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Abstract. Future African aerosol emissions, and therefore air pollution levels and health outcomes, are uncer-
tain and understudied. Understanding the future health impacts of pollutant emissions from this region is crucial.
Here, this research gap is addressed by studying the range in the future health impacts of aerosol emissions
from Africa in the Shared Socioeconomic Pathway (SSP) scenarios, using the UK Earth System Model ver-
sion 1 (UKESM1), along with human health concentration–response functions. The effects of Africa following a
high-pollution aerosol pathway are studied relative to a low-pollution control, with experiments varying aerosol
emissions from industry and biomass burning. Using present-day demographics, annual deaths within Africa
attributable to ambient particulate matter are estimated to be lower by 150 000 (5th–95th confidence interval of
67 000–234 000) under stronger African aerosol mitigation by 2090, while those attributable to O3 are lower by
15 000 (5th–95th confidence interval of 9000–21 000). The particulate matter health benefits are realised pre-
dominantly within Africa, with the O3-driven benefits being more widespread – though still concentrated in
Africa – due to the longer atmospheric lifetime of O3. These results demonstrate the important health co-benefits
from future emission mitigation in Africa.

1 Introduction

Anthropogenic emissions of aerosols, their precursors, and
reactive gases have substantial impacts on the climate. These
impacts include a general aerosol cooling and, to a lesser
extent, warming due to tropospheric O3 (Thornhill et al.,
2021; Smith et al., 2020), as well as shifts in circulation pat-
terns such as monsoons (Kasoar et al., 2018; Shawki et al.,
2018; Wang et al., 2016; Liu et al., 2018). In addition to their
climate effect, aerosols contribute to fine particulate matter
air pollution, termed PM2.5 to denote particles with diame-

ters less than 2.5 µm (Turnock et al., 2020). Reactive gases
also modify concentrations of O3, which is another impor-
tant climate forcer and air pollutant (von Schneidemesser
et al., 2015). Due to their relatively short lifetimes, the ef-
fects of aerosols on the climate and human health depend
on their emission location (Persad and Caldeira, 2018), with
the health impact being particularly localised (Shindell et al.,
2018). Since these species are co-emitted with greenhouse
gas emissions, general climate change mitigation policies can
lead to health co-benefits via reduced air pollution (Shindell
et al., 2018).
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The continent of Africa features a complex mix of air pol-
lutant sources, both natural – such as dust from, for exam-
ple, the Sahara – and anthropogenic, with continent-specific
complexities such as imported second-hand high-emission
vehicles (Abera et al., 2021). There is a broad range of possi-
ble future African pollutant emission pathways (Abera et al.,
2021), some of which involve drastic increases in pollutants
in key regions (Turnock et al., 2020). Recent and likely fu-
ture dynamics of urbanisation can also be expected to drive
enhanced exposure to air pollutants (Abera et al., 2021; Ka-
toto et al., 2019). Reducing air pollution impacts in develop-
ing countries is a key component of the Sustainable Devel-
opment Goals (Coker and Kizito, 2018).

The wide range of potential future African air pollutant
emissions suggests concurrently disparate possible air pol-
lution impacts over the continent. Despite this, studies as-
sessing the human health impact of air pollution over Africa
are sparse, especially those focused on outdoor air pollution
(Abera et al., 2021), inhibiting the creation of appropriate
concentration–response functions (CRFs) (Chen and Hoek,
2020; Abera et al., 2021; Katoto et al., 2019; Coker and Kiz-
ito, 2018). Observational data of air pollution in Africa are
sparse (Coker and Kizito, 2018), with issues on data avail-
ability (Pinder et al., 2019) and structural barriers to reli-
able data collection (Pinder et al., 2019; Katoto et al., 2019).
Strong intra-regional disparities in research persist, with two
reviews finding over half of all studies measuring outdoor air
pollution impacts in sub-Saharan Africa focusing on a sin-
gle country (South Africa) and large areas entirely unstudied
(Katoto et al., 2019; Coker and Kizito, 2018).

This study, while recognising the inadequacy of extant ex-
posure research to effectively assess the effect of air pollu-
tants in Africa, utilises recent CRFs for PM2.5 (GBD 2019
Risk Factors Collaborators, 2020), which incorporated high-
air-pollution cohort studies from the Global South. This al-
lows for a more accurate investigation of the effect of air pol-
lution on human health in Africa than previously possible.

Global annual average PM2.5 concentrations have
increased 15 %–20 % since the pre-industrial era to
6.9± 1.5 µg m−3 (Turnock et al., 2020) and are thought to
still be slightly increasing in recent decades by 0.2 % yr−1,
particularly over Asia and southern Africa (Gliß et al.,
2021). The average concentration experienced by hu-
mans is much higher than this global average, due to
the co-location of anthropogenic sources with population
centres; 69 % of people are estimated to be exposed to
PM2.5 concentrations higher than 10 µg m−3 (Lelieveld
et al., 2013), with an average population-weighted PM2.5
exposure of 38 µg m−3, reducing to just 11 µg m−3 when
excluding fossil fuel emissions (Vohra et al., 2021). The
World Health Organisation recommends limiting long-term
exposure to less than 5 µg m−3 (World Health Organisation,
2021), lowered in 2021 from their previous threshold of
10 µg m−3, though there is no known safe level of PM2.5
concentrations (Silva et al., 2013). Present-day human

health impacts of PM2.5 are substantial but uncertain, with
estimates varying from 2.37 (1.33–2.93) million deaths yr−1

(Partanen et al., 2018) to the more recent finding of 8.7
(−1.8 to 14.0) million deaths yr−1 (Vohra et al., 2021). In
other studies, 3.61 (2.96–4.21) million deaths yr−1 have
been attributed to fossil fuel PM2.5 alone (Lelieveld et al.,
2019), and the Global Burden of Disease 2019 (hereafter
GBD2019) estimated PM2.5-attributable deaths to be 4.14
(3.55–4.80) million deaths yr−1 (GBD 2019 Risk Factors
Collaborators, 2020).

Anthropogenic activity has also increased annual average
surface concentrations of O3, by 11.7 ppb (parts per billion)
to the present-day levels of 29.9 ppb (Turnock et al., 2020).
The lifetime of O3 is longer than that of PM2.5, but its ef-
fects are still strongly co-located with anthropogenic activ-
ity, with a population-weighted maximum 6-month average
1 h daily maximum concentration of around 57 ppb (Anen-
berg et al., 2010). Impacts of O3 on premature mortality have
been estimated to be 0.7± 0.3 million deaths yr−1 (Anen-
berg et al., 2010) and 0.38 (0.12–0.73) million deaths yr−1

(Silva et al., 2016), using the same CRFs (Jerrett et al.,
2009). Using more recent CRFs (Turner et al., 2016)
0.6± 0.1 million deaths yr−1 were attributed to O3-linked
respiratory causes (Shindell et al., 2018), and GBD2019
attributed 0.365 (0.175–0.504) million deaths yr−1 to O3,
purely from chronic obstructive pulmonary disease (COPD)
(GBD 2019 Risk Factors Collaborators, 2020). Note that O3
concentrations presented in this study are annual average of
the daily maximum 8 h mean concentration to be consistent
with the CRFs used.

Future impacts of air pollutants will depend on both emis-
sions and demographic changes. The reduced air pollution
from measures targeting the direct lowering of carbon emis-
sions rather than relying on negative emission technolo-
gies would prevent 93± 41 million deaths from PM2.5 and
60± 18 million deaths from O3 over the 21st century (Shin-
dell et al., 2018). Measures compatible with 2 ◦C warm-
ing are projected to reduce life years lost due to PM2.5 by
0.7 million years per year in Europe by 2050 compared to
a business-as-usual scenario, despite population increases
(Schucht et al., 2015). Air pollutant emission decrease into
the future in all the CMIP5-era Representative Concentration
Pathway (RCP) scenarios, with reduced future air-pollution-
linked mortality (Silva et al., 2016). However, the range in
aerosol emissions between the different RCP scenarios is
far smaller than that covered by the newer Shared Socioe-
conomic Pathways (SSPs) (Gidden et al., 2019), which ex-
tend the RCP framework to include different socioeconomic
and demographic trends and are projected to have substan-
tially different air pollution impacts on human health (Im et
al., 2023). Thus, the future range of possible human health
impacts of air pollution is larger under more recent, less ex-
plored, scenarios.

Several previous studies have investigated the human
health impacts of changes in global emissions but predom-
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inantly consider the global response. The effect of the newer
SSPs on human health has also yet to be studied in detail with
the latest CRFs.

The current study addresses these gaps using the SSPs to
investigate the potential future impacts of African emissions
on air pollution, both within and beyond the continent. Using
the UK Earth System Model version 1 (UKESM1), a strong
mitigation scenario was compared to three alternative emis-
sion scenarios, each substituting a subset of pollutant emis-
sions over Africa for a weak mitigation equivalent.

2 Methods

2.1 Earth system model

This study uses the UK Earth System Model version 1
(UKESM1), a fully coupled global climate model used in
the CMIP6 (Coupled Model Intercomparison Project phase
6) exercise. UKESM1 couples the ocean module NEMO
(Nucleus for European Modelling of the Ocean) to its at-
mospheric module GA7.1 (Global Atmosphere 7.1) and the
land module GL7 (Global Land version 7), with further
couplings to Earth system components such as the biogeo-
chemical scheme (Sellar et al., 2019). Its horizontal reso-
lution is 1.875◦× 1.25◦, with 85 vertical levels. The atmo-
spheric scheme features interactive chemistry, with 291 re-
actions and 84 species (Archibald et al., 2020). This is cou-
pled to the Global Model of Aerosol Processes (GLOMAP)-
mode aerosol scheme, which simulates the concentrations of
black carbon (BC), organic carbon (OC), sulfate, sea salt,
primary marine organic aerosol (PMOA), and secondary or-
ganic aerosol (SOA) in five lognormal modes in total, with
four soluble and one insoluble (Bellouin et al., 2013; Mulc-
ahy et al., 2020). The GLOMAP mode is a two-moment
scheme, calculating both aerosol mass and number concen-
tration, allowing different processes to impact these indepen-
dently; it simulates both aerosol direct and indirect effects
(Mann et al., 2010), with broader semi-direct effects enabled
via the coupling to the dynamical atmosphere. Dust is treated
separately within UKESM1 via the older one-moment (mass
only) CLASSIC scheme (Bellouin et al., 2011).

UKESM1’s representation of surface PM2.5 and O3 has
been evaluated in relation to observations and other models
(Turnock et al., 2020; in particular, their Figs. 3–8). In ar-
eas that are well sampled with surface PM2.5 measurements,
UKESM1 is consistent with other CMIP6 models, exhibiting
a low bias in PM2.5 in Eastern Europe and North America by
around 2–10 µg m−3. Over oceans, PM2.5 is also systemati-
cally low, but the picture over other land areas is mixed when
compared to MERRA (Modern-Era Retrospective Analy-
sis for Research and Applications) reanalysis. In the multi-
model mean, PM2.5 concentrations over northwest Africa are
too low (Turnock et al., 2020), while those over eastern and
southern Africa are too high by around 2–15 µg m−3 between
models. Concentrations over Asia are also generally too high,

with all bias patterns roughly similar between December to
February (DJF) and June to August (JJA). UKESM1 is typi-
cal in its PM2.5 bias across most regions, including northern
Africa. In sub-Saharan Africa, however, it exhibits a stronger
seasonal cycle than other models, with the main biomass
burning seasons featuring substantially higher PM2.5 concen-
trations than other models and the observational best esti-
mate. Simulated PM2.5 concentrations are up to 50 % higher
than the multi-model and observational means in July and
January, though they still lie close to the wide observational
range. The areas of high biases in CMIP6 are areas with high
background PM2.5 and large ranges in simulated concentra-
tions across CMIP6, with inter-model standard deviations of
over 20 µg m−3 in the most polluted areas of northern and
central Africa.

CMIP6 models generally exhibit high biases in surface O3,
overestimating North American, European, and East Asian
concentrations by around 10 ppb in DJF and JJA compared
to surface observations (Turnock et al., 2020). UKESM1 has
typical biases in JJA (i.e. high) but overestimates the ampli-
tude of the seasonal cycle, becoming the only one of five
CMIP6 models studied by Turnock et al. (2020) to exhibit
a low bias over northern hemispheric land. As for PM2.5,
the areas with the largest concentrations and inter-model
standard deviations are the high-emission regions in Africa
and Asia. UKESM1’s representation of O3 over sub-Saharan
Africa is much closer to the multi-model mean; the lack of
local surface observations precludes a full evaluation, though
the sole observational station in South Africa closely tracks
the model’s regional averages (Fig. 4 in Turnock et al., 2020).
Aerosol optical depth (AOD) in UKESM1 is consistent with
satellite observations in low-AOD areas but is biased low
over some areas with strong aerosol emissions such as West
Africa (Mulcahy et al., 2020).

2.2 Experiments

This study uses the Shared Socioeconomic Pathway (SSP)
emission trajectories to estimate the future health impact
of different African emission pathways. The SSPs are de-
noted SSPx− y, with x being an integer referring to one of
five socioeconomic narrative pathways to explore different
non-climate societal evolutions, and y denoting the top-of-
atmosphere (TOA) radiative forcing in 2100 under a particu-
lar mitigation scenario (O’Neill et al., 2017). The SSPs there-
fore explore a range of future possible trajectories covering
both socioeconomic and mitigation trends. This project uses
SSP119 as a control scenario. Designed to be roughly consis-
tent with strong mitigation under the Paris Agreement, this
follows socioeconomic trajectory 1 – “sustainability” (van
Vuuren et al., 2017) – along with broad emission reductions
to approximately reach 1.9 W m−2 radiative forcing in 2100.
To test the effect of weaker mitigation in Africa for different
sets of emissions, three experiments are simulated, switch-
ing out the SSP119 aerosol and reactive gases emissions over
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Africa for their SSP370 equivalent. SSP370 follows the so-
cioeconomic trends in narrative 3 – “regional rivalry” (Fuji-
mori et al., 2017) – coupled with weak mitigation, leading
to a TOA radiative forcing of around 7 W m−2 in 2100. The
three experiments performed are named after the SSP370
emission subset which is substituted over Africa; the full set
of experiments is as follows:

Control, with SSP119 globally;

AerAll, which is the control with African aerosol emis-
sions from SSP370;

AerNonBB, which is the control with African non-
biomass burning aerosol emissions from SSP370;

AerBB, which is the control with African biomass burn-
ing aerosol emissions from SSP370.

AerAll indicates that all aerosol and reactive gas emissions
over Africa are substituted with SSP370, while emissions
over all other areas, and for other climate forcers such as
well-mixed greenhouse gases (GHGs) over Africa, are kept
at their SSP119 values as in the control. AerBB then switches
out just the biomass burning (BB) components of aerosols
and reactive gases, and AerNonBB changes only the non-BB
emissions (i.e. fossil fuel and biofuel) over Africa. Note that
the terminology of non-BB is used in this paper to refer to the
non-biomass-burning emissions themselves (i.e. those from
fossil fuels and biofuels), which are changed in both AerAll
and AerNonBB, and so the effects of changed non-BB emis-
sions are found under both experiments. BB, similarly, refers
to biomass burning emissions that changed in both AerAll
and AerBB. Non-BB emissions are purely anthropogenic,
while those from biomass burning are complexly related to
human activity, particularly over Africa (Bauer et al., 2019),
driving the counter-intuitive increase in BB emissions in the
stronger mitigation scenario. Pollutant concentrations are not
bias-corrected here, in order to determine the specific esti-
mation in UKESM1 and due to the sparse observations over
Africa. The focus is therefore on the relative impact of the
scenarios, while also contextualising the magnitudes in rela-
tion to prior studies.

The control scenario thus depicts a global future with
strong climate mitigation policies, leading to relatively
low greenhouse gas emissions and consequently low-air-
pollutant levels. Each of the alternative scenarios represents
a future in which Africa instead follows a more “pessimistic”
scenario in its emissions of air pollutant precursors, allowing
for an exploration of the health impacts of such a range in
future trajectories.

The aerosol emissions changed are BC and OC, and
the reactive gases are C2H6, C3H8, CO, dimethyl sulfide
(DMS), HCHO, Me2CO, MeCHO, NH3, NO, lumped non-
methane volatile organic compounds (NVOCs), and SO2. In
UKESM1, all of these emission species have both BB and

non-BB components, except for SO2, which has only a non-
BB component. All are emitted from the surface, except a
subset of BB BC and OC representing large fires, which are
injected vertically and uniformly from the surface to 3 km,
and aircraft NO emissions, which are injected in a 3D grid. It
should be noted that, since the aerosol and O3 precursors are
co-emitted with greenhouse gases, these scenarios changing
emission subsets are not realistic future scenarios. Instead,
the purpose is to investigate the range of plausible human
health impacts between scenarios, which are driven by the
species altered in these experiments.

Multiple ensemble members were simulated for each ex-
periment; each was initiated in 2015 with slightly different
atmospheric and ocean conditions to explore the internal cli-
mate variability. There are 10 ensemble members of SSP119
used for the control – five simulated for this study and five
taken from the UKESM1 CMIP6 experiments (Tebaldi et al.,
2021) – and seven of each of the other experiments are sim-
ulated. All simulations run the length of the SSP scenarios,
i.e. 2015–2100. The analysis of the health impacts here fo-
cuses on the effects in 2090. For the O3 impacts, the five
UKESM1 CMIP6 control members did not output the con-
centrations hourly, so only the five control experiments simu-
lated for this project were used for the control concentrations.
The local and remote climate impacts of these emission sce-
narios, plus additional scenarios changing CO2 emissions in
a similar manner, are explored in a separate paper (Wells et
al., 2023).

Figure S1 in the Supplement indicates the time evolution
of the aerosol and SO2 emissions over Africa and globally
in the control (black) and experiments (red), with the total
and BB carbonaceous aerosol shown. Also shown is maps of
the emission differences for carbonaceous aerosol and SO2.
Total carbonaceous aerosol emissions over Africa decline
quickly in the SSP119 control, consistent with general emis-
sion mitigation, whereas they remain roughly flat in SSP370.
This acts to dampen the general global decrease in emissions,
though they still almost halve at the global level through
the 21st century as the rest of the world follows SSP119.
The BB emission subset, however, shows the opposite (and
weaker) trend, with emissions remaining approximately con-
stant in SSP119 but declining in SSP370, while global emis-
sion decline in each case. This is inconsistent with the gen-
eral emission reductions in SSP119 and is reflective of the
more complex link between anthropogenic activity and BB
emissions than between human actions and non-BB emis-
sions. Different IAMs (integrated assessment models) were
used to produce the emission pathways for the different sce-
narios (IMAGE for SSP1 and AIM/CGE for SSP3; Fujimori
et al., 2017; van Vuuren et al., 2017); this makes a clear
understanding of the differences between complex emission
sources difficult, but it likely relates to different land use
activity in the scenarios. Non-BB emissions still dominate
the carbonaceous aerosol emission change, as indicated by
the larger overall carbonaceous emissions in SSP370 than
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SSP119 over Africa. The SO2 emission change features a
complex pattern, with emissions higher across most of the
continent in SSP370 than SSP119 but relatively lower over
southern Africa (except South Africa). In both cases, emis-
sions drop substantially overall, and the differing spatial
changes over Africa approximately cancel, resulting in little
overall emission difference between the scenarios. As with
the BB aerosol changes, the specific cause of the differing
trends in SO2 emissions is hard to discern, though it is driven
by stronger industrial SO2 emissions in SSP119 (Gidden et
al., 2018), indicating a projected faster industrialisation in
SSP119 than SSP370 in southern Africa.

2.3 Health impact analysis

Many studies utilise a common methodology to estimate the
human health impact of a given concentration, or change in
concentration, of pollutants (e.g. Anenberg et al., 2010; Shin-
dell et al., 2018). Cohort studies, tracking a large popula-
tion over many years, are used to produce empirically de-
termined concentration response functions (CRFs), linking
background air pollutant concentrations to the change in the
relative risk (RR) of dying from a particular cause of death
(COD). The RR at 0 concentration is 1 by definition and in-
creases monotonically above a low-concentration threshold
(LCT). The form of RR is constrained by the fit used to de-
rive the function. Early studies used exponential fits (Pope
et al., 2002), while others use linear relationships or power
laws (Pope et al., 2009; Ezzati et al., 2004), while more re-
cent studies use more complex functional forms (Burnett et
al., 2014, 2018).

While various co-founding factors are controlled for –
such as lifestyle and income level – it is not necessarily valid
to generalise a RR from a single cohort to the global scale.
This issue especially applies to the extrapolation of pollu-
tant concentrations to levels outside those experienced by
the cohort population. In particular, a large American Can-
cer Society cohort study was used to generate earlier RR
curves, but the highest PM2.5 concentrations that this co-
hort was exposed to were less than 30 µg m−3, lower than the
global population-weighted average of 38 µg m−3, as found
by Vohra et al. (2021). This gap can be bridged using data
from active smoking, but this assumes that a short, high-
exposure burst – from smoking individual cigarettes – has the
same health effect as a lower, continuous background con-
centration (Smith and Peel, 2010; Pope et al., 2009). More re-
cent studies use multiple cohort studies across a range of am-
bient exposures, significantly mitigating this issue (Burnett et
al., 2018; GBD 2019 Risk Factors Collaborators, 2020) and
rendering such CRFs more applicable to highly polluted re-
gions than prior estimates. At the other end of the exposure
range, the assumed LCT below which the RR is 1 (i.e. pol-
lutant concentrations below this have no human health ef-
fect) has decreased in consecutive studies, as cohorts in ever-
cleaner environments still exhibit significant effects of air

pollution; there is no biological justification for a threshold,
and more recent CRFs, including that used here, use a sta-
tistical distribution to represent the LCT (GBD 2019 Risk
Factors Collaborators, 2020).

The attributable fraction (AF) estimates the fraction of
deaths – of a particular COD – attributable to the air pollutant
exposure as follows (Mansournia and Altman, 2018):

AF = (RR− 1)/RR = 1 − (1/RR). (1)

Given a COD-specific RR curve, and common grids of sur-
face concentrations of the pollutant (either PM2.5 or O3),
baseline population (Pop), and mortality for a specific COD
(y0), the number of deaths attributable to the pollutant can be
estimated as

Deaths = y0 ·Pop ·AF. (2)

Equation (2) is applied at each grid cell to determine the es-
timated annual deaths within the cell.

The concentration–response functions used in this study
are taken from the Global Burden of Disease 2019 (hereafter
GBD2019; GBD 2019 Risk Factors Collaborators, 2020) for
PM2.5 and from Turner et al. (2016) for O3. While stud-
ies prior to GBD2019 imposed functional forms of varying
complexity on their CRFs, GBD2019 uses a Bayesian meta-
regression method to provide the fit, with only the assump-
tion that the CRF should be monotonic. Due to the uncer-
tainties regarding the existence and level of safe low concen-
trations of PM2.5, GBD2019 suggests the use of a uniform
distribution from 2.4–5.9 µg m−3 for the LCT, representing
the lowest and the 5th percentile concentrations found in
the background concentrations; this threshold is used in this
study. The GBD2019 dataset provides 1000 draws of the fit
for each COD–age pair with no threshold; an LCT from the
suggested uniform distribution was then randomly selected
for each draw to complete the distribution. These 1000 draws
represent the uncertainty in the CRF; the median, 5th, and
95th percentile impacts using these draws are calculated here
to explore this uncertainty.

GBD2019 provides CRFs for six COD for PM2.5: lung
cancer (LC), chronic obstructive pulmonary disease (COPD),
lower respiratory infection (LRI), type-2 diabetes (T2DM),
stroke, and ischemic heart disease (IHD). The latter two are
age-dependent on 5-year brackets; T2DM applies only to
populations over 25 years; and the other COD are applied
to the total population. The CRFs for PM2.5 apply to annual
average PM2.5 concentrations.

Following prior studies (Malley et al., 2017; Shindell et al.,
2018; GBD 2019 Risk Factors Collaborators, 2020), the CRF
for O3 in this study was taken from Turner et al. (2016) for
respiratory mortality, which includes COPD, LRI, upper res-
piratory infections, asthma, pneumoconiosis, interstitial lung
disease, pulmonary sarcoidosis, and other chronic respiratory
diseases. This CRF applies to populations over 30 years of
age and applies to the annual average of the daily maximum
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8 h mean concentration. An LCT of 26.7 ppb, the minimum
concentration found in the cohort studies used by Turner et
al. (2016), is applied here, with a sensitivity test carried out
applying an LCT of 31.1 ppb, representing the 5th percentile
in the underlying cohort data.

This study uses the following approximation for PM2.5:

PM2.5 = OC + BC + SO4+ 0.25 · SS + 0.1 · dust. (3)

This means that all carbonaceous and sulfate aerosol con-
tributes to PM2.5, but only 25 % of sea salt (SS) and 10 %
of dust are assumed to be shorter than 2.5 µm in diameter.
This approximation is used in AerChemMIP (Turnock et al.,
2020) and other studies (e.g. Allen et al., 2021).

Single years of pollutant concentrations, averaged across
the ensembles, were utilised in this study, namely 2015,
2050, and 2090. There are several reasons for the choice to
use single years rather than, for example, averaging over a
decade to smooth out interannual variability. The present-day
value needed to be centred around 2015, at the start of the
scenarios, since this is where the emissions start to diverge.
All simulations were initialised from 2015, so it would not
have been possible to use a larger window to average around
2015. If data past 2015 had been used, e.g. 2015–2025 for
the present day, then this would have introduced other issues.
Since the emission scenarios diverge from 2015, the choice
of scenario to take the data from would affect the results, and
this would not represent the present-day in the other scenar-
ios; in addition, the rapid decrease in emissions from 2015
in all scenarios would mean the 2015–2025 average would
be significantly lower than the concentrations in 2015 and
therefore not closely represent the conditions experienced by
the 2015 population distribution under present-day concen-
trations.

Population numbers from the SSPs in 2015 – equal be-
tween scenarios since the SSPs only diverge after 2015
– were used to ensure consistency across the methodol-
ogy (Lutz et al., 2018). Equation (2) is applied in each
model grid cell level, using the pollutant concentrations out-
put from UKESM1, so the country level population data
were re-gridded to the 1.875◦× 1.25◦ UKESM1 grid. To ap-
proximately preserve present-day within-country population
distributions, a high-resolution (0.25◦× 0.25◦) present-day
population file was used (CIESIN, 2018), and a country name
was assigned to each cell within this grid using a global
shapefile (Sandvik, 2008). The present-day population dis-
tribution within each country was then scaled to create the
correct total for each age–year pair, and these distributions
were then re-gridded to the UKESM1 grid resolution. Base-
line mortality data for each COD–age pair were applied at the
country level (IHME, 2020) and re-gridded to the UKESM1
grid using the global shapefile.

Present-day populations were used for the analysis for two
reasons. First, this was done to isolate the effect of changes in
emissions on human health. Second, while the SSPs include
population projections, they do not include future baseline

mortality estimates, and present-day mortality rates cannot
be assumed constant while populations and other social fac-
tors change significantly and differently between scenarios.

3 Results

3.1 Air pollution impact

Africa is a continent with a major presence of key pollutants
compared to the global average, as seen in Fig. S2. Based on
our UKESM1 simulations, the organic carbon (OC) contri-
bution to PM2.5 is generally highest in the tropical biomass
burning regions, peaking in Africa; this is also true for atmo-
spheric dust. The distribution of O3 is smoother than that of
PM2.5, owing to its longer lifetime, with the concentrations
again being higher than average near the main emission re-
gions in the low latitudes in Africa.

The changes in surface PM2.5 and O3 over Africa near the
end of the century (2090) for all simulations, split into contri-
butions from each component, are shown in Fig. 1. Figure S3
shows the corresponding time series of simulated pollutants
for Africa, its sub-region West Africa, and the neighbour-
ing region Europe, as well as for the whole globe. The sim-
ulations explore the change in pollution levels in scenarios
where the whole globe follows a strong mitigation pathway,
while Africa follows a more pessimistic policy pathway in
terms of its biomass burning aerosols (AerBB simulation;
though, as discussed in Sect. 2, these emissions are higher
in the control), non-biomass burning aerosols (AerNonBB),
and all aerosols combined (AerAll) (see Sect. 2). The car-
bonaceous aerosol increases under AerNonBB are near the
main non-biomass burning emission regions, especially in
West and East Africa, while reductions under AerBB are cen-
tred on the biomass burning regions north and south of the
Equator. AerAll then exhibits features of both. Sulfate shows
weaker changes, with the North African non-BB increased
emissions, contrasting with the reduced emissions south of
the Equator. Changes in dust are significant, with a substan-
tial decrease in areas with high background dust emissions.
This decrease in dust emissions is ultimately due to the im-
pact of the aerosol emissions on local surface winds, which
drives the emission of dust (see Fig. S4). O3 follows a simi-
lar pattern to the PM2.5 changes, as its concentration is mod-
ified by the reactive gases co-emitted with the anthropogenic
aerosol species.

3.2 Health impact

The estimated deaths in 2015 from PM2.5 (six causes of death
(COD); see Sect. 2) and O3 (respiratory illnesses only) per
1000 km2 are shown in the top row of Fig. 2. Table 1 indi-
cates global and regional totals. The control SSP119 exper-
iment is used for the air pollutant concentrations in 2015,
which is an arbitrary choice as the SSP emissions diverge
only after this year.
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Figure 1. The change in the organic carbon (OC), black carbon (BC), sulfate, and dust aerosol contributions to surface PM2.5, and O3, under
each emission scenario relative to the SSP119 control in 2090 over Africa. Stippling indicates areas where the ensemble mean change is
greater than 1 intra-ensemble standard deviation away from 0.
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Globally, 2.76 (2.11–3.48) million annual deaths are at-
tributed to PM2.5, with ischemic heart disease (IHD) being
the largest COD, followed by stroke, and 2.28 (1.73–2.70)
million to O3. Deaths are highest in areas where population
densities and pollutant concentrations are high, namely in
East and South Asia and in tropical Africa. The highest num-
ber of deaths attributable to PM2.5 and O3 exposure occur
in Asia; Africa experiences large impacts too, with 12 % and
7.4 % of the global total for PM2.5 and O3, respectively.

The second to fourth rows in Fig. 2 show the effect on
annual deaths per 1000 km2 in 2090 of the different emis-
sion scenarios, relative to the SSP119 control scenario, for
both PM2.5 and O3. Population distributions from 2015 are
used here to isolate the effect of the changed pollutants. The
spatial pattern of human health impacts is broadly consis-
tent with the emission changes, modulated by the population
distribution. AerNonBB features higher deaths across Africa
than in the control, particularly in the highly populated west
and east regions, due to future increases in fossil fuel emis-
sions. The decrease in dust emissions in the southern Sahara
leads to an overall reduction in PM2.5 – and therefore lower
health impacts – in this region (see Fig. S4). This indicates
that the indirect effects of pollutant emissions on atmospheric
circulation – and therefore natural dust emissions – can have
a substantial influence on their overall impact, as also noted
by, for example, Bauer et al. (2019) and Yang et al. (2017).
The lower future African biomass burning emissions in the
AerBB experiment compared to the control result in signifi-
cantly lower deaths across central and southern Africa. Still,
the co-location of fossil fuel emissions with population cen-
tres causes these emissions to dominate the overall impact in
AerAll.

Some remote impacts of the changed emissions are vis-
ible, with southern Europe and the Middle East exhibiting
consistent changes with those found in North Africa. The
impact in each scenario relative to the control on global and
African PM2.5 and O3 annual deaths in 2090 is shown in Ta-
ble 2, and the total deaths are shown in Fig. 3 over Africa and
globally, with additional regions in the Supplement. Overall,
Africa following SSP370 rather than SSP119 emissions leads
to around 150 000 (5th–95th confidence interval of 67 000–
234 000) additional annual deaths across Africa from PM2.5
and 15 000 (5th–95th confidence interval of 9000–21 000)
from O3 when the background populations are held constant.
In Africa, air pollutant trends are consistent with the impact
changes (Fig. S3). O3 is projected to approximately match
PM2.5 in its health impacts by 2090 in these scenarios, due
to the weaker decline in O3 levels than in PM2.5 (Fig. 3).
The short pollutant lifetime, coupled with internal variabil-
ity, causes the impacts outside Africa to be noisier than those
within the continent; note that only 1 year (2090) was used
for the analysis, as discussed in Sect. 2.3.

4 Discussion and conclusions

This study used the Earth system model UKESM1 to explore
the range of impacts from future African pollutant emissions
on air quality and premature mortality. Compared to SSP119,
SSP370 has much higher fossil fuel and biofuel emissions
but lower African biomass burning emissions; the reasons for
this are unclear and reflect methodological challenges within
the SSP framework. The increase in non-biomass emissions
far outweighs the decrease in biomass emissions, particu-
larly over population centres. To evaluate the human health
impacts of the future emissions, CRFs were used from the
recent GBD2019 study (GBD 2019 Risk Factors Collabora-
tors, 2020) for six COD for PM2.5 and Turner et al. (2016)
for O3 respiratory impacts. Estimates were calculated using
present-day demographics to isolate the effect of changes in
pollutants on a given population.

The methodology of this study is not directly compara-
ble to comprehensive estimates of the present-day impact of
air pollution, since only one model with no bias correction
is used here; the focus of the analysis is on the differences
between scenarios instead. However, the magnitude of the
estimated impacts can be contextualised against prior stud-
ies to explore the effect of these methodological differences.
Our estimate for total PM2.5-related deaths in 2015, of 2.76
(2.11–3.48) million, is generally lower than prior studies; its
central estimate is lower than some (Lelieveld et al., 2019;
Vohra et al., 2021; IHME, 2020; Im et al., 2023; Bauer et
al., 2019) and higher than at least one other (Partanen et
al., 2018). GBD2019 found higher impacts than those found
here, using the same CRFs but different PM2.5 concentra-
tions, and also including neonatal deaths. The dominance of
the uncertainties in CRF over those in PM2.5 concentrations
is consistent with prior research (Shindell et al., 2018).

The number of present-day respiratory deaths attributed
here to O3 exposure (2.28 (1.73–2.70) million) is gener-
ally higher than found in previous studies, e.g. Anenberg et
al. (2010) and Silva et al. (2016), which both used an earlier
CRF reflecting weaker associations between O3 and health
impacts (Jerrett et al., 2009) than that used here. Studies util-
ising the CRFs used in this study (Turner et al., 2016) also
find lower numbers of deaths than estimated here (Shindell
et al., 2018; GBD 2019 Risk Factors Collaborators, 2020;
Malley et al., 2017), likely due to higher O3 concentrations
in UKESM1 (see Sect. 2.1), but sparse observations preclude
a full evaluation. The estimated O3 impacts were not very
sensitive to changes in the LCT. The uncertainty in deaths
due to the uncertainty within each CRF (Table 1) is far larger
than that from intra-ensemble pollutant variations for both
PM2.5 and O3, consistent with prior studies determining the
CRF to be the largest source of uncertainty (Turnock et al.,
2016; Johnston et al., 2012; Li et al., 2016; Shindell et al.,
2018).

The effect of Africa following SSP370 rather than SSP119
is estimated to result in 150 000 additional annual deaths
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Figure 2. Top row shows the annual deaths per 1000 km2 attributable to air pollution for all COD for PM2.5 and respiratory illnesses for O3
in 2015. Subsequent rows show the impact of each scenario on 2090 deaths per 1000 km2 attributable to PM2.5 and O3 exposure relative to
the SSP119 control, using 2015 spatial and age-based population distributions. Stippling indicates areas where the change is greater than 1
intra-ensemble standard deviation away from 0.

from PM2.5 and 15 000 from O3, across Africa in 2090, when
using 2015 populations. Due to the large decrease in aerosol
emissions in SSP119, annual PM2.5 deaths could be similar
to those due to O3 by the end of the century. However, this
result may also be affected by the O3 biases.

Correcting for model biases in PM2.5 and O3 concentra-
tions in a CMIP6 model with low-biased concentrations was
found to substantially affect estimated health impacts (Im

et al., 2023), though this effect was strongest over high-
emission regions and dampened when using more recent
non-linear CRFs. The results of the scenarios in this study
should therefore be primarily interpreted relative to each
other, as the substantial differences between scenarios are
less affected by the model biases.

Present-day populations were used in this study to iso-
late the effect of changes in air pollutants alone and be-
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Table 1. Annual deaths (in thousands) in 2015 attributable to PM2.5, shown globally in total and for each COD separately, and the total
across several regions (definitions in Fig. S2) and those attributable to respiratory illnesses caused by O3 exposure globally and in several
regions. Also shown is the effect of using a low-concentration threshold (LCT, above which no harm is assumed; see Sect. 2) of 31.1 ppb
on global deaths for O3, instead of the 26.7 ppb used for the main results. Values are shown using the central CRF estimate and the 5th and
95th percentile CRF estimates, all from GBD2019 for PM2.5 and Turner et al. (2016) for O3. The uncertainty given for each estimate is the
estimated 5th–95th percentile range across the 10 control ensemble members, calculated as the standard deviation multiplied by 1.6449. The
region definitions are shown in Fig. S2.

Species Region COD Middle RR Low RR High RR
(thousands of (thousands of (thousands of
deaths yr−1) deaths yr−1) deaths yr−1)

PM2.5 Global All 2760± 30 2110± 30 3480± 30
COPD 310± 4 245± 4 377± 4
IHD 920± 10 697± 9 1190± 10
LC 196± 3 148± 3 247± 3
Stroke 870± 10 690± 10 1060± 10
T2DM 197± 1 145± 1 254± 1
LRI 264± 6 184± 5 361± 8

PM2.5 Africa All 340± 10 250± 10 430± 10
Europe 58± 6 22± 3 111± 9
Asia 2180± 30 1730± 20 2660± 30
West Africa 121± 9 93± 8 150± 10

O3 Global Respiratory 2280± 30 1730± 30 2700± 30
Global 31.1 ppb 2160± 30 1630± 30 2570± 40
Africa 169± 3 125± 3 204± 4
Europe 139± 5 100± 3 172± 5
Asia 1680± 30 1290± 20 1970± 30
West Africa 46± 1 34± 1 55± 1

Table 2. Effect of each scenario, relative to the control, in thou-
sands of annual PM2.5 and O3 deaths in 2090 globally and just over
Africa, using 2015 populations and the central CRF. Values are bold
when they are more than 1 intra-ensemble standard deviation away
from 0. The African region definition is shown in Fig. S2.

PM2.5 (thousands of O3 (thousands of
deaths in 2090) deaths in 2090)

Experiment Global Africa Global Africa

AerNonBB 130 154 23 24
AerBB −44 −2 −22 −18
AerAll 151 152 25 15

cause of the difficulties in projecting changes in mortality
rates. Increasing and ageing future populations will lead to
higher estimated deaths and hence larger reductions in deaths
upon emission mitigation. In SSP1, the present-day African
population of 1 billion increases to around 1.7 bn by 2070,
before declining slightly; in SSP3, it increases throughout
the century, reaching 4 bn by 2090 (Lutz et al., 2018). Pro-
jected urbanisation (Jiang and O’Neill, 2017) will increase
the co-location of population centres and emissions, increas-
ing the human health impacts of air pollution (Silva et al.,

2017). This co-location is already dampened by the coarse-
model grid, which reduces the estimated impacts (Li et al.,
2016; Likhvar et al., 2015), an effect which will be more
pronounced for PM2.5 than for ozone (Malley et al., 2017).
Prior work has found changes in populations play a compa-
rable role to those in emissions in the SSPs (Im et al., 2023),
though this estimate assumed the persistence of present-day
baseline mortality rates.

Relatively higher non-BB aerosol south of the Sahara
weakened the local surface circulation, reducing dust emis-
sions sufficiently to reduce overall PM2.5 levels (and hence
deaths) in some areas, demonstrating the importance of ac-
counting for natural aerosols and circulation impacts when
estimating the impacts of emission changes (Bauer et al.,
2019; Yang et al., 2017). This effect will likely vary substan-
tially between models, due to differing aerosol impacts and
parameterisations of dust emissions.

The CRFs used in this study are generated by combining
multiple cohort studies (GBD 2019 Risk Factors Collabora-
tors, 2020). The more recent CRFs used here cover a wider
range of air pollutant concentrations than those in earlier
studies, but there are still limitations in the representativeness
of the input data used to generate the CRFs, stemming from
structural and historic challenges in air pollution research in
Africa (Abera et al., 2021; Katoto et al., 2019; Coker and
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Figure 3. Annual PM2.5- and O3-attributable deaths in the control in 2015 and each scenario in 2050 and 2090, globally and over Africa,
using 2015 spatial and age-based population distributions. The bars indicate the estimated deaths using the central CRF estimates; the crosses
and stars use the 95th and 5th percentile CRF values respectively. For each CRF value, the (much smaller) uncertainty due to intra-ensemble
variation in pollutant concentrations is indicated with vertical error bars. This intra-ensemble variation is defined as the estimated 5th–95th
percentile range across the 10 control ensemble members, calculated as the standard deviation multiplied by 1.6449. The African region
definition is shown in Fig. S2.

Kizito, 2018; Pinder et al., 2019). Further research charac-
terising appropriate CRFs for use in disparate regions is es-
sential to generate more reliable estimates of air pollution
impacts. If BC has a higher toxicity (Lelieveld et al., 2015;
Coker and Kizito, 2018), future air pollutant impacts per unit
change in PM2.5 concentrations would be reduced as the BC
share of PM2.5 declines and the effect of PM2.5 mitigation
therefore enhanced.

UKESM1’s horizontal resolution is coarser than the rele-
vant scales for localised air pollutants from different sources,
as the distinction between rural/urban and emissions from ve-

hicles, factories, and domestic fuel is dampened by averaging
across the model grid cells. Global models are incapable of
resolving these distinctions, which are of relevance for pol-
icy and behavioural considerations. Models of this resolution
still clearly resolve distinctions between high- and low-air-
pollutant regions (Fig. 1), and this method has been applied
in many prior studies, often at coarser resolutions, to generate
understandings of the global mortality impact of air pollution
(Shindell et al., 2018; Lelieveld et al., 2019, 2013; Vohra et
al., 2021; Silva et al., 2016; Partanen et al., 2018; Anenberg
et al., 2010; Silva et al., 2017).
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Pollutant concentrations from single years were used to
estimate the health impacts (see Sect. 2). While the intra-
ensemble mean was used, the variation in the concentrations
manifests in large variations in the projected impacts over
heavily populated regions, which had no emission change in
our experiments, such as in Asia.

The effect of different future African emission pathways
on human health is large; reductions in the anthropogenic
African aerosol emissions through climate mitigation within
the range of the SSPs can reduce annual deaths by 150 000
for PM2.5 and 15 000 for O3, compared to a more polluted
pathway, using present-day demographics. These values can
be expected to be larger under future increasing and ageing
populations. These results are focused on 2090, but the rapid
emission drop in SSP119 suggests that significant benefits
would occur much faster under such a scenario. Substantial
near-term localised reductions in the impacts of air pollution
could therefore be obtained as co-benefits of climate change
mitigation in Africa.
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