-
tected in the Surat Basin in Australia or in the wetland re-
gion in Zambia. We found differences between the emissions
of the databases and our emission estimates not only for the
PPSRs with an unknown source type but also for some of
the PPSRs with the 10 highest mean emission estimates for
2018–2021. These regions are located in the Sudd Wetlands
in South Sudan; on the west coast of Turkmenistan, which is
an area dominated by oil and gas infrastructure; in the Iberá
wetland in Argentina; in the Liaoning and Shanxi provinces
in China, which are known rice- and coal-production areas;
in the city of Dhaka and its surroundings in Bangladesh; in
the Kuznetsk Basin in Russia, one of the largest coal produc-
tion areas in the world; and in the Permian Basin, a large oil
and gas field in the United States. For many of these PPSRs,
the emission estimates are in agreement within the uncertain-
ties in emission estimates from other studies. In the emission
databases, these PPSRs are also shown as methane hotspots,
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Figure 19. As Fig. 12 but for the Permian Basin in the USA, where the PPSRs with the 10th- and 13th-highest emission estimates for 2018–
2021 are detected. The corresponding emissions from the databases in PPSRs 10 (blue, 2.2±0.6Mtyr−1) and 13 (red, 2.0±0.5Mtyr−1) are
0.0 Mtyr−1 for WetCHARTs, 1.2Mtyr−1 (PPSR 10) and 0.59Mtyr−1 (PPSR 13) for EDGAR, and 0.21Mtyr−1 (PPSR 10) and 0.14Mtyr−1

(PPSR 13) for GFEI.

but their emissions are significantly lower compared to our
emission estimates. Further studies are needed to analyze the
differences between the emissions of the databases and emis-
sion estimates in this and other studies in more detail. Fur-
thermore, we cannot exclude the possibility that some of the
detected PPSRs may be false positives. To improve the filter-
ing of potential false positives, additional parameters, such as
the aerosol optical thickness, could be considered in the anal-
ysis. Since the distinction between true- and false-positive
detection is not trivial in many cases, it often requires de-
tailed analyses. For example, in Schuit et al. (2023), as well
as in Lauvaux et al. (2022), human observers subsequently
verify each detected plume. Such an approach was omitted
in this work in order to provide a fully automated algorithm.

Each of the detected PPSRs is a potential source region
that needs to be examined in more detail, for example using
a similar analysis as was conducted for the PPSRs with the 10
highest emission estimates. Furthermore, an additional anal-
ysis of the daily data can provide new insights into the char-
acteristics of the regions. This includes the potential to use

other methods for the calculation of the emission estimates
(e.g., a Gaussian integral method) or to perform detailed
analyses to classify the PPSRs in terms of false-positive de-
tection. For example, preliminary analyses of PPSRs 165 and
217 in Germany have shown that their emission estimates
of 0.29± 0.07Mtyr−1 (PPSR 165) and 0.12± 0.03Mtyr−1

(PPSR 217) are likely too high because of potential retrieval
biases and/or accumulation of methane in the coal pits, which
means that the assumptions of the method for calculating
emissions do not match the characteristics of these regions.
Methane retrievals directly over the coal pits are challeng-
ing due to complex and evolving topography and reflectivity
variations.

Moreover, a more detailed comparison between the re-
gions detected in this study and the results of the studies
from Schuit et al. (2023) and Lauvaux et al. (2022), in which
methane hotspots were also detected using TROPOMI data,
is of interest. The studies differ in their focus on the type
of hotspot to be detected. In Schuit et al. (2023) and Lau-
vaux et al. (2022) the focus is on plumes originating from
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point sources, including short-term emissions such as gas
well blowouts, while in this study persistent source regions
are detected, which also include larger-scale source regions
in addition to point sources. Despite these differences, a de-
tailed comparison of these studies offers the opportunity to
optimize the respective detection algorithms. The detection
of known and unknown methane hotspots and the estimation
of their emissions by algorithms such as those described in
this study provide important knowledge about both anthro-
pogenic and natural sources of methane. Their operational
use in the future has the potential to significantly improve
the emission inventories and thus contribute to a better un-
derstanding of the evolving sources of methane in a warming
world.

Appendix A: Impact of parameter Ndays

Figure A1. (a, c, e) 2018–2021 filtered XCH4* calculated from monthly means in which the number of days of TROPOMI measurements
within the month (Ndays) is at least (a) 4 (as Fig. 2b), (c) 8 and (e) 16. (b, d, f) The corresponding number of months contributing to the
multi-year mean.
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