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Abstract. Volatile organic compounds (VOCs) and particulate matter (PM) are major constituents of smog.
Delhi experiences severe smog during the post-monsoon season, but a quantitative understanding of VOCs and
PM sources is still lacking. Here, we conduct a source apportionment study for VOCs and PM using a recent
(2022), high-quality dataset of 111 VOCs, PM2.5, and PM10 in a positive matrix factorization (PMF) model. Con-
trasts between clean monsoon air and polluted post-monsoon air, VOC source fingerprints, and molecular tracers
enabled us to differentiate paddy residue burning from other biomass-burning sources, which had previously
been impossible. Burning of fresh paddy residue, as well as residential heating and waste burning, contributed
the most to observed PM10 levels (25 % and 23 %, respectively) and PM2.5 levels (23 % and 24 %, respectively),
followed by heavy-duty vehicles fuelled by compressed natural gas (CNG), with a PM10 contribution of 15 %
and a PM2.5 contribution of 11 %. For ambient VOCs, ozone formation potential, and secondary-organic-aerosol
(SOA) formation potential, the top sources were petrol four-wheelers (20 %, 25 %, and 30 %, respectively), petrol
two-wheelers (14 %, 12 %, and 20 %, respectively), industrial emissions (12 %, 14 %, and 15 %, respectively),
solid-fuel-based cooking (10 %, 10 %, and 8 %, respectively), and road construction (8 %, 6 %, and 9 %, respec-
tively). Emission inventories tended to overestimate residential biofuel emissions at least by a factor of 2 relative
to the PMF output. The major source of PM pollution was regional biomass burning, while traffic and indus-
tries governed VOC emissions and secondary-pollutant formation. Our novel source apportionment method even
quantitatively resolved similar biomass and fossil fuel sources, offering insights into both VOC and PM sources
affecting extreme pollution events. This approach represents a notable advancement compared to current source
apportionment approaches, and it could be of great relevance for future studies in other polluted cities and regions
of the world with complex source mixtures.
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1 Introduction

The Delhi National Capital Region (NCR) is located in
the Indo-Gangetic Plain and experiences some of the sever-
est air pollution events worldwide, exposing its inhabitants
to hazardous air quality. New Delhi recorded the world’s
highest population-weighted annual average PM2.5 exposure,
amounting to 217.6 µgm−3, and the sixth-highest PM2.5-
attributable death rate (85 out of 100 000 deaths; Pandey
et al., 2021). India is currently among the world’s leading
developing countries, and Delhi, India’s capital, has wit-
nessed rapid population growth and urbanization in the past
decade. However, a significant fraction of the population still
lacks access to cleaner technologies for cooking and heat-
ing (Thakur, 2023; Fadly et al., 2023). With a population of
31.7 million people (UN World Population Prospects, 2022),
Delhi sees an addition of over 600 000 vehicles per year,
based on the VAHAN database from the Ministry of Road
Transport and Highways (MoRTH; Government of India,
2022). Sources of air pollutants in the region have received
much attention recently, and a number of source apportion-
ment methods have been applied. Several studies have relied
on chemical mass balance (CMB) models, which are unable
to identify unknown fugitive sources since their application
depends on prior knowledge of all relevant sources and their
source profiles (Prakash et al., 2021; Srivastava et al., 2008).
Clearly, in a dynamic, developing world megacity like Delhi,
where wide disparities exist in terms of access to clean en-
ergy and waste burning and many other activities continue
to be carried out by the informal sector, the CMB approach
may misattribute emissions to known sources, failing to iden-
tify other major sources that may be active. While much in-
formation has come to light through previous aerosol-mass-
spectrometry-based source apportionment studies, a key lim-
itation of previous studies has been their inability to dis-
tinguish between similar types of fossil fuel and biomass-
burning sources (Kumar et al., 2022; Mishra et al., 2023).
The volatile organic compound (VOC) source fingerprints of
many combustion sources are well constrained and under-
stood, and they have recently been used in positive matrix
factorization (PMF) studies to conduct source apportionment
for co-emitted greenhouse gases, such as methane, CO2, and
N2O (Guha et al., 2015; Assan et al., 2018; Schulze et al.,
2023). We now extend the use of this promising new tech-
nique to the source apportionment of co-emitted PM2.5 and
PM10. This helps us overcome another major limitation of
existing studies, which have often taken a piecemeal ap-
proach by focusing on either VOCs (Jain et al., 2022), partic-
ulate matter (PM), or subsets thereof, using datasets acquired
in 2019 or earlier (i.e. the pre-COVID-19 period), after which
significant changes were implemented. For example, Bharat
Stage VI, which complies with Euro VI norms, was imple-
mented in Delhi in 2018 and in the Delhi NCR in 2019 (Gajb-
hiye et al., 2023). This significant decision was prompted by
the severe air pollution challenges faced by Delhi, which par-

ticularly worsened around 2019 (Gajbhiye et al., 2023). Still,
air pollution continues to pose major health risks. Overall,
a continued lack of strategic knowledge and an inability to
pinpoint the exact sources and their contributions hamper ef-
forts to propose evidence-based strategies for mitigating ma-
jor sources. In our previous studies conducted at another site
in the Indo-Gangetic Plain (Pallavi et al., 2019; Singh et al.,
2023), we demonstrated that source apportionment via PMF,
when combined with measured VOC chemical fingerprints
of sources, can distinguish and quantify the contributions
from even similar types of sources (e.g. differentiating four-
wheelers from two-wheelers and diesel vehicles within traffic
sources and differentiating paddy stubble burning from resi-
dential biofuel combustion within biomass-burning sources).
We improve upon these studies, which were carried out
on datasets acquired using a VOC-based proton-transfer-
reaction mass spectrometer with unity mass resolution, by
incorporating recent data acquired using the latest extended-
volatility-range, high-mass-resolution, and high-sensitivity
PTR-TOF-MS (proton-transfer-reaction time-of-flight mass
spectrometry) technology – PTR-TOF 10k – over Delhi
(Mishra et al., 2024).

The dataset used for source apportionment in this study,
which uses PMF modelling, includes the high-sensitivity
(several ppt), high-mass-resolution (> 10 000) real-time ac-
quisition of 111 speciated volatile organic compounds mea-
sured from 15 August 2022–26 November 2022 using the
PTR-TOF 10k mass spectrometry instrument in Delhi, along
with hourly averaged PM2.5 and PM10 measurements. This
dataset is novel in that it contains all major known gas-
phase molecular tracers from varied sources and VOC pro-
files of major agricultural and urban sources existing across
the Indo-Gangetic Plain. The dataset spans the relatively
cleaner monsoon season, which provides a baseline for air
pollution over the city, and the post-monsoon season, when
post-harvest agricultural paddy residue burning in the Indo-
Gangetic Plain perturbs the atmospheric chemical composi-
tion by providing an additional source of VOC and PM emis-
sions. This comprehensive approach ensured that the PMF
model, which provides the advantage of determining air pol-
lution sources without any prior knowledge of the source fin-
gerprints, was able to reliably quantify the contributions of
different sources to ambient VOC, PM2.5, and PM10 mass
concentrations as its solutions are sensitive to contrasts in
ambient time series data. The statistical solution obtained
using the model was verified against measured real-world
source profiles from the region, presenting a significant ad-
vancement compared to previous PMF source apportionment
studies from the Delhi NCR. Furthermore, by combining
this molecular-tracer-based methodology (and correspond-
ing analyses) with additional back-trajectory and statistical
analyses of air masses, we constrained the locations of ma-
jor pollution sources and regions and compared the results of
our source apportionment study with two widely used grid-
ded emission inventories from chemical transport models:
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the Emissions Database for Global Atmospheric Research
(EDGARv6.1; Crippa et al., 2022) and the Regional Emis-
sion inventory in ASia (REASv3.2.1; Kurokawa and Ohara,
2020).

2 Methodology

2.1 Measurement site and meteorological conditions

The new extended-volatility-range PTR-TOF mass spec-
trometer (PTR-TOF 10k), along with the primary VOC
dataset and site, is described and analysed in detail in the
companion paper to this work (Mishra et al., 2024). Hence,
only a brief description of these aspects and complementary
details, such as the air mass flow trajectories at the site dur-
ing the study period from August to November 2022, are pro-
vided below.

Ambient air was sampled by the instruments from the
rooftop of a tall building (28.5896° N, 77.2210° E) at
∼ 35 m a.g.l., located within the premises of the Indian Me-
teorological Department (IMD) on Lodhi Road, New Delhi,
situated in Central Delhi. The sampling site is a typical urban
area surrounded by green spaces, government offices, and
residential areas, but it is not in the direct vicinity of any ma-
jor industries (Fig. S1 in the Supplement). It is representative
of the seasonal airflow patterns observed in Delhi. Figure 1
shows the location of the site and the 120 h back trajecto-
ries of air masses arriving at the site. These trajectories were
grouped according to the dominant synoptic regional-scale
transport into (a) southwesterly flows (orange and yellow),
carrying emissions from southern Punjab, Haryana, Uttar
Pradesh, Madhya Pradesh, Rajasthan, and Gujarat towards
the receptor; (b) northwesterly flows (light and dark blue),
carrying emissions from Punjab (Pakistan), Punjab (India),
Haryana, western Uttar Pradesh, Himachal Pradesh, and Ut-
tarakhand towards the receptor; and (c) southeasterly flows
(light and dark red), carrying emissions from Haryana, south-
ern Uttarakhand, Uttar Pradesh, Bihar, and Nepal towards the
receptor. Figure 1d shows a Google Earth image with a spa-
tial map illustrating the daily fire counts in the region for
the post-monsoon season and the maximum 24 h fetch re-
gion for each synoptic-flow situation, marked by coloured
squares. Figure 1e shows the photosynthetically active radi-
ation, Fig. 1f shows the daily fire counts in the fetch region
(21–32° N, 72–88° E), Fig. 1g shows the temperature and rel-
ative humidity, and Fig. 1h shows the ventilation coefficient
and sum of daily rainfall during the study period (15 Au-
gust 2022–26 November 2022). Wind speed, wind direc-
tion, ambient temperature, relative humidity, and photosyn-
thetically active radiation were measured using meteorologi-
cal sensors (Campbell Scientific portable sensors equipped
with a CS215 relative humidity and temperature sensor, a
PQS1 PAR sensor, and a TE525-L 40 V rain gauge; Camp-
bell Scientific, Inc.). Boundary layer height was taken from
the ERA5 dataset (Hersbach et al., 2023), and the ventila-

tion coefficient was calculated as the product of measured
wind speed and boundary layer height. Fire counts were ob-
tained using 375 m thermal anomalies and active fire product
data from the Visible Infrared Imaging Radiometer Suite (VI-
IRS) sensor aboard the NASA/NOAA Suomi National Polar-
orbiting Partnership (Suomi NPP) and NOAA-20 satellites,
using high and normal confidence intervals only. The back
trajectories in Fig. 1, showing the 5 d runs, were obtained us-
ing version 5.2.1 of the HYSPLIT desktop application (Stein
et al., 2015; Rolph et al., 2017) with 0.25° resolution Global
Forecast System (GFSv1) meteorological fields employed
as input data. The model was initialized every 3 h (00:00,
03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00 UTC)
at 50 m a.g.l. for the year 2022, and trajectories were sub-
jected to back-trajectory cluster analysis via k-means cluster-
ing (Bow, 1984) with Euclidean distance metrics, employing
the “openair” package (v2.11; Carslaw and Ropkins, 2012).
Three basic air transport situations occur at this site: south-
westerly flow (Fig. 1a), northwesterly flow (Fig. 1b), and
southeasterly flow (Fig. 1c). These regional transport situa-
tions in the shared airshed have been described in great de-
tail for another receptor site, located 300 km north of Delhi
(Pawar et al., 2015). In Delhi, each of these large-scale flow
patterns can occur at three different transport speeds – fast
(darkest colour), medium (intermediate colour), and slow
(lightest colour) – resulting in nine clusters.

During the monsoon season (15 August–30 September
2022), air masses from the southwest (western arm of the
monsoon) were more prevalent than air masses reaching the
site from the southeast (Bay of Bengal arm of the monsoon).
During the post-monsoon season (1 October–26 November
2022), air masses remained confined over the northwestern
Indo-Gangetic Plain (IGP) for prolonged periods and pri-
marily reached the site from the northwest (Fig. 1b), except
during the passage of western disturbances (5–10 October
and 4–10 November 2022), which caused brief periods of
southwesterly and southeasterly flow and rain (Fig. 1h). Fig-
ure 1f shows that paddy residue burning of short-duration va-
rieties began before the monsoon withdrawal on 29 Septem-
ber 2022; however, the burning peaked during the harvest of
late varieties in late October and early November. During this
period, a drop in temperature (Fig. 1g) and increased fire ac-
tivity (Fig. 1f) resulted in the build-up of a persistent haze
layer, leading to suppressed photosynthetically active radia-
tion (Fig. 1e). This is associated with prolonged periods of
poor ventilation (Fig. 1h).

2.2 Measurement of volatile organic compounds, trace
gases, and PM2.5 and PM10 mass concentrations

Measurements of volatile organic compounds were per-
formed using a high-mass-resolution and high-sensitivity
PTR-TOF mass spectrometer (PTR-TOF 10k, model PT10-
004, manufactured by IONICON Analytik GmbH, Austria).
Details pertaining to the characterization, calibration, QA,
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Figure 1. A 120 h back trajectory of air masses reaching the receptor site located at Mausam Bhawan (28.5896° N, 77.2210° E; 50 m a.g.l.)
grouped according to the dominant synoptic-scale transport into (a) southwesterly flow, (b) northwesterly flow, and (c) southeasterly flow.
(d) Spatial map of daily fire counts in the region for the post-monsoon season, with square boxes indicating the fetch regions from which air
masses typically reach the receptor site within 24 h for a given flow situation (© Google Earth). The bottom panels show (e) the photosyn-
thetically active radiation (PAR), (f) the daily fire counts in the fetch region, (g) the temperature and relative humidity, and (h) the ventilation
coefficient and sum of the daily rainfall for the study period.

and QC of the acquired dataset are provided in Mishra et al.,
2024. It is worth mentioning again that, as a significant
improvement over previous PTR-TOF-MS deployments in
Delhi, the inlet system of the instrument used in this work
was designed for sampling and detecting low-volatility com-
pounds with extended-volatility-range technology (Piel et al.,
2021). The inlet system of the instrument and the ioniza-
tion chamber are fully integrated into a heated chamber,
and the inlet capillary is fed through a heated hose to en-
sure that there are no cold spots that could cause conden-
sation. The entire inlet system is made of inert materials
(e.g. polyetheretherketone (PEEK) or SilcoNert-treated steel
capillaries) to minimize the surface effects. Furthermore, the

overall inlet residence time was less than 3 s throughout the
campaign. Compared to previous PTR-TOF-MS instruments
deployed in Delhi, this instrument also offers unprecedented
mass resolution (greater than 10 000 m1m−1 (full width at
half maximum; FWHM) at m/z ≥ 79 amu, reaching up to
15 000 at m/z 330) coupled with a high detection sensitiv-
ity (∼ 1 ppt or better for 60 s averaged data), providing un-
precedented capability for identifying and quantifying new
ambient compounds. Mass spectra were acquired over the
m/z 15–450 amu range at a frequency of 1 Hz. Table S1 in
the Supplement lists information pertaining to the mass-to-
charge ratio (m/z), compound names (Pagonis et al., 2019;
Yáñez-Serrano et al., 2021), sources (supported by refer-
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ences to previous studies where available), averaged ambi-
ent mass concentrations, and the classification of species as
weak or strong for the PMF model runs. The accuracy error
was minimized by conducting a total of eight span calibra-
tions throughout the study period. The details of these cali-
brations can be found in Mishra et al. (2024). The precision
error for each m/z ratio listed in Table S1, which needs to
be included into the PMF model runs, was calculated from
the average observed count rate of each m/z ratio, measured
in counts per second (cps), with the help of Poisson statis-
tics. The detection limit was determined as 2σ of the noise
observed in clean zero air.

Thermo Fisher Scientific trace-level air quality analysers
– i.e. 48i (infrared-filter correlation-based spectroscopy), 43i
(pulsed UV fluorescence), 49i (UV absorption photometry),
and 42i (chemiluminescence) – were used to quantify carbon
monoxide (CO), ozone (O3), NO, and NO2, respectively. The
overall uncertainty in the measurements was less than 6 %.
Measurements of PM2.5 and PM10 were made using the
Thermo Fisher Scientific 5014i series, which is based on
the beta attenuation technique. Technical details pertaining
to the QA and QC of these instruments are comprehensively
described in our previous works (Chandra and Sinha, 2016;
Kumar et al., 2016; Sinha et al., 2014). Carbon dioxide and
methane were measured using a cavity ring-down spectrom-
eter (Picarro G2508; Picarro, Santa Clara, CA, USA). The
overall uncertainty in these measurements was below 4 %,
and technical details pertaining to the instrument are avail-
able in Chandra et al. (2017).

2.3 PMF model analysis

The US Environmental Protection Agency (EPA) PMF 5.0
model (Paatero et al., 2002, 2014; Paatero and Hopke, 2009;
Norris et al., 2014) was applied to a sample matrix consist-
ing of 2496 hourly observations and 111 VOC species. The
species with a signal-to-noise ratio (S/N ) greater than 2.0
were designated as strong species (94), while others were
designated as weak species (17). The total VOC mass was in-
cluded as a weak species and was calculated as the sum of the
mass of the individual 111 VOC species included in the PMF
model. Overall, the 111 VOC species included in our analysis
and their isotopic peaks accounted for 86 % of the VOC mass
detected during our study period. The remaining 119 m/z,
which accounted for 14 % of the detected VOC mass, could
not be included in our PMF analysis, primarily because sig-
nals were below the detection limit for almost 50 % of the ob-
servation period and because compound identity could not be
confirmed via isotopic peaks. PM2.5 and PM10 were included
as additional weak species in the model. The specified uncer-
tainty for weak species is tripled by the PMF model to limit
the influence of such species on the PMF solution. Several
authors have recently pioneered the use of VOC tracers in
PMF models to conduct source apportionment for co-emitted
greenhouse gases, such as methane, CO2, and N2O (Guha

et al., 2015; Assan et al., 2018; Schulze et al., 2023). Since
the VOC source fingerprints of many combustion sources are
well constrained and understood, we now extend the use of
this promising new technique towards the source apportion-
ment of co-emitted PM2.5 and PM10. The PMF model is a
matrix decomposition factor analysis model that decomposes
a time series of measured species into a set of factors with
fixed source fingerprints, whose contributions to the input
dataset vary over time. This makes the model well suited to
accommodate all chemical species co-emitted from the same
source.

EPA PMF 5.0 is a multivariate factor analysis tool and re-
ceptor model that divides the data matrix Xij (time series of
measured concentrations of VOCs with i distinct observa-
tions and j measured species) into two matrices, Fkj (source
fingerprint) and Gik (source contribution), and a residual ma-
trix Eij using the simultaneous application of the linear least-
squares method in multiple dimensions.

Xij =
∑p

k=1
Gik ×Fkj +Eij (1)

The user must provide the number of variables or
sources (k). To determine the number of VOC sources the
model can resolve in this atmospheric environment, the
model was run using 3 to 12 factors. The model was ini-
tiated for 20 base runs with the recommended block size
of 379, and the run with the lowest Qrobust and Qtrue was
chosen for further analysis and is displayed in Fig. 2. Fig-
ure 2 shows how the percentage shares of total VOCs,
PM2.5, and PM10 attributable to various sources change
as the number of factors increases from 3 to 12, while
Figs. S2–S4 illustrate the evolution of the factor contribu-
tion time series, source profile, and percentage of species
accounted for by different sources as the number of fac-
tors in the PMF model increases. Figure S5 shows how the
Qtrue/Qtheoretical and Qrobust/Qtheoretical ratios, as well as
scaled residuals beyond 3 standard deviations, drop exponen-
tially when the number of factors increases. It can be seen
that, initially, the Qtrue/Qtheoretical ratio drops faster than the
Qrobust/Qtheoretical ratio as each additional factor better ac-
counts for additional major plumes. However, with the in-
crease from 11 to 12 factors, both ratios drop in a parallel
fashion, indicating that the point of diminishing returns has
been reached.

While the three major traffic factors – compressed natu-
ral gas (CNG), petrol four-wheelers, and petrol two-wheelers
– are completely resolved with the eight-factor solution,
three major biomass-burning-related sources – namely paddy
residue burning, heating and waste burning, and solid-fuel-
based cooking – are distinguished with a nine-factor solution.
Until the PMF model has identified a distinct factor for emis-
sions of oxygenated volatile organic compounds (OVOCs)
caused by industrial solvent usage and stack venting in the
seven-factor solution, the partitioning between PM2.5 and
PM10 emissions resulting from paddy residue burning and
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Figure 2. Percentage shares of the total VOC, PM10, and PM2.5 mass loadings explained by various factors in the PMF model as the number
of PMF factors in the model increases from 3 to 12. The remaining percentage share, shown in black, indicates the portion of the total mass
attributed to the PMF residuals. Petrol 2W: petrol two-wheeler. Petrol 4W: petrol four-wheeler.

those resulting from heating and waste burning in the model
remains unstable. This is because these sources, with their
strong oxygenated volatile organic compound (OVOC) emis-
sions, are more likely to accommodate additional OVOC
sources in their fingerprint at the expense of accounting for
the PM2.5 and PM10 emissions. Once industrial OVOC emis-
sions have their own factor, this split becomes stable. The
amount of PM attributed to residential heating and waste
burning stabilizes after a separate factor for cooking emis-
sions is identified in the nine-factor solution. Industrial emis-
sions are separated from solvent usage emissions and other
evaporative emissions using the 10-factor solution, and road
construction activity emerges as a separate source with an
11-factor solution. While attempting to resolve 12 factors,
the model splits transport sector emissions into four sepa-
rate factors. However, this new transport sector factor shows
a time series correlation with the petrol four-wheeler fac-
tor (R= 0.8), and the 12-factor solution is found to be ro-
tationally unstable during bootstrap runs, indicating that the
model cannot resolve more than 11 factors with the available
VOC tracers. The 12-factor solution also hardly improves
the Qrobust/Qtheoretical and Qtrue/Qtheoretical ratios (Fig. S5).
Therefore, the 11-factor solution shall be analysed further in
this paper. The model was run in the constrained mode, as
elaborately described in Sarkar et al. (2017) and Singh et al.
(2023). This mode reduces rotational ambiguity with the aid
of prior knowledge, encouraging the model to minimize (pull
down) or maximize (pull up) the total mass assigned to spe-
cific hourly observations or compounds in source profiles as
much as possible within a predefined permissible penalty re-
garding Q. The primary problem with the base run solutions
is that nighttime biomass-burning plumes contaminate both
the biogenic and photochemical factors. To minimize this in
our constrained run, we pulled down primary emissions (ace-
tonitrile, toluene, C8 aromatics, and C9 aromatics) in the
biogenic and photochemical factors. We also pulled down
the top seven strongest nighttime plumes contaminating the
biogenic and photochemical factors. In addition, we pulled
up the highest plume events for all anthropogenic-emission-
related factors, as detailed in Table S2. The overall penalty

with regard to Q (the object function) was 4.9 %, i.e. within
the recommended limit of 5 % (Norris et al., 2014; Rizzo
and Scheff, 2007). The model uncertainty was assessed using
bootstrap runs. The constrained model was found to be rota-
tionally stable and robust, with 100 % of all bootstrap runs
for each individual factor mapping onto the base factor when
R> 0.6 and no unmapped bootstraps remaining.

2.4 Calculation of ozone formation potential (OFP),
secondary-organic-aerosol (SOA) formation, and
volatility

The contribution of VOCs to ozone production was de-
rived with the maximum incremental reactivity (MIR; Carter,
2010) method using the following equation:

OFP=
∑

(ciMIRi), (2)

where ci is the measured concentration of VOC species i
and MIRi is the maximum incremental reactivity of VOC
species i.

SOA production (SOAP) was determined using the follow-
ing equation:

SOAP=
∑

(ciSOAPi). (3)

SOAPi values were calculated using the SOA yields for
environments with high NOx emissions reported in Table S3,
according to the equation by Derwent et al. (1998, 2010)
since Delhi, as a megacity, is an environment exhibiting high
NOx emissions. This equation evaluates each VOC species’
ability to produce SOA relative to the amount of SOA that
the same mass of toluene would produce when introduced to
the ambient environment. This is represented by SOAPi.

The saturation vapour pressure of VOCs was calculated
using version 4.1 of the EPA’s Estimation Programs Inter-
face (EPI) Suite (MPBPWIN v.1.43 and KOAWIN v.1.00),
provided by the US Environmental Protection Agency (US
EPA, 2015), according to the method described in Li et al.
(2016). The vapour pressure of liquids and gases is estimated
using the average of the Antoine method (Lyman et al., 1990)
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and the modified Grain method (Lyman 1985). The vapour
pressure is then converted to saturation mass concentration
C0, measured in µg m−3, using the following equation:

C0 =
M106p0

760RT
, (4)

whereM is the molar mass (gmol−1), R is the ideal gas con-
stant (8.205× 10−5 atmK−1 mol−1 m3), p0 is the saturation
vapour pressure (mmHg), and T is the temperature (K). Or-
ganic compounds with C0 > 3× 106 µgm−3 are classified as
VOCs, while compounds with 300 <C0 < 3× 106 µgm−3

are classified as intermediate VOCs (IVOCs).

2.5 Comparison of existing emission inventories with
PMF-derived output

The observational data were grouped according to the pre-
dominant airflow into three groups: southwesterly flow,
northwesterly flow, and southeasterly flow. The fetch regions
from which air masses could reach the receptor site within
24 h were determined for each group separately. The loca-
tions of the regions for the three flow regimes are as follows:
21–31° N, 72–82° E; 28–32° N, 72–80° E; and 25–30° N,
75–88° E, respectively. Two gridded emission inventories,
namely the Emissions Database for Global Atmospheric Re-
search (EDGARv6.1) for the year 2018 (Crippa et al., 2022)
and the Regional Emission inventory in ASia (REASv3.2.1)
for the year 2015 (Kurokawa and Ohara, 2020), were filtered
based on these three fetch regions to compare the PMF re-
sults with the emission inventory data. We compared the rel-
ative percentage contribution of the sources to the total at-
mospheric pollution burden in the PMF model with the rela-
tive percentage contribution of the sources to the total emis-
sions in the emission inventories. This approach is routinely
used to evaluate emission inventories with the help of PMF
results from different sites around the world (Buzcu-Guven
and Fraser, 2008; Morino et al., 2011; Sarkar et al., 2017; Li
et al., 2019; Qin et al., 2022). For the purpose of comparing
emission inventory data with anthropogenic sources, natural
sources, such as biogenic emissions and the photochemistry
factor, were removed from the PMF output, while the solid-
fuel-based cooking, residential-heating, and waste-burning
emissions were summed up in one single residential and
waste management category. In addition, the CNG, petrol
two-wheeler, and petrol four-wheeler factors were combined
into a consolidated category for transport sector emissions.

3 Results and discussions

3.1 Validation of the PMF output with source fingerprints

Figure 3 shows the source profile for the 11 factors resolved
in our PMF analyses. Out of the 111 VOCs, only those whose
normalized source contribution exceeded 0.1 (when divided

by the most abundant compound in the same source pro-
file for at least one of the sources) were included in the
figure. The source identities of the PMF factors were con-
firmed by matching the PMF factor profiles (measured in
units of µgm−3) with normalized source fingerprints of grab
samples collected from the potential sources. To facilitate the
comparison of emission factors and grab samples from dif-
ferent studies with the PMF output, the source samples were
normalized by dividing each species’ mass (emission factor)
by the mass (emission factor) of the most abundant species
in a given fingerprint. The PMF factor profile best matched
source samples collected from burning paddy fields (R= 0.6;
Kumar et al., 2020) for the paddy-residue-burning factor. The
cooking factor matched emissions from a cow-dung-fired
traditional stove, called an angithi (R= 0.7; Fleming et al.,
2018). The residential-heating and waste-burning factor had
a source fingerprint that matched emissions from leaf lit-
ter burning (R= 0.7; Chaudhary et al., 2022), waste burning
(R= 0.7; Sharma et al., 2022), and cooking on a chulha fired
by a mixture of firewood and cow dung (R= 0.9; Fleming
et al., 2018). The factors identified as CNG (R= 1.0), petrol
four-wheelers (R= 0.9), and petrol two-wheelers (R= 0.6)
matched the tailpipe emissions of the respective vehicle types
and fuels (Hakkim et al., 2021). The petrol four-wheelers
(R= 0.9) and petrol two-wheelers (R= 0.7) also matched
traffic junction grab samples from Delhi (Chandra et al.,
2018). The OVOC source fingerprint of the road construc-
tion factor matched the source fingerprint of asphalt mixture
plants and asphalt paving (R= 0.9; Li et al., 2020), while the
hydrocarbon source fingerprint matched the source finger-
print of diesel-fuelled road construction vehicles (R= 0.6;
Che et al., 2023). The factors identified as solvent usage and
evaporative emissions matched ambient air grab samples col-
lected from an industrial area in Jahangirpuri (R= 0.7) and
a “dhobi ghat” in Akshardham (R= 0.5) in this study. The
factor identified as industrial emissions showed the greatest
similarity to ambient air grab samples from the vicinity of the
Okhla waste-to-energy plant (R= 0.8), Gurugram (R= 0.7),
and the Faridabad industrial area (R= 0.8). The biogenic
factor showed the greatest similarity to leaf-wounding com-
pounds released from Populus tremula (R= 0.8; Portillo-
Estrada et al., 2015) and biogenic volatile organic compound
(BVOC) fluxes from Mangifera indica (R= 0.4; Datta et al.,
2021).

Figure 4 shows the relative contributions of different
sources to the total pollution burden of VOCs, PM2.5, and
PM10 at the receptor site. In the megacity of Delhi, trans-
port sector sources contributed the most (42± 4 %) to the
total VOC burden, while they contributed much less (only
24 %) to the total VOC burden in Mohali, a suburban site
250 km north of Delhi, during the same season (Singh et al.,
2023). On the other hand, the contributions of paddy residue
burning (6± 2 %) and the summed residential-sector emis-
sions (17± 3 % in Delhi and 18 % in Mohali) to the total
VOC burden during post-monsoon season were similar at
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Figure 3. PMF factor profile for the 11 factors identified. The source profile, measured in µgm−3 (shown in red on the left), and the
normalized source fingerprint of the grab samples collected at the source (shown in various colours on the right). The error bars indicate the
2σ uncertainty range from the bootstrap runs for PMF factor profiles and the 1σ error in the mean of the emission factors for the source
samples.

both sites. The contribution of the different factors to SOA
formation potential (Fig. 4e) stands in stark contrast to the
factors’ contribution to primary PM emissions. SOA forma-
tion potential was dominated by the transport sector (54 %),
while direct PM10 (52± 8 %) and PM2.5 (48± 12 %) emis-
sions were dominated by different biomass-burning sources
(Fig. 4b and c). CNG-fuelled vehicles also contributed sig-
nificantly to the PM10 (15± 3 %) and PM2.5 (11± 3 %) bur-
dens. A significant share of the PM10 (18 %) and PM2.5
(28 %) burdens is associated with the residual (Eij in Eq. 1)
and is not directly linked to co-emitted combustion trac-
ers. This share is likely attributed to windblown dust arriv-
ing at the site through long-range transport (Pawar et al.,
2015), to secondary organic aerosols, and to secondary in-
organic aerosols (such as ammonium sulfate and ammonium
nitrate). Due to the complex relationship between secondary
aerosols and gas-phase precursors and emission tracers, VOC

tracers are not suitable for conducting source apportionment
for this aerosol component. Meteorological conditions, along
with homogeneous, heterogeneous, and multiphase chem-
istry, control how quickly primary emissions are converted
to secondary aerosols. To explain the source of these species,
one also needs to consider the physicochemical and thermo-
dynamical properties of the aerosol (Acharja et al., 2022).

3.2 Detailed discussion of individual emission sources

3.2.1 Factor 1: paddy residue burning

Paddy residue burning was one of the largest contributors to
the total observed PM10 (25 %) and PM2.5 (23 %; Fig. 4b
and c) mass concentrations in Delhi. An earlier WRF–Chem-
based study using version 1.5 of the Fire INventory from
the National Center for Atmospheric Research (FINNv1.5)
attributed 20 % of the PM2.5 burden to this source for the
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Figure 4. Source contributions from the 11 sources to (a) total ambient VOC mass loading, (b) PM10 mass loading, (c) PM2.5 mass loading,
(d) ozone formation potential, and (e) SOA formation potential.

year 2018 (Kulkarni et al., 2020). Its importance as a PM
source stands in stark contrast to its minor contribution to the
overall VOC mass loading in Delhi (6 %). In Mohali, Pun-
jab, this source also only contributed 6 % to the VOC burden
in October and November (Singh et al., 2023). In descend-
ing order of mass contribution, acetaldehyde (CH3CHO),
acetic acid (C2H4O2), acetone+ propanal (C3H6O), hydrox-
yacetone (C3H6O2), acrolein (C3H4O), diketone (C4H6O2),
and furfural (C5H4O2) contributed the most to the total
VOC mass pertaining to this factor. Figure 5 shows that the
24 h averaged factor contribution time series has the high-
est cross-correlation with same-day fire counts (R= 0.8),
while hourly averaged source contributions correlate most
with PM2.5 (0.7) and PM10 (0.7; Table S4). The high cor-
relation with same-day fire counts indicates that nearby fire
activity is the dominant source of paddy-burning-related pol-
lution in the Delhi NCR. A recent study from Punjab indi-
cated that the largest PM enhancements at a receptor site are
caused by fires occurring within a 50 km radius around the
receptor site (Pawar and Sinha, 2022). Figure S6 shows that
the PM2.5 and PM10 mass loadings at the receptor site in-
creased by 0.027± 0.006 and 0.047± 0.01 µgm−3, respec-
tively, for each additional fire count within the 24 h fetch
region whenever the trajectories arrived from the northwest
and southwest region. It is very interesting to note that the
incremental increase in PM2.5 and PM10 mass loadings for
each additional fire count was almost 4 times higher than the
increases observed in the aforementioned regions when the
trajectory fetch region was located to the southeast, amount-
ing to 0.11± 0.01 and 0.19± 0.02 µgm−3, respectively. This
is likely because complete burns of entire fields (Fig. S7),
which are prominent in Punjab, can be more easily identi-
fied as fire activity using satellite-based detection (Liu et al.,

2019, 2020), while partial burns (Fig. S8), which are more
prevalent in the eastern IGP and Haryana, have larger omis-
sion errors (Liu et al., 2019, 2020). Regional gradients in
fire detection efficiency can complicate attempts to model air
quality using fire-count-based emission inventories (Kulka-
rni et al., 2020).

Figure 6 shows that this factor accounted for the
largest percentage share of O-heteroarene compounds, such
as furfural (C5H4O2), methylfurfural (C6H6O2), hydrox-
ymethylfurfural (C6H6O3), furanone (C4H4O2), hydrox-
ymethyl furanone (C5H6O3), furfuryl alcohol (C5H6O2), fu-
ran (C4H4O), methylfuran (C5H6O), C2-substituted furan
(C6H8O), and C3-substituted furan (C7H10O). These com-
pounds are produced by the pyrolysis of cellulose and hemi-
cellulose and have previously been detected in biomass-
burning samples (Coggon et al., 2019; Hatch et al., 2015,
2017; Koss et al., 2018; Stockwell et al., 2015). Figure 6
also shows that this factor accounts for the largest share
of the most abundant oxidation products resulting from
nitrate-radical-initiated oxidation of toluene and from OH-
initiated oxidation of aromatic compounds under high-NOx
conditions, namely nitrotoluene (C7H7NO2) and nitrocresols
(C7H7NO3; Ramasamy et al., 2019). This indicates a certain
degree of ageing of the plumes. These nitroaromatic com-
pounds are significant contributors to SOAs and brown car-
bon (BrC; Palm et al., 2020; Harrison et al., 2005a, b). This
also explains several other nitrogen-containing VOCs, such
as nitroethane (C2H6NO2), the biomass-burning tracer ace-
tonitrile (CH3CN), and pentanenitrile (C5H9N). The pres-
ence of pentanenitrile isomers in biomass-burning smoke has
previously been confirmed using gas-chromatography-based
studies (Hatch et al., 2015, 2017). In addition, the factor ac-
counts for the largest percentage share of acrolein (C3H4O),
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Figure 5. Time series for each factor (left column), measured in µgm−3, with corresponding normalized diurnal profiles (centre column).
The shaded region in the diurnal profiles depicts the area between the 25th and 75th percentiles, while the median of the dataset is indicated
by the line. The polar plots (right column) depict the conditional probability of a factor having a mass contribution above the 75th percentile
of the dataset during certain hours of the day between 00:00 (centre of the rose) and 23:00 IST (UTC+5:30) (outer edge of the rose) from a
specific wind direction. This probability is determined by dividing the number of observations above the 75th percentile by the total number
of measurements in each bin.

Atmos. Chem. Phys., 24, 10279–10304, 2024 https://doi.org/10.5194/acp-24-10279-2024



A. Awasthi et al.: Biomass-burning sources control ambient particulate matter 10289

Figure 6. Contribution of PMF factors to VOC species to which different forms of biomass burning contribute the highest percentage share
of the atmospheric burden in Delhi.

hydroxyacetone (C3H6O2), cyclopentadienone (C5H4O),
cyclopentanone (C5H8O), diketone (C4H6O2), pentane-
dione (C5H8O2), hydroxybenzaldehyde (C7H6O2), guaiacol
(C7H8O2), and the levoglucosan fragment (C6H8O4). Many
of these compounds are known to form during lignin pyroly-
sis (Hatch et al., 2015; Koss et al., 2018; Nowakowska et al.,
2018), while dimethylbutenedial (C6H8O2) and trimethyl-
butenedial (C7H10O2) are ring-opening oxidation products
of aromatic compounds (Zaytsev et al., 2019). Figure S9
shows the volatility oxidation state plot for all 111 VOCs,
where the marker size represents the percentage share of
each compound accounted for by the paddy-residue-burning
factor and markers are colour-coded according to the num-
ber of carbon atoms. The plot shows evidence that first- and
second-generation oxidation products of C5 and C6 hydro-
carbons transition from the VOC to the IVOC range along
trajectories expected for the addition of the =O functional-
ity to the molecules (Jimenez et al., 2009), while C7 hydro-
carbons progress along trajectories expected for the addition
of -OH and the =O functionality. This indicates that paddy
residue burning contributes significantly to the SOA burden.
However, the fact that the PM10 mass associated with this
factor (36.5 µgm−3) is 1.8 times larger than the PM2.5 mass
(20.7 µgm−3) and 3 times larger than the VOC mass released
during the same combustion process (11.6 µgm−3) suggests
that the relatively coarse ash formed from the phytolith skele-
ton of rice straw (Fig. S10) is the dominant aerosol source.

3.2.2 Factor 2: residential heating and waste burning

The residential-heating and waste-burning factor is the
second-largest PM source at the receptor site and contributes
23 % and 24 % to the total PM10 and PM2.5 mass load-

ings, respectively (Fig. 4). However, it contributed only 7 %
to the total VOC mass loading, and it contributed 6 % and
4 % to ozone formation potential and SOA formation po-
tential, respectively (Fig. 4). Emissions peak at nighttime
(Fig. 5), and the factor contribution time series displays the
largest cross-correlation with the 24 h averaged heating de-
mand (R= 0.8; Fig. S6), PM10 (R= 0.7), PM2.5 (R= 0.6),
NO2 (R= 0.7), and CO (R= 0.5; Table S4). The lower cor-
relation with NO (R= 0.4; Table S4) indicates that emis-
sions are related to combustion but are not always fresh.
Occasionally, fresh plumes reach the receptor site within
minutes; however, the majority of plumes have a higher at-
mospheric age as NO is a short-lived species and is ox-
idized to NO2 on a timescale of minutes in the presence
of ozone (Sinha et al., 2014). The factor contribution time
series is anti-correlated with temperature (R=−0.6) and
has a strong correlation with the 24 h averaged heating de-
mand (R= 0.8), indicating that this combustion activity is
primarily triggered by the need to keep warm. Figure S11
shows that the PM2.5 and PM10 mass loadings at the receptor
site increase by 13.9 µgm−3 and 22.3 µgm−3, respectively,
for each degree increase in the 24 h averaged heating de-
mand. Earlier studies have documented the strong season-
ality of open-waste-burning emissions over Delhi, as well
as the diversity of fuel used in wintertime heating-related
fires (Nagpure et al., 2015). This factor accounts for 7 %
of the total VOC mass loading. The top contributors to the
VOC mass of this factor, in descending order of contribution,
are methanol (CH3OH), propyne (C3H4), acetone+ propanal
(C3H6O), acetaldehyde (CH3CHO), acetic acid (C2H4O2),
and benzene (C6H6). Figure 6 shows that this factor ac-
counts for the largest percentage share of the total mass for
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formaldehyde (HCHO) and vinylacetylene + 1-buten-3-yne
(C4H4), and it accounts for the second-largest percentage
share of furfural (C5H4O2), methylfurfural (C6H6O2), furan
(C4H4O), methylfuran (C5H6O), furanone (C4H4O2), and
acrolein (C3H4O). All these compounds are characteristic of
biomass-burning smoke (Hatch et al., 2015; Stockwell et al.,
2015; Koss et al., 2018).

3.2.3 Factor 3: solid-fuel-based cooking

The cooking factor is a daytime factor and accounts for
10 % of the total VOC mass loading, 10 % of the ozone
formation potential, and 8 % of the SOA formation poten-
tial (Fig. 4). However, it only accounts for a negligible
share of the total PM10 burden (≤ 4 %). The volatility ox-
idation state plot (Fig. S9) also shows very little evidence
of IVOC oxidation products that could partition into the
aerosol phase. The activity peaks from 08:00 to 12:00 IST,
with a secondary peak in the early evening hours, and persists
throughout the monsoon and post-monsoon seasons. Emis-
sions reaching the receptor site show no correlation with NO
(R= 0.1), indicating that the plumes are not fresh. In de-
scending order of mass contribution, acetone (C3H6O), ac-
etaldehyde (CH3CHO), methanol (CH3OH), toluene (C7H8),
the sum of the C8 aromatics (C8H10), propyne (C3H4), and
benzene (C6H6) contribute the most to this factor. These
aromatic compounds have been reported to originate from
cooking emissions (Crippa et al., 2013). Figure 6 shows
that this factor accounts for the largest percentage share
of butanone (C4H8O), pentanone (C5H10O), acetaldehyde
(CH3CHO), acetone (C3H6O), and benzaldehyde (C7H6O).
All these compounds are characteristic of biomass-burning
smoke (Hatch et al., 2015; Stockwell et al., 2015; Koss et al.,
2018).

3.2.4 Factor 4: CNG

CNG-fuelled vehicles are identified as the third-largest
source of PM10 (15 %) and PM2.5 (11 %), contributing 9 % to
the total VOC burden (Fig. 4). The much higher contribution
of this source to the coarse-mode PM burden (PM10 value of
22.5 µgm−3) compared to the fine-mode PM burden (PM2.5
value of 10.4 µgm−3) confirms earlier emission-inventory-
based estimates that flagged that non-tailpipe emissions, such
as brake wear, tyre wear, and road dust resuspension, have
become the dominant transport-sector-related PM sources in
the Delhi NCR (Nagpure et al., 2016). While non-tailpipe
emissions contribute the most to the PM10 burden, they have
also become the largest source of transport-sector-related
fine-mode aerosols and VOC emissions in certain countries
that have adopted Euro VI norms (Harrison et al., 2021).
This study attributes a large share of these non-tailpipe emis-
sions to trucks, buses, and other commercial vehicles that
are typically fuelled by CNG. This is because commercial
diesel vehicles younger than 10 years face severe entry re-

strictions that limit their use within the Delhi NCR, while
older diesel vehicles have been completely banned from op-
erating within city limits. Policy interventions in favour of
CNG use (Krelling and Badami, 2022) have resulted in a
halving of diesel sales, a rapid transition to CNG for Delhi’s
heavy-duty-vehicle (HDV) fleet (Fig. S12), and a significant
reduction in tailpipe exhaust emissions. In descending order,
methanol (CH3OH), acetone+ propanal (C3H6O), toluene
(C7H8), C8 aromatic compounds (C8H10), butene (C4H8),
propene (C3H6), and acetaldehyde (CH3CHO) contribute
the most to the VOC mass in this source. Figure 7 shows
that this factor accounts for the largest percentage share of
methanol (CH3OH) and the second-largest percentage share
of ethanol (C2H6O). These compounds are formed by the
incomplete combustion of CNG, which is catalytically con-
verted to methanol and ethanol (Singh et al., 2016).

3.2.5 Factor 5: petrol four-wheeler factor

Figure 4 shows that petrol four-wheelers contributed 20 %,
25 %, and 30 % to VOC mass loading, OFP, and SOAP, re-
spectively. The source fingerprint here matches the tailpipe
emissions of petrol-fuelled four-wheelers (Hakkim et al.,
2021) and is characterized, in descending order of contri-
bution, by C8 aromatics, toluene, C9 aromatics (C9H12),
benzene, butene+methyl tert-butyl ether (MTBE) frag-
ment, propyne, propene, methanol, and C2-substituted xy-
lene+C4-substituted benzene (C10H14). Figure 5 shows that
emissions peak in the evening between 19:00 and 00:00 IST,
exhibiting average VOC mass loadings > 70 µgm−3, and
reach the receptor site from most wind directions. Emissions
are strongly correlated with NO (R= 0.8), CO (R= 0.7),
and CO2 (R= 0.7), indicating that the receptor site is im-
pacted by fresh combustion emissions from this source and
that the atmospheric age of most plumes corresponds to the
timescale of minutes. Figure 7 shows that this factor ac-
counts for the largest percentage share of most aromatic
compounds, namely C8 aromatics, toluene, C9 aromatics
(C8H12), C4-substituted benzene+C2-substituted xylene,
benzene, styrene (C8H8), methylstyrene+ indane (C9H10),
and C2-substituted styrene (C10H12), as well as a few oxy-
genated aromatic hydrocarbons, such as methyl phenol iso-
mers (C7H8O) and methyl chavicol (C10H12O). The fact
that this factor accounts for the largest percentage share of
ethanol and the MTBE fragment (C4H8) can likely be at-
tributed to ethanol blending and the use of MTBE in petrol
(Achten et al., 2001). This factor also accounts for the largest
percentage share of several other hydrocarbons, such as
propyne (C3H4), propene (C3H6), cyclopentadiene (C5H6),
hexane (C6H13), C7H6, C7H10, and cycloheptene (C7H12).

Figure S9 shows that this factor contributes significantly
to the burden of C6–C10 hydrocarbons and, consequently,
to SOA formation potential. However, due to freshly emit-
ted plumes, it barely contributes to the burden of the first-
and second-generation oxidation products of these hydro-
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Figure 7. Contribution of PMF factors to VOC species to which the transport sector contributes the highest percentage share of the atmo-
spheric burden in Delhi.

carbons at the receptor site. Instead, this factor is likely to
contribute to secondary-pollutant formation downwind of the
Delhi NCR.

3.2.6 Factor 6: petrol two-wheeler factor

Figure 4 shows that petrol two-wheelers contributed 14 %,
12 %, and 20 % to VOC mass loading, OFP, and SOAP,
respectively. The fingerprint of this source matches the
tailpipe emissions of petrol-based two-wheelers (Hakkim
et al., 2021) and is characterized, in descending order of con-
tribution, by toluene, acetone+ propanal, C8 aromatic com-
pounds, acetic acid (C2H4O2), propyne (C3H4), methanol
(CH3OH), benzene (C6H6), the MTBE fragment, and C9
aromatics (C9H12). A key difference between the petrol two-
wheeler source profile and the petrol four-wheeler source
profile is the lower benzene-to-toluene ratio, which is sup-
ported by the gas chromatography–flame ionization detec-
tion (GC-FID) analysis of tailpipe exhaust emissions (Ku-
mar et al., 2020). Figure 5 shows that emissions peak in
the evening between 20:00 and 22:00 IST, exhibiting aver-
age VOC mass loadings > 50 µgm−3, and reach the receptor
site from most wind directions. Emissions are strongly corre-
lated with NOx (R= 0.6), CO (R= 0.6), and CO2 (R= 0.7);
however, they have a lower correlation with NO (R= 0.5;
Table S4) and provide a larger contribution of oxygenated
compounds to the source profile, indicating that the emis-
sions have been photochemically aged. This suggests that,
unlike four-wheeler plumes, which originate from the imme-
diate vicinity of the receptor site in Central Delhi (Fig. S1),
two-wheeler plumes reach the receptor site after prolonged

transport from more distant rural and suburban areas on
the outskirts of the city. In such areas, people often favour
two-wheelers over four-wheelers. Figure 7 shows that this
factor accounts for the largest percentage share of toluene
and a number of oxygenated aromatic compounds, such as
benzaldehyde (C7H6O), tolualdehyde (C8H8O), and phenol
(C6H6O). It also accounts for the largest percentage share
of nitrobenzene (C6H5NO2), cyclohexanone (C6H11O), and
vinyl chloride (C2H3Cl). It also accounts for the second-
largest percentage share of benzene, vinylacetylene (C4H4),
acetone+ propanal, methoxyamine (CH5NO), and butanoic
acid + ethyl acetate (C4H9O2).

3.2.7 Factor 7: industrial point sources

This factor contributes 12 %, 14 %, 15 %, 8 %, and 3 %
to VOC mass loading, OFP, SOAP, PM2.5 mass loading,
and PM10 mass loading, respectively. On average, more
than 30 µgm−3 of the VOC burden throughout the night,
from 21:00 to 07:00 IST (Fig. 5), is attributed to this fac-
tor. This factor is identified corresponding to industrial
point sources located in the wind sector south to south-
west of the receptor site. Emissions are most strongly cor-
related with CO (R= 0.7), NO (R= 0.7), CH4 (R= 0.8),
and CO2 (R= 0.8), indicating that the emissions are fresh
and originate from combustion processes. The main contrib-
utors to the VOC mass in the industrial factor, in descend-
ing order of contribution, are propyne (C3H4), butene+ the
MTBE fragment (C4H8), toluene (C7H8), C8 aromatic com-
pounds (C8H10), propene (C3H6), acetaldehyde (CH3CHO),
methanol (CH3OH), C9 aromatics, and the sum of monoter-
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penes (C10H16). The source fingerprint is most similar to
ambient air grab samples collected near the Okhla waste-to-
energy plant and the industrial area in Faridabad.

Figure 8 shows that this factor accounts for the largest
percentage share of methanethiol (CH5S), a chemical used
in the manufacturing of the essential amino acid methio-
nine, the plastic industry, and the manufacturing of pesti-
cides; dichlorobenzene (C6H4Cl2), a chemical used in the
synthesis of dyes, pesticides, and other industrial prod-
ucts; and methoxyamine (CH5NO). Analyses of the pri-
mary dataset by Mishra et al. (2024) also qualitatively in-
ferred an industrial source for methanethiol and dichloroben-
zene. This factor also accounts for the largest percentage
share of the sum of monoterpenes, camphor + pinene oxide
(C10H16O), santene (C9H14), the terpene fragment (C8H12),
C8H14, C9H16, cyclohexene (C6H10), and cyclopentylben-
zene (C11H14). Terpenes are used in the food and bever-
age, cosmetics, pharmaceutical, and rubber industries. In ad-
dition, this factor also accounts for the largest percentage
share of a large suite of volatile and IVOC aromatic hy-
drocarbons, including naphthalene (C10H8), methylnaphtha-
lene (C11H10), C12H16, C13H18, C13H20, C13H22, C14H20,
and C14H22. Ambient observations for most of these IVOCs
have not been reported in the literature so far. Only C9H14,
C12H12, and C12H16 have been reported as originating from
aircraft engine emissions (Kılıç et al., 2018), while terpene,
C9H16, cyclopentylbenzene, naphthalene, and methylnaph-
thalene have been reported as originating from a wide range
of combustion sources (Hatch et al., 2015; Bruns et al.,
2017). Most other compounds have so far only been reported
to degas from heated asphalt (Khare et al., 2020). Due to its
high abundance of IVOCs, this factor contributes 15 % to the
total SOA formation potential. Figure S9 shows the volatility
oxidation state plot for all 111 VOCs, where the marker size
represents the percentage share of each compound accounted
for by the industrial factor and markers are colour-coded ac-
cording to the number of carbon atoms. The plot shows ev-
idence that the first- and second-generation oxidation prod-
ucts of C6–C10 hydrocarbons transition from the VOC to the
IVOC range along trajectories expected for the addition of
the =O functionality to the molecules (Jimenez et al., 2009).
This, along with the fact that all of the aerosol associated
with this factor corresponds to PM2.5, indicates that most of
the aerosol associated with this factor likely comprises SOA.

3.2.8 Factor 8: solvents and evaporative emissions

Solvent usage emissions and evaporative emissions reach the
site from several point sources and wind directions and of-
ten do so in the form of short, intense plumes that show no
correlation with combustion tracers. This source contributes
the most to the VOC burden at night, accounting for 6 %
of the total VOC but ≤ 1 % of the total PM2.5 and PM10
mass (Fig. 4). The source fingerprint of the solvent fac-
tor (Fig. 3) is characterized, in descending order of mass

contribution, by acetic acid+ glycolaldehyde (C2H4O2),
toluene (C7H8), methanol (CH3OH), butanoic acid + ethyl
acetate (C4H9O2), acetone+ propanal (C3H6O), and bu-
tanal+ butanone+methyl ethyl ketone (MEK; C4H8O).
Figure 8 shows that this factor accounts for the largest share
of organic acids, namely butanoic acid, acetic acid, and iso-
cyanic acid (HNCO), and the second-largest share of bu-
tanal+ butanone+MEK (C4H8O). These compounds sug-
gest that stack venting of VOCs from chemical, food, or phar-
maceutical industries and polymer manufacturing are likely
sources of these emissions (Hodgson et al., 2000; Villberg
and Veijanen, 2001; Jankowski et al., 2017; Gao et al., 2019).
This assessment is broadly confirmed by the fact that the best
match (R= 0.7) for this source was collected from a plot sit-
uated opposite a polymer manufacturing unit and next to a
pet food manufacturer in an industrial area in Jahangirpuri,
north of the receptor site.

3.2.9 Factor 9: road construction

The road construction factor contributed 8 % to the total
VOC mass loading and 2 % to the total PM10 burden. This
factor is almost absent during monsoon season as road repair
work is mostly avoided during this period due to waterlog-
ging risks, and emissions from this source generally peak
during the day as the degassing of compounds from asphalt
is driven by temperature and continues for days after the
initial paving (Khare et al., 2020). The source fingerprint of
the road construction factor is characterized, in descending
order of mass concentrations, by acetone+ propionaldehyde,
toluene, methanol, benzene, and C8 aromatics. Acetone
and propionaldehyde were found to be the most abundant
OVOCs emitted during asphalt paving (Li et al., 2020). The
source profile showed the greatest similarity with the mix of
emissions originating from asphalt paving (Li et al., 2020)
and the tailpipes of road construction vehicles (Che et al.,
2023). As represented in Fig. 9, this factor accounts for the
largest percentage share of a large suite of volatile and IVOC
hydrocarbons, namely heptene (C7H14), C11H12, C12H12,
C14H14, C14H18, C16H24, C17H28, and C18H30. In addition,
it accounts for the second-largest percentage share of many
other IVOC hydrocarbons, namely C9H14, C9H16, C11H14,
C12H16, C13H18, C13H20, C13H22, C14H20, and C14H22.
Except for the four hydrocarbons C7H14, C9H14, C9H16,
and C11H12, all of these IVOCs have been reported to degas
from asphalt pavements at 60 °C (Khare et al., 2020). So far,
only C14H18 has been reported as a fresh gas-phase emission
(transport time < 2.5 min), originating from a farm (Loubet
et al., 2022) in ambient air, while C17H28 has been observed
in the aerosol phase (Xu et al., 2022). The road construction
factor also accounts for the largest percentage share of
a long list of OVOCs: C6 diketone isomers (C6H10O2);
C2-substituted phenol (C8H10O); C7H12O2; C8H14O2;
C8H16O2; phthalic anhydride (C8H4O3), which is a naph-
thalene oxidation product (Bruns et al., 2017); C9H10O;

Atmos. Chem. Phys., 24, 10279–10304, 2024 https://doi.org/10.5194/acp-24-10279-2024



A. Awasthi et al.: Biomass-burning sources control ambient particulate matter 10293

Figure 8. Contribution of PMF factors to VOC species to which industries, solvent usage, photochemistry, or biogenic sources contribute
the highest percentage share of the atmospheric burden in Delhi.

Figure 9. Contribution of PMF factors to VOC species to which road construction contributes the highest percentage share of the atmospheric
burden in Delhi.

C9H12O2; C9H14O2; C9H16O2; C9H18O2; C10H12O;
C10H18O; C10H8O3; C10H16O3; and C12H18O2. However,
out of these, only C10H12O and C10H18O have been de-
tected as direct emissions from heated asphalt pavements

(Khare et al., 2020), indicating that most OVOCs in this
factor are possibly oxidation products of short-lived IVOC
hydrocarbons emitted by this source. This assessment is
supported by the volatility oxidation state plot for the road
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construction factor (Fig. S9), which demonstrates that both
precursors and oxidation products are present in this factor
and that C6–C10 hydrocarbons appear to progress from the
VOC to the IVOC range along trajectories expected for the
addition of the =O functionality to the molecules (Jimenez
et al., 2009).

3.2.10 Factor 10: photochemistry

The photochemical factor has a diurnal profile that mirrors
the diurnal profile of ozone (R= 0.4). The factor profile is
dominated by certain OVOCs, such as acetic acid (C2H4O2),
formic acid (CH3O2), acetaldehyde (CH3CHO), formamide
(CH4NO), and methanol (CH3OH). Figure 8 shows that
this factor accounts for the largest percentage share of
formic acid, formamide, and methylglyoxal (C3H5O2). It
also accounts for the second-largest percentage share of iso-
cyanic acid (HNCO) and hexanamide (C6H13NO), which are
formed by the photooxidation of amines (Yao et al., 2016;
Wang et al., 2022). Some compounds suggest a significant
contribution of photochemically aged biomass-burning emis-
sions to this factor, including furfuryl alcohol (C5H6O2), hy-
droxymethyl furanone (C5H6O3), and hydroxybenzaldehyde
(C7H6O2). While this factor accounted for ≤ 4 % of the to-
tal VOC share and a negligible share of PM2.5 and PM10
mass in Delhi, photochemically aged biomass-burning emis-
sions were a significant source of VOCs at a suburban site
in Punjab during the post-monsoon season of 2017 (Singh
et al., 2023). This difference is likely due to the fact that the
severe smog episode of 2017 was primarily driven by low
wind speeds, a shallow boundary layer, and a regional-scale
build-up of emissions over a prolonged period (Dekker et al.,
2019; Roozitalab et al., 2021), whereas the post-monsoon
season of 2022 experienced western disturbances and higher
ventilation coefficients. This factor also accounts for the
largest percentage share of total mass for certain organic
acids, such as nonanoic acid (C9H18O2) and n-octanoic acid
(C8H16O2), which have been detected in biomass-burning-
impacted environments in China (Mochizuki et al., 2019).
Furthermore, it accounts for C12H18O2, which has been
found in aged wildfire plumes in the US (Haeri, 2023),
and specific terpene ozonolysis products: norpinonaldehyde
(C9H14O2), cis-pinonic acid (C10H16O3; Camredon et al.,
2010), and C7H12O2. Pinonic acid has been identified as
an important aerosol-phase tracer of biogenic SOA forma-
tion in India (Mahilang et al., 2021), and C7H12O2 has been
reported as an aqueous-phase photolysis product of pinonic
acid (Lignell et al., 2013; Fig. 8).

3.2.11 Factor 11: biogenic

Biogenic VOC emissions at the receptor site show the high-
est cross-correlation with photosynthetically active radiation
(PAR; R= 0.7) and temperature (R= 0.7; Table S4), ac-
counting for 4 % of the total VOC burden and 2 % of the

PM10 burden in the PMF model. The BVOC emissions in
this factor are relatively fresh as the ratio of isoprene to each
of its first-generation oxidation products – MEK (C4H8O)
and methyl vinyl ketone (MVK)+methacrolein (MACR;
C4H6O) – is 5.9 and 3.0, respectively. At the site, the top of
the canopy of roadside trees is located approximately 20 m
below the inlet height. Figure 3 shows that, in descending or-
der of mass contribution, acetaldehyde (CH3CHO), C3H4,
isoprene (C5H8), acetic acid+ glycolaldehyde (C2H4O2),
and acetone+ propanal (C3H6O) are the major contributors
to the biogenic factor, indicating that leaf-wounding com-
pounds contribute significantly to the BVOC burden in Delhi
(Portillo-Estrada et al., 2015). The signal at m/z 41.035
can potentially be attributed to C3H4 and the 2-methyl-3-
buten-2-ol fragment (Kim et al., 2010; Park et al., 2013), a
known fragment of isoprene (Yuan et al., 2017). Figure 8
shows that this factor accounts for the largest percentage
share of two BVOCs, namely isoprene+ the 2-methyl-3-
butene-2-ol fragment and the corresponding oxidation prod-
uct (MVK + MACRC + 2-butenal). It also accounts for the
largest percentage share of C6 amides (C6H13NO), which are
produced by the photooxidation of amines (Yao et al., 2016).
C6 amines, the potential precursor, have previously been de-
tected in forested environments (You et al., 2014). However,
it is also possible that C6 amides are only attributed to the
biogenic factor because their diurnal concentration profile
matches that of first-generation oxidation products and be-
cause the source strength is high during both the monsoon
and post-monsoon seasons. This type of time series would
also be expected if the precursors of this oxidation product
were emitted from agricultural activities.

3.3 Comparison with emission inventories

Figure 10 shows a comparison of different anthropogenic-
emission inventories with the PMF output data from this
study for three overlapping fetch regions. These regions cor-
respond to the areas from which air masses for different air-
flow patterns reach the receptor site within 24 h (Fig. 1).

One feature that stands out in this comparison is that all
inventories appear to significantly overestimate the relative
contribution of residential fuel usage to VOC and PM emis-
sions across all fetch regions. In absolute terms, the Regional
Emission inventory in ASia (REASv3.2.1) for the year 2015
(Kurokawa and Ohara, 2020) and the Emissions Database
for Global Atmospheric Research (EDGARv6.1) for the year
2018 (Crippa et al., 2022) align on residential-sector PM2.5
emissions for the northwestern fetch region (Table S5). Ac-
cording to recent estimates (Pandey et al., 2021), the north-
western IGP region has the lowest prevalence of solid-fuel
usage in the entire IGP, and the inventories appear to overesti-
mate PM2.5 emissions from this fetch region by only a factor
of 1.5–1.9. For the southwestern and southeastern fetch re-
gions, REASv3.2.1 estimates much higher residential-sector
PM2.5 emissions than EDGARv6.1 and overestimates the
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Figure 10. Comparison of different anthropogenic-emission inventories with the PMF output from this study for three overlapping fetch
regions corresponding to different airflow patterns.

PMF estimates by factors of 3.7 and 4.6, respectively. In
contrast, EDGARv6.1 only overestimates PMF estimates by
factors of 1.8 and 3.2 for the southwestern and southeast-
ern fetch regions, respectively. Solid-fuel-based cooking is
more prevalent in central and western India, as well as the
eastern IGP, compared to the northwestern IGP (Pandey
et al., 2021). The overestimation in both inventories may
be caused by the gradual adoption of cleaner technology.
Sharma et al. (2022) calculated a 13 % drop in residential-
sector PM2.5 emissions between 2015 and 2020 due to in-
creased sales of liquefied petroleum gas (LPG), and a con-
tinuation of this trend until 2022 might explain the over-
estimation of residential fuel usage in the present emission
inventory data. For PM10, the EDGARv6.1 emission esti-
mates for the northwestern, southwestern, and southeastern
fetch regions are greater than those from REASv3.2.1. The
EDGARv6.1 inventory and REASv3.2.1 both overestimate
our PMF PM10 results by a factor of 1.5 to 3.0. However,
while REASv3.2.1 appears to assume that most residential-
sector aerosol emissions are fine-mode emissions, our PMF
results (Fig. 10) clearly align with the EDGARv6.1 inventory
regarding the significant association of coarse-aerosol emis-
sions with solid-fuel-based cooking and heating. Table S5
shows that for residential-sector VOC emissions, the abso-
lute emissions in the EDGARv6.1 inventory are almost twice
as high as those in REASv3.2.1, even though the percentage
contribution of this sector to VOC emissions in the inventory
(shown in Fig. 10) appears to be similar for both. This is due
to higher VOC emissions from solvent use and industries in
the EDGARv6.1 inventory. Both inventories overestimate the
relative importance of residential-sector emissions compared
to VOC emissions from other sectors by more than a factor
of 2 relative to our PMF estimate, most likely because they
have not been updated to reflect recent fuel shifts towards

LPG in the relatively prosperous Delhi NCR (Sharma et al.,
2022).

With respect to industrial VOC emissions for the north-
western fetch region, our PMF results indicate that actual
emissions are slightly lower than those from REASv3.2.1,
while the EDGARv6.1 inventory overestimates emissions.
For the southwestern and southeastern fetch regions, our
PMF estimates fall between those from the EDGARv6.1 in-
ventory and REASv3.2.1. For industrial PM2.5 emissions,
both the EDGARv6.1 inventory and REASv3.2.1 are closely
aligned in their estimates of the magnitude of emissions
for the northwestern, southwestern, and southeastern fetch
regions, and both inventories appear to overestimate emis-
sions compared to our PMF results. Our findings seem to
suggest that pollution boards have been somewhat success-
ful in reducing industrial emissions and that the technol-
ogy employed is better than what is currently reflected in
emission inventories. Industrial fly ash (PM10) emissions are
higher in REASv3.2.1 across all fetch regions compared to
the EDGARv6.1 inventory. However, both inventories ap-
pear to significantly overestimate industrial emissions com-
pared to our PMF results. These findings also indicate that
pollution boards have been somewhat successful in reducing
large and visible fly ash sources and that the EDGARv6.1 in-
ventory has more effectively captured this clean-technology
transition.

REASv3.2.1 completely overlooks direct VOC and PM
emissions from the agricultural sector. The EDGARv6.1 in-
ventory significantly underestimates PM2.5 and PM10 emis-
sions from agricultural activities (including, but not limited
to, crop residue burning) in comparison to our PMF results,
particularly over northwestern India (Table S5). Over this
fetch region, EDGARv6.1 attributes as much PM2.5 to all
agricultural activities combined for the full year as FINNv2.5
(Wiedinmyer et al., 2023) attributes solely to agricultural
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residue-burning activities occurring between 15 August and
26 November 2021 (a time period comparable to that of
our model run) – this excludes the emissions from rabi crop
residue burning in summer (Kumar et al., 2016) and other
agricultural activities, such as harvesting and ploughing. For
PM10, the fire-count-based FINNv2.5 estimate is twice as
high as the emission estimate of EDGARv6.1 for this fetch
region, and it is more likely to be correct because the phy-
toliths present in rice straw form coarse-mode ash during the
combustion process (Fig. S10). The fact that EDGARv6.1
appears to underestimate residue-burning emissions over this
fetch region has been flagged previously (Pallavi et al., 2019;
Kumar et al., 2021; Singh et al., 2023). Our PMF analy-
sis also reveals that the relative contribution of agricultural
residue burning to the PM burden over the northwestern IGP
(24 % and 27 % of PM2.5 and PM10, respectively) and south-
eastern IGP (24 % and 27 % of PM2.5 and PM10, respec-
tively) is comparable, despite much lower fire counts over the
southeastern IGP (17 810) compared to the northwestern IGP
(61 334). This indicates that fires to the southeast burn closer
to the receptor site or that fire detection efficiency in this
fetch region is lower. Table S5 reveals that the relative impor-
tance of agricultural emissions over the southeastern fetch re-
gion is even more severely underestimated in FINNv2.5 than
in the EDGARv6.1 inventory due to poorer fire detection
for partial burns prevalent over this region (Liu et al., 2019,
2020; Fig. S8) compared to complete burns prevalent over
the northwestern IGP, resulting in an omission error close to
100 % (Liu et al., 2019, 2020; Fig. S7).

Transport sector VOC emissions appear to be severely un-
derestimated in the EDGARv6.1 inventory for the northwest-
ern, southwestern, and southeastern fetch regions; this has
been previously noted for earlier versions of the same inven-
tory (Sarkar et al., 2017; Pallavi et al., 2019; Singh et al.,
2023). REASv3.2.1 also underestimates our PMF results.
This indicates that the contribution of the transport sector
to ambient VOC pollution levels in a megacity like Delhi
may not be adequately reflected in the two emission inven-
tories. Our PMF model suggests that the overall contribu-
tion of the transport sector to total PM2.5 and PM10 pollu-
tion levels is primarily due to non-exhaust emissions from
the CNG-fuelled public-transport fleet. These non-exhaust
emissions are much higher than those accounted for in both
the EDGARv6.1 inventory and REASv3.2.1 for PM2.5 and
PM10 emissions from the northwestern, southwestern, and
southeastern fetch regions. The transport-sector-related find-
ings from this PMF source apportionment study are in agree-
ment with findings from earlier source apportionment stud-
ies, which have often attributed a quarter or more of total
PM emissions to the transport sector. Previous studies have
used metals (such as Pb), organic carbon (OC), and/or ele-
mental carbon (EC) as transport sector activity tracers (Jain
et al., 2017, 2020; Sharma et al., 2016; Jaiprakash et al.,
2016; Sharma and Mandal, 2017), while others have at-
tributed almost the entire hydrocarbon-like organic aerosol

(HOA) component of organic aerosols to transport sector
emissions (Reyes-Villega et al., 2021; Cash et al., 2021; Ku-
mar et al., 2022; Shukla et al., 2023) or used a chemical
mass balance (CMB) model with source fingerprints from
the EPA database (Nagar et al., 2017). Our PMF results dif-
fer from emission-inventory-based assessments, which only
attribute a minor share of the total PM burden to this activity
(Guo et al., 2017). Our findings also shed light on the rea-
sons why transport-sector-targeted air quality interventions
have yielded such poor results (Chandra et al., 2018). Public-
transport availability was ramped up during periods when
road rationing schemes restricted the use of private four-
wheelers. Our results suggest that, moving forward, only
investments in road infrastructure to reduce resuspension;
modal shifts from buses to metro-based public transport; and
electric vehicles with> 50 % regenerative braking (Liu et al.,
2021), limiting brake wear, can yield meaningful reductions
in transport-sector-related PM emissions.

Our PMF results indicate that solvent usage results in VOC
emissions that align more closely with REASv3.2.1, while
the EDGARv6.1 inventory overestimates emissions by a fac-
tor of 4 across all the fetch regions.

Power generation is not considered a significant VOC
source in either emission inventory (amounting to < 1 % of
the total VOC mass), and it fails to show up as a separate
sector in our PMF results as our model runs rely on VOC
tracers to track pollution sources. However, the contribution
of energy generation to the PM burden, particularly in the
EDGARv6.1 emission inventory, is significant. It is, how-
ever, striking to note that the PMF model features a residual
that is of similar magnitude to the PM2.5 and PM10 emissions
attributed to power generation in the EDGARv6.1 inventory.
Power generation is believed to be the dominant source of
secondary sulfate aerosols (Atabakhsh et al., 2023), which
are the largest contributor to the secondary-inorganic-aerosol
burden during the monsoon season (Cash et al., 2021). It
is, hence, likely that much of our PMF residual can be at-
tributed to this source. While a portion of this residual, par-
ticularly during post-monsoon season, may also comprise
secondary ammonium nitrate, to which power generation,
the transport sector, and industrial NOx and NH3 emissions
contribute (Alanen et al., 2017; Link et al., 2017), ammo-
nium nitrate formation is not thermodynamically favoured
during the warm months of the year. The proportion of
emissions attributed to power generation in REASv3.2.1 is
much smaller than that pertaining to EDGARv6.1, likely be-
cause REASv3.2.1 overlooks several coal generation units
that were commissioned between 2015–2018.

Our PMF results identify road construction and asphalt
pavements as additional VOC sources that are currently not
reflected in emission inventories.
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4 Conclusions

This study presents source apportionment results derived
from applying the PMF model to a recently acquired high-
quality dataset of PM2.5, PM10, and 111 VOCs. The lat-
ter were measured using a new extended-volatility-range
PTR-TOF-MS instrument, PTR-TOF 10k, during the mon-
soon and post-monsoon seasons of 2022 in Delhi, one of
the world’s most polluted megacities. We found that the
top-ranked major emission sources differed between the gas
phase and aerosol phase, highlighting the complexity of air
pollution sources in such atmospheric environments. While
the burning of fresh paddy was a negligible source of VOCs
(6 %), it was the largest source of PM2.5 and PM10 (23 %
and 25 %, respectively) in the Delhi NCR during our study
period. This is likely because the combustion of phytolith-
containing rice straw triggers the formation of coarse-mode
ash (Fig. S10), which contributes significantly to the PM
burden. PM2.5 and PM10 are the two criteria air pollutants
regulated under the National Ambient Air Quality Standard
that are thought to be the leading contributors to the air
pollution emergency that occurs each year in November in
Delhi (Khan et al., 2023). The strong correlation of PM2.5
and PM10 with same-day fire counts and VOC emission sig-
natures of fresh paddy-burning plumes indicates that fires
burning in and within the vicinity of the Delhi NCR, along
with plumes reaching the receptor on the same day, were the
strongest contributors to high pollution levels compared to
plumes from more distant areas, such as Punjab (India) and
Punjab (Pakistan). Both are located northwest of the Delhi
NCR and are thought to be major contributors to the pollu-
tion levels because the detected fire activity in these locations
is more prevalent. Furthermore, PM2.5 and PM10 emissions
from residential heating and waste burning (24 % and 23 %)
rival those from crop residue burning, and, unlike paddy-
residue-burning emissions, which are episodic, this activ-
ity persists into winter. While popular perception generally
blames burning in Punjab for the high PM burden due to
paddy stubble burning, our PMF results reveal that, despite
much lower fire counts across the eastern IGP (17 810) com-
pared to those across the northwestern IGP (61 334), both
are significant sources of paddy-stubble-burning PM in the
Delhi NCR. Additionally, sources that are generally targeted
by clean-air action plans, such as tailpipe exhaust emissions
of private vehicles and industries, are responsible for less
than one-quarter of the PM mass loading that can be traced
using gas-phase organic molecular tracers. Instead, the trans-
port sector’s PM emissions are dominated by non-exhaust
emissions, such as those arising from road dust suspension,
brake wear, and tyre wear of the CNG-fuelled commercial-
vehicle fleet, which, according to a recent emission inventory
for Delhi, are 1 order of magnitude higher than the transport
sector’s tailpipe exhaust emissions (Nagpure et al., 2016).

The PMF results based on primary in situ data indicate that
the EDGARv6.1 inventory provides a better representation of

emissions than REASv3.2.1 for most sectors, with the excep-
tion of transport sector emissions and VOC emissions from
solvent use. Agricultural burning emissions over the north-
western IGP are best represented in FINNv2.5 (Wiedinmyer
et al., 2023), while agricultural emissions over the southeast-
ern IGP are better captured by EDGARv6.1. At present, none
of the residential-sector inventories seem to have incorpo-
rated the changes in magnitude and spatial patterns due to the
adoption of cleaner cooking technology interventions since
2018. Transport sector non-exhaust emissions are still absent
(REASv3.2) or underestimated (EDGARv6.1) in all inven-
tories. For VOC emissions from solvent usage, REASv3.2
provides better estimates than EDGARv6.1. Our PMF re-
sults also reveal that the road construction sector contributes
significantly (9 %–10 %) to the VOC burden, but this has
not been addressed in any emission inventories so far, and
our study, by including measurements of specific molecular
markers of this activity, has been able to provide new strate-
gic insights into this missing source.

Considerable portions of the PM10 (18 %) and PM2.5
(28 %) loads are connected to residual sources that are not
directly related to combustion tracers. These contributions
are likely due to windblown dust transported over long dis-
tances (Pawar et al., 2015) as well as secondary inorganic
aerosols, such as ammonium sulfate and ammonium nitrate,
whose precursors are primarily emitted from power plants.
Despite the fact it includes the most comprehensive set of or-
ganic species that have been measured in Delhi to date, our
study does not include similar information about these other
species.

Residential heating and waste burning were identified as
two of the largest contributors to PM pollution, with these
sources being active year-round, although their strengths
vary depending on the season. The total contribution of
residential-sector solid-fuel usage and waste burning (17 %
in Delhi and 18 % in Mohali) to the VOC burden during
the post-monsoon season was similar at both sites. Thus, tar-
geting these sources through improved access to cleaner en-
ergy sources for heating and cooking would likely improve
air quality significantly in other seasons. Similarly designed
quantitative studies are needed in the future to confirm this
hypothesis.

The findings and insights from this study emphasize the
necessity for a comprehensive, multi-sectoral approach to re-
duce primary emissions. While many recent efforts in some
sectors (e.g. residential biofuel and cooking) appear to have
yielded emission reduction benefits, the narrative of exclu-
sively blaming more visible sources (e.g. paddy residue burn-
ing) for post-monsoon pollution needs to be corrected to en-
sure that other sources are also mitigated. Our findings sup-
port the assertions of Ganguly et al. (2020), who pointed out
previously that it is crucial to address the disparity between
primary targets of clean-air action plans and actual dominant
sources of PM rather than solely focusing on specific sources,
such as agricultural-residue burning or transport emissions.
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Future action plans need to account for more targeted and im-
pactful pollution control measures and should adopt a more
comprehensive approach to address the diverse urban sources
highlighted in this study, such as industries, residential solid-
fuel/waste burning, non-exhaust road emissions, and emis-
sions from road construction.

This new approach of combining VOC tracers with PM
measurements provides great potential for improved source
apportionment in complex emission environments, offer-
ing a level of detail beyond simply attributing emissions
to biomass burning or fossil fuel burning, as has been
done in all previous studies from the region to date. Pre-
viously in the Delhi NCR, Kumar et al. (2022) identi-
fied “cooking-related” organic aerosols using extractive-
electrospray-ionization time-of-flight (EESI-TOF) analysis,
but due to analytical limitations, they only reported quan-
titative data for three primary factors (i.e. HOA and the
biomass-burning organic aerosols BBOA-1 and BBOA-2),
without naming the activities responsible for the formation
of BBOA-1 and BBOA-2. One of the more comprehensive
studies based on aerosol mass spectrometry (AMS) was con-
ducted by Cash et al. (2021) across pre-monsoon, monsoon,
and post-monsoon seasons of the year 2018; however, it only
identified three different primary biomass-burning factors,
namely cooking organic aerosol (6 % of PM1), solid-fuel or-
ganic aerosol (≤ 11 % of PM1), and semi-volatile biomass-
burning organic aerosol (≤ 13 % of PM1), which broadly ap-
pear to correspond to our factors for solid-fuel-based cooking
(4 % of PM10), residential heating and waste burning (23 %
of PM10), and paddy residue burning (25 % of PM10). Nev-
ertheless, the study failed to name and attribute two of these
three factors in policy-relevant ways, could not identify the
significant contribution of coarse-mode fly ash to the total
aerosol burden, and was unable to distinguish between dif-
ferent fossil-fuel-related sources. Our study design, which
captured contrasts between clean monsoon air and polluted
post-monsoon air and included measured VOC source fin-
gerprints and molecular tracers, enabled us to distinguish
paddy residue burning from other biomass-burning sources
and resolve similar traffic emission sources (e.g. by distin-
guishing two-wheelers from four-wheelers and CNG vehi-
cles). This represents a significant advancement compared to
existing source apportionment studies and could be of great
relevance in other complex emission environments suffering
from high levels of air pollution, where quantitative knowl-
edge of sources can lead to evidence-based efforts for emis-
sion reduction prioritization and a better understanding of the
atmospheric chemistry of polluted environments around the
world.
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