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Abstract. Emissions from biomass burning are a significant source of air pollution, which can adversely impact
air quality and ecosystems thousands of kilometres downwind. These emissions can be estimated by a bottom-up
approach that relies on fuel consumed and standardized emission factors. Emissions are also commonly derived
with a top-down approach, using satellite-observed fire radiative power (FRP) as a proxy for fuel consumption.
Biomass burning emissions can also be estimated directly from satellite trace gas observations, including carbon
monoxide (CO). Here, we explore the potential of satellite-derived CO emission rates from biomass burning and
provide new insights into the understanding of satellite-derived fire CO emissions globally, with respect to differ-
ences in regions and vegetation type. Specifically, we use the TROPOMI (Tropospheric Monitoring Instrument)
high-spatial-resolution satellite datasets to derive burning CO emissions directly for individual fires between
2019 and 2021 globally. Using synthetic data (with known emissions), we show that the direct emission estimate
methodology has a 34 % uncertainty for deriving CO emissions (and a total uncertainty of 44 % including wind
and CO column uncertainty). From the TROPOMI-derived CO emissions, we derive biome-specific emission co-
efficients (emissions relative to FRP) by combining the direct emission estimates and the satellite-observed FRP
from the Moderate Resolution Imaging Spectrometer (MODIS). These emission coefficients are used to establish
annual top-down CO emission inventories from biomass burning, showing that Southern Hemisphere Africa has
the highest CO biomass burning emissions (over 25 % of global total of 300–390 Mt(CO) yr−1 between 2003–
2021), and almost 25 % of global CO biomass burning emissions are from broadleaved evergreen tree fires. A
comprehensive comparison between direct estimates, top-down and bottom-up approaches, provides insight into
the strengths and weaknesses of each method: FINN2.5 has higher CO emissions, by a factor between 2 and 5,
than all other inventories assessed in this study. Trends over the past 2 decades are examined for different regions
around the globe, showing that global CO biomass burning emissions have, on the whole, decreased (by 5.1 to
8.7 Mt(CO) yr−1), where some regions experience increased and others decreased emissions.
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1 Introduction

Emissions from biomass burning are a significant source
of air pollution in the global atmosphere. These emissions
are transported over large distances and, thus, can adversely
impact air quality and ecosystems thousands of kilometres
downwind (e.g. Landis et al., 2018; Meng et al., 2019).
Health impacts are typically more severe in close proximity
to the fires; however, health impacts from transported smoke
plumes have also been reported (Matz et al., 2020). In more
recent years an increase in fire activity in North America
has been recorded (e.g. Romero-Lankao et al., 2014; Lan-
dis et al., 2018). The driving factors of this increase (in
North America) include droughts, higher temperatures, and
fuel loading caused by tree death (Littell et al., 2009; West-
erling, 2016). This trend may continue due to climate change
(Liu et al., 2013; Wotton et al., 2017). Biomass burning emis-
sions are associated with large uncertainties (Andreae, 2019),
which lead to a growing demand for improved knowledge of
biomass burning emissions.

Biomass burning emissions (e.g. from wildfires) can be es-
timated by either a bottom-up or top-down approach. For the
bottom-up estimates proxies, such as fuel type, area burned,
and emission factors (EFs), are used to determine the emis-
sions; these emissions are determined by

Ei = activity×EFi,f , (1)

where the emissions (Ei) account for mass of fuel consumed
in combustion (kg), which are based on fire activity (which
includes factors such as the burned area, fuel loading, fuel
classification, and a combustion factor), and EFi,f (g kg−1) is
the emission factor for a specific chemical species (i), which
is typically a function of fuel type (f ) (sometimes it can
be dependent on the combustion type as well, i.e. flaming
and smoldering). An example of this type of fire emission
inventory is the Fire INventory from NCAR (FINN; Wied-
inmyer et al., 2011). Biomass burning emissions are also
commonly derived with a top-down approach, using satellite
information to estimate biomass burning emissions, some-
times in near-real time. The Global Fire Assimilation Sys-
tem (GFAS; Kaiser et al., 2012) is an example of such a sys-
tem, wherein satellite-observed fire radiative power (FRP, in
units of W) or its time integral, fire radiative energy (FRE,
in units of J), is used as a proxy for fuel consumption. Us-
ing a satellite remote-sensing FRP together with a species-
specific emission coefficient (ECi) is a common approach
for top-down fire inventories: Ei = FRE × ECi . For many
inventories, ECi (in units of g MJ−1) is commonly estimated
from EFi,f (dependent on species and fuel type, in units of
g kg−1) and a conversion factor βf (kg MJ−1) based on fuel
type (Kaiser et al., 2012). The EFi,j is typically based on
laboratory-derived values and is a common factor used in
both top-down and bottom-up approaches. Other inventories
make use of a combination of bottom-up and top-down infor-
mation (e.g. Global Fire Emissions Database (GFED; Giglio

et al., 2013)). The Canadian Forest Fire Emissions Prediction
System (CFFEPS; Chen et al., 2019) and its global exten-
sion Global Forest Fire Prediction System (GFFEPS; under-
development, Anderson et al., 2024) use satellite-derived
hotspot data (e.g. fuel type, previous statistics on area burned
per hotspot for a given fuel type) that are linked to databases
to determine emissions and may be run within an online air-
quality model to determine the effects of fire emissions on
weather (Makar et al., 2021).

Fire emission rates can also be derived directly from mea-
surements without the proxy information of combustion pro-
cesses. This is an alternative measure for evaluation of emis-
sion inventories and emission processing systems. In situ and
aircraft measurements are difficult to obtain close to fires
and may be rare due to the expense of observations. How-
ever, satellite-borne observations provide ongoing coverage
using a common instrument platform, which can thus be used
to constrain biomass burning emissions. Satellite remote-
sensing observations also have the advantage of near-global
coverage. With the recent advances in satellite observations,
biomass burning emissions can be estimated directly, with
past work showing the utility of these observations in esti-
mating emissions of carbon monoxide (CO) (Adams et al.,
2019; Stockwell et al., 2022), carbon dioxide (CO2) (Guo
et al., 2019), nitrogen oxides (NOx) (Jin et al., 2021; Griffin
et al., 2021), and ammonia (NH3) (Adams et al., 2019). There
are several limitations to emission estimates from satellite
observations: (1) direct satellite-based emission estimates are
only possible for a few chemical species that are measured by
satellite instruments; (2) current satellite-based instruments
are on polar-orbiting platforms that consequently only ob-
serve a location once or twice per day, a measurement fre-
quency that will improve in the near future with new geo-
stationary satellites; (3) many fires are missed due to cloud
cover or even thick smoke that impacts the quality of the
satellite observation; (4) small fires that are below the satel-
lite detection limit will be missed. Thus, direct estimates are
a great tool to derive emissions at the time of the overpass
for specific fires but cannot be used alone to determine a total
emission inventory (i.e. only one point per day, many missed
fires).

In this study CO biomass burning emissions are di-
rectly derived from the satellite observations using the
TROPOMI (Tropospheric Monitoring Instrument) high-
spatial-resolution satellite observations on CO and plume
height information, and the uncertainty of this method is
assessed using synthetic CO columns (with known emis-
sions). The main advantage of the TROPOMI dataset is the
wealth of observations at higher horizontal resolution (with
7× 5.5 km2, 7× 7 km2 before August 2019) compared to its
predecessors (e.g. the Infrared Atmospheric Sounding Inter-
ferometer (IASI; Clerbaux et al., 2009) and Measurement of
Pollution in the Troposphere (MOPITT; Deeter et al., 2013)).
Another advantage of TROPOMI over its predecessors is the
high sensitivity near the surface (Schneising et al., 2020),
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which is beneficial when estimating emissions that occur
close to the surface. TROPOMI has previously been used
to estimate CO emissions from wildfires, and comparisons
to aircraft-derived emissions showed very good agreement
for fires in North America (Stockwell et al., 2022). It has
also been used to derive fire emissions in Portugal (Magro
et al., 2021). Most recently, Goudar et al. (2023) published
an automated plume detection and emission estimation algo-
rithm utilizing TROPOMI CO; in our study, an alternative
approach is explored.

The aim of this study is to establish a database of direct
satellite-derived biomass burning CO emissions globally;
this approach has been entirely automated and has the capa-
bility to determine CO fire emissions in quasi-near-real time
(as soon as TROPOMI CO and MODIS FRP observations are
available). Additionally, we determine biome-specific emis-
sion coefficients (ECs; emissions relative to FRP), which
are based on the direct emissions from TROPOMI relative
to the amount of heat energy released by the fire (FRP)
from MODIS, and ultimately establish top-down annual to-
tal emissions based on these derived ECs. These emission
coefficients can provide insights into the efficiency of com-
bustion and help quantify how emissions from a particular
ecological region or biome are related to the heat energy gen-
erated by biomass burning in that region. This information
can be valuable for understanding the environmental impact
of biomass burning in different ecosystems and for develop-
ing strategies to manage and mitigate their effects. Further-
more, FRP is often and more easily measured from satellites
compared to CO, and determining a biome-specific CO-to-
FRP ratio can help to determine the daily total emissions of
fires. We further show how combining the satellite-derived
CO emissions with satellite-observed FRP from the Moder-
ate Resolution Imaging Spectrometer (MODIS) can estab-
lish an annual CO emission inventory from biomass burning,
by applying the derived emission coefficients to assimilated
daily FRP based on MODIS measurements (available from
GFAS). As we show below, the direct emissions as well as
the alternative annual inventory (from the here derived ECs)
provide an alternative measure that can be used to evaluate
and improve fire emission inventories or fire emission pre-
diction systems. This paper is structured as follows. Section 2
describes the datasets and the direct emission estimation al-
gorithm used and includes an evaluation of the method with
synthetic columns. The direct TROPOMI-derived emissions
are compared to GFFEPS bottom-up emissions in Sect. 3. In
Sect. 4, the emission coefficients and burning efficiency from
different biomes are discussed. Annual global inventories of
CO fire emissions from different inventories are compared
and evaluated against the satellite-derived CO emission esti-
mates (using ECs), including a trend analysis over the past 2
decades in Sect. 5, followed by a summary and conclusions
in Sect. 6.

2 Datasets and methods

2.1 Satellite CO dataset

The TROPOMI instrument, on board the Copernicus
Sentinel-5 Precursor (S-5P) satellite (under ESA), orbits the
globe with a local overpass time of around 13:30 local time
and near-full-surface coverage on a daily basis (Veefkind
et al., 2012; Hu et al., 2018). It has four spectrometers that
cover the solar spectrum between the short-wave infrared
(SWIR) and the ultraviolet (UV). Amongst other species, to-
tal column CO is retrieved from the SWIR spectrometer at a
horizontal resolution of roughly 5.5×7 km2 (7×7 km2 prior
to 6 August 2019) using the Shortwave Infrared CO retrieval
algorithm (Borsdorff et al., 2018, 2019). The TROPOMI
CO columns have been validated with satellite observations
(Martínez-Alonso et al., 2020), as well as with ground-based
remote sensing instruments (Borsdorff et al., 2019). Both
studies showed that TROPOMI exceeded its mission require-
ment on precision and concluded a precision error well below
< 10 %. Validation against TCCON measurements around
the world showed that the TROPOMI CO columns have a
high bias of about 10 % (Sha et al., 2021). For our analysis,
we have utilized observations rated with a quality flag greater
than 0.5, where 0 represents the lowest quality and 1 denotes
the highest quality. This choice aligns with the recommended
quality threshold (Apituley et al., 2018). Notably, when we
investigate areas near active fires, the quality flag of the re-
trieval can be impacted by the presence of smoke. Conse-
quently, only including observations with a quality flag of 1
would result in the exclusion of a substantial number of data
points, primarily due to the influence of smoke (we found
most pixels inside smoke plumes have a quality flag value
of 0.7).

The CO averaging kernel from the TROPOMI obser-
vations predominantly registers values close to 1 within
the boundary layer for cloud-free conditions, specifically
around 0.95 with a narrow range of variability (approxi-
mately ±0.05) (Schneising et al., 2020). Nevertheless, the
presence of clouds diminishes the sensitivity of the averag-
ing kernel beneath them. It is important to note that smoke is
primarily comprised of fine minuscule particles (∼ 0.25 µm
or smaller (Junghenn Noyes et al., 2022)). At a wavelength
of 2.3 µm, these particles scatter minimal light. Looking at
the TROPOMI averaging kernel, we found that in the case
of fires the sensitivity close to the surface is typically lower
than 1. Rowe et al. (2022) investigated TROPOMI CO in
thick fire plumes and found agreement within 13 %–16 %
(Table 3) without considering the averaging kernel which has
been used to estimate the overall uncertainty of the emis-
sions. The effect of the averaging kernel depends on (1) the
shape of the averaging kernel and (2) the CO profile. Look-
ing at different profiles and averaging kernels, we found the
largest effect is for an averaging kernel that is close to 0 at the
surface; for a strong enhancement of the CO profile, the mag-
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nitude of this enhancement determines the magnitude of the
averaging-kernel-corrected columns. We found that the ef-
fect of applying the averaging kernel inside the smoke plume
always increases the CO columns. Other than Rowe et al.
(2022) (who investigated fires during FIREX-AQ), we do not
have profiles (globally) that can be applied for an averag-
ing kernel correction. Testing the effect on the emissions, we
used GEM-MACH model profiles and applied the averaging
kernel correction (see Appendix Fig. A1), which showed a
17 % increase of the emissions for one specific fire.

2.2 Satellite-derived CO emissions

To determine emissions from the satellite observations, a
similar approach based on Adams et al. (2019) and as de-
scribed in Stockwell et al. (2022) and Griffin et al. (2021) was
applied. The basic underlying concept of the method is mass
balance: the source rate Q must be equivalent to the product
of the column plume transect and the wind speed (U ). The
mass within the box can be determined by integrating the
enhanced vertical column densities (VCDs) over the back-
ground concentrations and applying the molar mass of CO.
The time of a mass clearing the box is based on the length
of the box and the wind speed. This methodology has been
used previously to determine emissions from biomass burn-
ing plumes using satellite observations (e.g. Mebust et al.,
2011; Mebust and Cohen, 2014; Adams et al., 2019; Griffin
et al., 2021; Stockwell et al., 2022). The flux methodology
employed here is best applied to emitted species with slow
chemical loss rates such as CO, because the flux method is
insensitive to the plume shape (often the plumes are not flaw-
less Gaussian distributions, especially for long-lived gases).
Further, specifically estimating fire emissions at a time when
the fire activity is increasing (i.e. TROPOMI overpass time
at 13:30 local time) will impact any attempt to estimate the
chemical lifetime for shorter-lived species like NO2 (Grif-
fin et al., 2021) from the flux method. This, however, will
not impact the analysis for a long-lived species like CO, as
the lifetime is known. The removal of the background CO
is, however, very important in the flux method and may oth-
erwise influence the estimated emission rate significantly, as
the CO background is relatively high.

The approach described as the fitting method is summa-
rized here. New improvements with regards to the plume ro-
tation and plume widths are included and illustrated in Fig. 1,
where Gaussians are fitted across the plume to be able to au-
tomate the estimation by determining the plume width, cor-
rect the wind direction, and correct the centre location of
the fire. First, a binned upwind–downwind domain of a reg-
ular grid size (4 km× 4 km) is established by a wind rota-
tion about the approximate centre of the fire from the satel-
lite observations of CO VCD (Fig. 1a). Since the grid size is
slightly smaller than the TROPOMI pixels, the satellite ob-
servations are weighted by the actual pixel size and oversam-
pled by 7 km (Adams et al., 2019). Then, along the binned

VCDs, Gaussian distributions are fitted across the plume in
all downwind boxes (Fig. 1b, c) to align the wind direction
and determine the extent of the plume. The third standard de-
viation out from the plume centre (i.e. 99 % confidence limit;
Fig. 1c) is used to define the plume lateral boundaries (typi-
cally between 10–30 km), and the wind direction correction
is found by fitting a linear function through the centre of the
peaks (Fig. 1c). This new and corrected wind direction is then
used to rotate the observations around the fire centre again
(step 1 is repeated with the corrected wind direction). This
approach is able to define the smoke plume in an automated
way. A series of flux boxes with dimensions of 4 km in the
wind direction and 3σ in the direction perpendicular to the
wind are superimposed on the binned VCD image (Fig. 1d).
Making use of the wind fields and VCD field, the flux is then
calculated (Fig. 1e), following Mebust et al. (2011):

Ey =
∑

(1VCD)× u×A, (2)

where 1VCD denotes the flux differences with background
levels removed, u is the horizontal wind velocity, andA is the
area of the box. Background CO levels are taken from aver-
ages 20 to 50 km upwind of the fire. As recommended by
Griffin et al. (2021) and based on model simulation tests (in
Sect. 2.3), we define the average upwind concentrations as
this CO background concentration. The grey areas in Fig. 1a
and d thus correspond to concentrations at or below this
background concentration level.

Individual box fluxes can be used to provide estimates of
the source CO emissions several hours prior to the overpass.
This also provides insight into the diurnal variability of fire
emissions. To be successful, meteorological conditions must
have been stable several hours prior to the overpass. Figure 1
shows a very good example of such a plume for which the
diurnal variability could be determined; however, this is not
the topic of this study, since its approach for estimating emis-
sions several hours in the past is currently not automated or
fully validated. For our final source emission estimate we use
boxes within the first 20 km downwind of the fire to ensure
that the time of the emission is close to the time of the over-
pass thus less influenced by the diurnal pattern. Since the av-
erage wind speed is roughly 20 km h−1, it is expected that the
fire emission algorithm provides emission rates within 1 h of
the overpass time. Thus, the time at which the emissions were
released is expected to be approximately −30±30 min from
the time of the TROPOMI overpass. Due to diurnal variabil-
ity of fire emissions, the emissions estimated from this algo-
rithm are time-specific and do not represent a daily average.
Any comparisons to emissions from other observations or in-
ventories need to be made for the same time period (Schaaf
and Wang, 2015).

For input parameters, we utilize the wind fields (U , V )
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA5 reanalysis dataset at a resolution
of 0.25°× 0.25° with an hourly output, between 1000 and
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Figure 1. Illustration of the method to derive CO emissions. Panel (a) shows the unmodified TROPOMI CO VCDs in a longitude–latitude
domain. (b) Simple Gaussians are fitted across wind in 4 km wide boxes up to 40 km downwind of the fire to find the plume width and correct
the wind direction and fire location. (c) The peak x0 (blue dot) and 3σ (blue bars) from the Gaussian fit are used to find the plume width and
correct the wind. (d) The VCDs are rotated with the corrected wind direction, and the VCDs are integrated into boxes of 4 km by 3σ . (e) The
wind speed is applied to find the emission fluxes downwind of the fire. Panel (f) shows the same as (e) but projected in time since emissions
occurred.

300 hPa at a resolution of 50 hPa, and interpolated spatiotem-
porally to the TROPOMI observations. For large fires, the
rotation of observations around a single point will cause im-
perfections, as they are not true point sources but are spread
over large areas. However, the flux methodology captures the
width of the plume in these cases, with the main effect being
the addition of some variability in the emissions at the first
box of the overpass. To find the appropriate wind speed to
use for emission transport, we use the average TROPOMI
aerosol height (AER_LH) for each fire, which is a good
proxy for the average height of fire plumes (Griffin et al.,
2019). If there are no good quality plume heights near the
fire, we use 2 km (or 800 hPa) (Griffin et al., 2020) for the
plume height. This approach to finding appropriate altitudes
for wind fields has previously been successfully used to im-
prove the accuracy of satellite-derived NOx emissions from
biomass burning (Griffin et al., 2021).

As this method assumes steady state and relies on stable
meteorology, appropriate quality criteria need to be applied
to filter any cases when the emission estimate might be defi-

cient. The quality criteria to filter emission estimates and the
total uncertainty of the emission estimates are further exam-
ined in the next section.

2.3 Accuracy of the emission estimates using synthetic
data

Similar to Griffin et al. (2021), we conducted a sensitivity
test using a regional air-quality model to create synthetic CO
VCDs. Applying the fitting method used for satellite obser-
vations (as described in the previous section), source emis-
sions retrieved from plumes generated within a model do-
main can then be compared directly to the original source
emissions used by the model. For these tests all emissions
are known, thus allowing us to (1) test whether the fitting
method is able to regenerate the original emissions, (2) ob-
tain a better idea of the uncertainties of the method, and
(3) examine the extent to which quality filters should be
applied to the satellite-derived emissions. For this sensi-
tivity test, we use the Global Environmental Multiscale –
Modelling Air quality and CHemistry (GEM-MACH; Makar

https://doi.org/10.5194/acp-24-10159-2024 Atmos. Chem. Phys., 24, 10159–10186, 2024



10164 D. Griffin et al.: TROPOMI-derived biomass burning CO emissions

et al., 2015b, a; Chen et al., 2019) model to obtain the syn-
thetic VCDs. The operational version of GEM-MACH that
employs biomass burning emissions using CFFEPS (Chen
et al., 2019) was used. This has a 10× 10 km2 grid cell size
for the North American domain and 80 vertical levels (from
the surface to approximately 0.1 hPa). Further details can be
found in Makar et al. (2015b, a). Although GEM-MACH’s
resolution is coarser than the 4 km pixel size used here,
the higher pixel resolution becomes available as the pixels
are binned using a distance-weighted average. GEM-MACH
provides hourly output, with an internal “physics” time step
of 7.5 min. The meteorological component of GEM-MACH
is within the physics module of the Global Environmental
Multiscale (GEM) weather forecast model (Côté et al., 1998;
Girard et al., 2014). GEM-MACH contains a detailed at-
mospheric chemistry scheme, which includes the emission
and removal processes of 42 gaseous species and 8 particle
species. The operational model run is initialized every 12 h,
at 00:00 and 12:00 UTC. Original input fire emissions are es-
timated based on hotspot location using the CFFEPS Chen
et al., 2019), which links the hotspot locations to ecozone-
specific databases of fire area per hotspot per unit time and
fire stage (crown, duff layer, residual), and it estimates plume
height using plume rise calculations based on meteorological
lapse rates and similar considerations. For a time period be-
tween May to September 2019, the model CO profiles are
integrated over the first 39 layers (approximately the lowest
10 km of the atmosphere) to obtain VCDs over the model do-
main, in North America (Canada and USA). The wind speed
and wind direction used in this sensitivity test are based on
forecast winds that drive the model simulations. The wind
altitude for the synthetic retrieval is from the nearest model
wind level to the predicted the aerosol layer peak concentra-
tion. For this time period (May to September 2019, in the
USA and Canada), total emission values of 208 fires were
“successfully” retrieved (a solution was found by the fitting
algorithm). The results of all the retrieved emissions using
the GEM-MACH output at 20UTC versus the original (syn-
thetic) source are illustrated in Fig. 2a. While the majority of
the retrieved emission values are in close agreement with the
original values (and are following the 1-to-1 line), there are
noticeable outliers (about 10 out of 105), where the retrieved
values are below the original emissions. An underlying re-
quirement of the fitting methodology is the assumption that a
steady state in the meteorological conditions has been main-
tained during the time of the retrieval – previous work has
shown that when this assumption is incorrect, the retrieved
emissions may be erroneous (Fathi et al., 2021). Changes
in meteorological state during the retrieval period (such as
a change in wind direction or speed, changes in atmospheric
stability) may influence retrieval accuracy, as may the pres-
ence of other sources near the fire of interest. Examining
these cases more closely we identified certain unfavourable
conditions as follows (the filtered values due to these specific
conditions are illustrated in Fig. 2):

1. The background (“B”) is too high (> 0.7×
1019 molec. cm−2): this indicates potentially up-
wind sources, of large enough magnitude that the
plume may be difficult to distinguish, or a misplace-
ment of the fire centre, and thus these cases should be
filtered (two estimates were filtered that way).

2. The variation in the wind direction (“wd”) should to
be less than 15°: changes in wind direction during the
retrieval allow for potential convergence/divergence to
occur within the model grid cell, violating the require-
ment of steady-state flow (78 estimates were filtered that
way).

3. The plume width (“width”) should be no larger than
50 km: the method cannot be used for very large fires, as
the assumption of a point source breaks down; a width
larger than 50 km could also be associated with inter-
ference from other nearby sources (five estimates were
filtered that way).

4. The difference of the emissions from individual cross-
sections (1xsect) considered for the estimate (within
20 km of the fire) should be no larger than 100 %, and
cases are also filtered where only one cross-section is
used for the estimate: cases with high variability of
the individual cross-sections indicate high variability of
emissions within a very short time frame or unstable
conditions (30 estimates were filtered that way).

Other parameters were also tested but were not included as
part of the quality filter, such as variation in wind speed,
maximum and minimum wind speed, height of the aerosol
layer, the Richardson number, and the wind shear. It should
be noted that for all cases the minimum wind speed was
above 2 m s−1, and the maximum wind speed was 11 m s−1.
We would expect that the method is not reliable for very high
or very low wind speeds (approximately> 2 m s−1), as found
by other studies (e.g. de Foy et al., 2014). After applying the
quality filter (black points in Fig. 2), 105 fires remain (some
filters overlap). The correlation is high between the retrieved
and original source emissions with R = 0.92 and a slope of
best fit (using geometrical mean) of 1.1. The relative differ-
ence is 34 % (fitted input), which is used in our uncertainty
analysis (Table 1).

The four established quality controls noted above were
then used to filter the satellite-derived emission estimates and
are recommended in retrievals of this nature. In addition,
for the satellite-derived emissions, a filter that requires at
least five observations for the estimate has also been applied.
These tests using synthetic data can also help to establish the
uncertainties for the estimated emissions. The total uncer-
tainty of the satellite-derived emissions (see Table 1) is based
on the systematic bias and random uncertainty. The random
uncertainties consist of the wind speed (≈ 10 %), the effect
of the altitude used for the wind speed (≈ 20 %), and the un-
certainty of the method itself (based on the relative difference
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Table 1. Summary of uncertainties for the satellite emission esti-
mates.

Type Uncertainty Type

Method 34 % Random
Wind 10 %∗ Random
Wind altitude 20 % Random

Averaging kernel +6 %∗∗ Systematic
Satellite VCD +10 %∗∗∗ Systematic

Total random 41 %
Total 57 %

∗ Gualtieri (2022). ∗∗ Rowe et al. (2022). ∗∗∗ Sha et al. (2021).

between the true and fitted emissions of 34 % after applying
the above-mentioned quality filters). The uncertainty of the
wind speed caused by the uncertain altitude of the plume
is based on the mean difference of the wind speed when
comparing the winds 50 hPa above and below the aerosol
layer height. The uncertainty of the wind speed is based on
Gualtieri (2022), who found approximately 0.5 m s−1 for the
90 % confidence interval for ERA5, with the average wind
speed of approximately 5 m s−1 (for our dataset); we assume
a 10 % uncertainty for the wind speed. These errors are added
in quadrature, leading to a total random uncertainty of 41 %.
Additionally, the TROPOMI CO VCDs (comparison to TC-
CON) are biased high by about 10 % (Sha et al., 2021), and
not accounting for the averaging kernel correction due to the
lack of profile observations for the fires will add another 6 %
(Rowe et al., 2022) (Table 3, difference between accounting
and neglecting the averaging kernel). While the total emis-
sions (or VCDs) could be scaled by the systematic bias, the
effect of the averaging kernel correction depends on the pro-
file as well as averaging kernel shape (also see averaging ker-
nel analysis in Sect. 2.1 and Fig. A1). Adding the systematic
and random error leads to a total uncertainty of 57 %.

Overall, the sensitivity tests suggest that the fitting method
is robust once filters have been applied to ensure that the un-
derlying assumptions of steady-state meteorological condi-
tions are maintained for the observed data and can be used
to estimate the CO fire emissions. The total uncertainty of
the CO emission estimates (after the above-mentioned filters
have been applied) is approximately 41 % (random) and 57 %
(total) based on the uncertainty of the wind speed, CO VCDs,
and methodology. Throughout Sects. 4 and 3, these same fil-
ters that ensure steady-state meteorological conditions and
low interference from nearby sources were applied to the
satellite-derived emission estimates.

2.4 Satellite FRP and hotspot identification

To find the locations of fires around the globe, we use
MODIS instrument thermal anomalies and FRP products.
MODIS was used in this study for two purposes: (1) to ob-

tain the fire locations and fire centres using MODIS thermal
anomalies that are then used to attempt deriving CO emis-
sions from TROPOMI and (2) to obtain the FRP for each fire
to determine the emission coefficient (EC; see Sect. 4). The
MODIS instruments, on board the NASA Earth Observation
System Terra and Aqua satellites, detect fires using data col-
lected in the infrared and spectral channels (Kaufman et al.,
1998). Typical overpass times occur at approximately 10:30
and 13:30 local time for the Terra and Aqua platforms, of
which MODIS is a component, respectively.

The MODIS thermal anomaly product (MCD14DL NASA
Near Real-Time and MCD14DL MODIS Active Fire Detec-
tions, 2024) (Giglio et al., 2003, 2006, 2016) from Aqua
(13:30 local time) is used in this study to locate the fires.
These thermal anomalies are clustered, with the criterion of
a minimum summed FRP (within a 5 km radius) of 1 GW
(note that this threshold is not for individual hotspots but for
the fire cluster) and a confidence of at least 75 % (for indi-
vidual hotspots). These thresholds have been applied to re-
move fires that are too small, as the direct TROPOMI CO
emission estimate very likely fails for very small hotspots,
and to reduce the influence of other (smaller) sources caus-
ing thermal anomalies (e.g. flares). Depending on the size
of the fire, we aggregate on average 30 thermal anomalies.
Based on Freeborn et al. (2014), this is associated with a 6 %
uncertainty of the FRP, much lower compared to the uncer-
tainty of the CO emission estimates (57 %). Again, we would
like to highlight that not all fires are captured by satellites (in-
cluding MODIS). Fires can potentially be missed for several
reasons: if the FRP signal is too low (e.g. small fires), due to
cloud cover, and under thick smoke plumes. These locations
are used to attempt an automated CO emission estimate with
TROPOMI; however, it is not always possible to derive emis-
sions from the fire hotspot location, and many locations will
fail or are filtered (as mentioned in Sect. 2.3) after the emis-
sion estimate. For a typical year using the described MODIS
clustering, we are left with approximately 13 000–18 000 fire
clusters globally for which we attempt an emission estimate.
For about 3 000–4 000 fires the estimate fails entirely. And a
further 9 000–12 000 fire emissions are filtered due to poor
quality, leaving 4 000–6 000 successful fire emissions glob-
ally per year. The most common reasons for failed or filtered
emission estimates include variable winds, low CO columns
that are too close to the background concentrations, nearby
CO sources (such as a second fire plume), and cloud cover.

MODIS FRP is also used to estimate the ECs, presented in
Sect. 3. For our CO emission inventory we use our estimated
ECCO (Sect. 4) and apply these to the assimilated daily GFAS
FRP on a 0.1×0.1° grid to estimate a global inventory of CO
emissions. GFAS is a top-down emission estimation system
from ECMWF. The GFAS-assimilated FRP is based on the
MODIS Aqua and Terra FRP that provide typically one day-
time and one nighttime overpass each. This dataset provides
a guidance on total daily FRP that can then be combined
with the derived ratio between TROPOMI CO emissions and
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Figure 2. The results of the sensitivity test with synthetic VCDs are illustrated (see text for additional details). The filtering low-quality
results are illustrated in panel (a), where different parameters have been tested, including the maximum value of the background (“B”), the
deviation of the wind direction (“wd”), the maximum width of the plume (“width”), and the difference between the individual cross-sections
(“1xsect”). The filtered fitted emissions versus the model input emissions are plotted in panel (b) together with the statistics (slope of best
fit using the geometric mean, s; correlation coefficient, R; the number of points, n; and the mean and standard deviation of the relative
difference, rel. Diff: fitted input).

MODIS FRP. Since TROPOMI only provides an emission
estimate around 13:30 (local time), accounting for diurnal
variability is not feasible with TROPOMI alone. Thus, a sec-
ondary dataset such as MODIS, with multiple overpasses per
day at various times, is necessary to get an approximation
of diurnal fire activity and ultimately to obtain a total emis-
sion inventory. This emission inventory is used in Sect. 5 to
compare the CO emissions estimated here with fire emission
inventories. It should be noted that some smaller fires might
be below the MODIS detection limit and will be missed; in
the presence of clouds or thick smoke, the instruments may
not be able to observe the Earth’s surface. The retrieved emis-
sions generated here may therefore be lower limits.

2.5 Emission inventories

We compare our retrieved CO emissions to several exist-
ing biomass burning CO inventories, namely GFAS, GFED,
FINN v1.5 and v2.5, and GFFEPS. GFED (van der Werf
et al., 2017) and FINN are both based on the bottom-up ap-
proach. Here, we use GFEDv4.1, which has a 0.25° resolu-
tion, developed by NASA; in Sect. 5 we use the annual total
emissions for different geographical regions. The FINN in-
ventory (Wiedinmyer et al., 2006, 2011) by NCAR is not on
a regular grid, but based on the location of the MODIS- or
Visible Infrared Imaging Radiometer Suite (VIIRS)-detected
hotspots, these are then summed to obtain annual totals in
Sect. 5. The GFAS fire emission inventory (Kaiser et al.,
2012) by ECMWF utilizes a top-down approach based on
MODIS FRP and is on a 0.1° regular grid; here we use v1.2.
Additionally, we also compare our results to a new global

biomass burning algorithm, GFFEPS, developed by Environ-
ment and Climate Change Canada. GFFEPS is a global ex-
tension of the CFFEPS model described in Chen et al. (2019).
Similar to CFFEPS, GFFEPS is a bottom-up approach utiliz-
ing satellite-detected hotspots to calculate smoke emissions.
The resulting emissions are not gridded but distributed to
the location of the detected fire hotspots. The model uses
VIIRS, which then predicts emissions based on the Cana-
dian Forest Fire Danger Rating System (CFFDRS, Stocks
et al., 1989). Fuel types were assigned using the Global Land
Cover (GLC) 2000 (European Commission, 2003). Area
burned per hotspot was estimated based on 8 years of satellite
hotspot data (2012–2019) and reported area-burned statistics
for the same time periods and locations using MCD64CMQ
(Giglio et al., 2020). Daily fire weather conditions based
on the Canadian Forest Fire Weather Index (FWI) System
(van Wagner, 1987) were calculated in the global version
of ECCC’s Global Environmental Multiscale (GEM) model
(Côté et al., 1998) and interpolated to hotspot locations.
Fire behaviour conditions at each hotspot were based on
the Canadian Forest Fire Behavior Prediction (FBP) Sys-
tem (Forestry Canada Fire Danger Group, 1992) and calcu-
lated in the Canadian Wildland Fire Information System (Lee
et al., 2002) operated by the Canadian Forest Service, Natural
Resources Canada (https://cwfis.cfs.nrcan.gc.ca/; last access:
7 February 2023). Surface and crown fuel consumption rates
are translated directly into smoke emissions. Emission rates
per species per stage of combustion are based on Urbanski
(2014). A fix diurnal profile is applied to the daily estimated
burn area to obtain an hourly fraction with peak activity at
17:00 local time. Note that the assignment of GLC2000 land
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Figure 3. Comparison between TROPOMI-derived CO (black tri-
angle) and GFFEPS (yellow) CO emissions in the example of a fire
in Arizona, USA (TENA, 33.5° N, 111.14° W), on 21 June 2019.
Also shown are the time-interpolated GFFEPS emissions to the time
of the TROPOMI overpass (red, “GFFEPS-int”).

classifications to Canadian fuel types and adjustments to fit
global conditions continue to be an area of development in
the model. Fuel loads were largely taken from van Leeuwen
et al. (2014) and van der Werf et al. (2017) as used in GFED.

3 Evaluation of direct vs. bottom-up emissions

CO fire emission can be estimated from TROPOMI single-
overpass observations. Stockwell et al. (2022) have shown
good agreement between the TROPOMI-derived to aircraft-
derived CO fire emissions as part of the FIREX-AQ cam-
paign (Warneke et al., 2023). The sensitivity tests (Sect. 2.3)
using synthetic total columns also suggest that emissions can
be reliably estimated using the flux method within 57 % un-
certainty. In this section, TROPOMI-derived emission esti-
mates are used to evaluate the GFFEPS emission processing
system. Figure 3 shows an example of a fire in Arizona on
21 June 2019 in the temperate North America (TENA) region
(33.5° N, 111.14° W). GFFEPS emissions are given in 3 h in-
tervals and shown as orange dots. GFFEPS estimates daily
emissions based on area burned and utilizes a prescribed di-
urnal pattern with a peak in fire intensity and emissions in
the late afternoon. The peak in emissions always occurs a
few hours after the TROPOMI overpass. TROPOMI over-
pass time was around 20:30 UTC, and the emission estimate
is shown as a black triangle. The GFFEPS emissions are in-
terpolated to the TROPOMI overpass time (shown as a red
dot), and for this example GFFEPS aligns with the satellite-
derived emissions very well.

The TROPOMI-derived emissions can be used more
broadly to examine the performance of the GFFEPS emis-
sions. Figure 4a shows the comparison between TROPOMI
and GFFEPS (at the overpass time of TROPOMI, equivalent
to the red dot in Fig. 3) for roughly 4000 fires globally in
2019 (all fires where TROPOMI could successfully estimate
CO fire emissions, appropriate filters as described in Sect. 2.3
have been applied). The results show that the model captures
the order of magnitude and some of the variability; however,

on average GFFEPS tends to predict lower emissions than
the satellite-derived CO emissions. This discrepancy is likely
due to an underestimation from GFFEPS rather than an over-
estimation of TROPOMI emissions: TROPOMI offers high-
quality data over fires and smoke plumes (see Fig. 5), and the
effect of applying an averaging kernel correction would lead
to even higher emissions (see Sect. 2.1 and Fig. A1). It is
important to note that the TROPOMI CO emission approach
has been validated (Stockwell et al., 2022) and has a 57 %
total uncertainty (see Sect. 2.3), while GFFEPS still requires
validation and associated uncertainty estimates.

The causes of the differences between the TROPOMI-
derived and GFFEPS emissions are being investigated. Pos-
sible reasons for this could be the following: (1) misrepre-
sentation of fuel type and/or its associated emission factors,
(2) the incorrectly estimated area burned; (3) the inaccurately
represented diurnal variability, or (4) the incorrectly repre-
sented time assumed for the TROPOMI-derived emissions.
To examine the reasons more closely and to pinpoint the is-
sues, specific areas and fuel types were examined individ-
ually (see Tables C1 and C2). The region classification re-
lies on the definition used in GFED (Giglio et al., 2003),
which divides the world into 14 distinct areas: boreal North
America (BONA), temperate North America (TENA), Cen-
tral America (CEAM), Northern Hemisphere South America
(NHSA), Southern Hemisphere South America (SHSA), Eu-
rope (EURO), Middle East (MIDE), Northern Hemisphere
Africa (NHAF), Southern Hemisphere Africa (SHAF), bo-
real Asia (BOAS), Central Asia (CEAS), Southeast Asia
(SEAS), equatorial Asia (EQAS), and Australia and New
Zealand (AUST). The extent of these regions is illustrated
in Fig. B1. Considering factors like slope, R (correlation co-
efficient), and RMSE (root mean square error), the model
demonstrates strong agreement with satellite-derived emis-
sions for specific regions, namely CEAM, NHSA, EURO,
and MIDE (see Table C1). Other regions, like AUST, have a
very poor correlation, slope, and RMSE, indicating a need to
improve the modelling of that region, which is currently still
under development, such as improving the emission factors
and correcting the fuel consumption and combustion com-
pleteness for Eucalyptus (Anderson et al., 2024). In terms of
biomes (see Table C2), the results are less clear, as biome 1
dominates the AUST region for fires in 2019 and also shows
a very poor correlation.

We also examine individual fires contributing to this is-
sue in Fig. 5, which depicts an example of a fire where the
GFFEPS and TROPOMI values compare well (top row of
panels) and a fire where the GFFEPS values are much lower
than the satellite observations. Shown are the TROPOMI CO
VCDs (Fig. 5a and d), the GEM-MACH VCDs (using GF-
FEPS emissions) in Fig. 5b and e, and the true colour im-
age together with the MODIS hotspots (Fig. 5c and f). The
fires that tend to be significantly lower compared to the di-
rectly derived CO emissions are predominantly the ones that
are influenced by thick smoke (and/or clouds). Some of the
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lower emissions from GFFEPS may suggest that fires emit-
ting thick smoke may have underestimated hotspot values –
a correction for fires influenced by thick smoke reducing the
number of observable hotspots may be necessary.

Specifically at the overpass time, the emissions are often
underestimated by GFFEPS when comparing individual fires
(at the time of the TROPOMI overpass). The TROPOMI
overpass time (13:30 local time) is exactly at a time when
fires typically experience significant growth; 1 or 2 h ei-
ther side of the overpass time makes a difference of ap-
proximately 30 %–50 % (see Fig. 3). Thus, the lower emis-
sions could also be the result of a timing issue, either from
GFFEPS or the time assumed for the TROPOMI-derived
emissions. GFFEPS prescribes a diurnal emission profile,
whereas the TROPOMI emissions provide an emission rate
specific to a satellite overpass time. As can be seen in Fig. 3,
the diurnal variation in GFFEPS emissions can be substan-
tial, more than a factor of 10 between peak and minimum,
while the satellite data only allow evaluation of GFFEPS at
the overpass time (and hence an evaluation over all times of
emissions is not possible). We can conclude that model emis-
sions (specifically at the overpass time) capture at least some
of the variation in CO emissions at overpass time (R = 0.22),
but they are generally biased low compared to the satellite-
derived emissions in the early afternoon. The total daily
emissions and the diurnal variability are still a large uncer-
tainty and cannot be readily evaluated using polar-orbiting
satellites such as TROPOMI alone (since TROPOMI can
only provide limited times to obtain CO fire emissions).

Overall, TROPOMI CO emission estimates can be used
to help with the evaluation of the emission model and help
pinpoint certain areas that need further improvement.

4 Emission coefficients for different vegetation
types from satellite-derived emissions

The TROPOMI-derived CO emissions alone cannot be used
to obtain annual total emissions because (1) it will not be
possible to derive emissions of many fires directly (e.g. due
to unfavourable meteorology, cloud cover, size of the fire),
and (2) TROPOMI is in a low Earth orbit, observing each
location once or twice per day, and the TROPOMI-derived
emissions are limited to the time of these overpasses. There-
fore, to obtain annual total emissions to be able to compare
them to other fire inventories, the FRP measurements from
MODIS and MODIS-based gridded FRE (from GFAS) are
used to obtain a TROPOMI–MODIS top-down inventory.
Emission coefficients, here defined as the ratio between the
direct TROPOMI-derived CO emissions and MODIS FRP,
are applied to the FRE to obtain annual total emissions by
region and can then be compared to study trends over time
(see Sect. 5). The emission coefficients are a measure of the
burning efficiency of different vegetation types. The emis-
sion coefficients can be determined from the correlation and

Figure 4. Comparison between approximately 4000 TROPOMI-
derived CO emissions and (a) GFFEPS for 2019 fires. The colours
indicate the density of the points (yellow being high density and
blue being outliers). Note that the axes are in logarithmic scale,
showing the 1-to-1 line (black) and the 1-to-2 lines (red). GFFEPS
tends to be lower than the directly derived TROPOMI emissions.

slope of best fit between the CO emission and coincident FRP
observations (Mebust et al., 2011; Mebust and Cohen, 2014;
Adams et al., 2019).

Emission factors will change with different stages of a fire
(flaming to smoldering); however, it is challenging to sepa-
rate the different burning stages from fires (Andreae, 2019).
For the emission coefficients derived in this study, we did not
separate the burning stages; instead, a single emission coeffi-
cient is used for each biome for the following reasons: (1) the
MODIS-based GFAS FRE (total daily FRP) is a binned prod-
uct, trying to project any assumptions of burning stages will
introduce more uncertainty, and (2) fires will most likely be
flaming at the time of the TROPOMI overpass (13:30 local
time). It is likely that these different burning stages have dif-
ferent CO emission coefficients (ECs). For example, Hayden
et al. (2022) identified that the CO EC is almost twice that
during smoldering compared to flaming (this does not mean
that emissions might be underestimated by the same amount;
the FRP is significantly lower during smoldering stages and
thus has a smaller effect on the total emissions). In that case
study it was possible to roughly differentiate between smol-
dering and flaming; however, for large sample of fires it is
very difficult to do so. The point is that a mix of flaming and
smoldering fires will reduce the correlation coefficient (e.g.
Fig. 6); the overall EC will result in an average of flaming
and smoldering EC. When applying these ratios globally to
binned MODIS FRE to obtain annual emissions, it is likely
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Figure 5. Comparison between model and TROPOMI-observed CO VCDs for two different fires. The top shows an example of a good
match between the model (a) and TROPOMI (b), where the model input emissions (GFFEPS) are similar to the satellite-derived emissions.
The difference (model–TROPOMI) can be seen in (c). Panel (d) shows the VIIRS true colour image for the same scene together with the
daytime MODIS thermal anomalies (hotspots, red dots), obtained from NASA Worldview: https://worldview.earthdata.nasa.gov/ (last access:
4 September 2024). The bottom figures show an example of a bad match between the model (e) and TROPOMI (f), where the model input
emissions (GFFEPS) are significantly lower, with the difference shown in (g) and the VIIRS true colour image in (h).

to average out overall, but all information on smoldering and
flaming is lost in these averages. It is the norm for top-down
inventories to apply a single emission coefficient (per vegeta-
tion) that does not change with the time of day (e.g. GFAS).

To differentiate biomass burning emissions in different
biomes, we use the GLC2000 (European Commission, 2003)
as used for the development of GFFEPS; additionally we also
tested the classification from MODIS (MCD12C1) and the
GFED partitioning. The land use classification dataset dis-
tinguishes between 22 different types of biomes with 1 km
resolution. Further details, including the extent and location,
can be found in the Appendix (Fig. B2 and Table B1). In
summary, 1–10 are different types of forests, 11–12 are types
of shrub, 13–15 are different types of grassland (herbaceous
cover), 16–18 are different types of mosaic (cultivated areas
and crops), and 19–22 are areas where fires are unlikely (in-
cluding water, snow, and urban areas). From the 22 possible
types of biomes, we include a total of 15 different biomes
in our analysis, excluding biomes where fires were not ob-
served by TROPOMI (and therefore no information is avail-
able on the CO emissions): regularly flooded tree cover (7
and 8), previously burned tree cover (10), bare areas (19),
water bodies (20), snow and ice (21), and artificial surfaces
(22).

Figure 6 shows the correlation between the TROPOMI-
derived CO emissions (2019–2021) and the total MODIS
Aqua FRP (which has a similar orbit as TROPOMI) for the
corresponding fire for “tree cover, broadleaved, evergreen”
(biome 1). The slope between the CO emissions (in g s−1)
and the FRP (in MJ s−1) is EC (in g MJ−1), the values of

Figure 6. TROPOMI-derived CO emissions (2019–2021) versus
MODIS-detected FRP for fires from broadleaved evergreen trees.
The colour indicates the density (yellow being the most frequent and
purple being single points) of the 842 fires. The black line indicates
the slope (“s”) of the best fit.

which are shown in Table 2 (and for 2019, 2020, and 2021
in Tables D1, D2, and D3, respectively). A geometric mean
approach was used to find the slope of best fit and the 99 %
confidence level (used as the uncertainty of the EC). The re-
sults for all biomes used in the analysis are summarized in
Table 2. The sample size specifies the number of fires used
for the regression analysis, and the rank is the order of impor-
tance with respect to the total annual FRP from GFAS with
1 being the biome contributing the most (for the 2019 base
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Table 2. Emission coefficients for CO (ECCO) ± the 99 % confidence interval (note this is only a mathematical error for the determination
of the slope), correlation coefficient (R), number of fires (sample size), and rank of importance in terms of total FRP with 1 being the biome
contributing the most to the emissions (“Rank”). All values shown are derived from TROPOMI and MODIS FRP for fires globally between
2019 and 2021 for a total of over 15 000 fires. The biome definition is taken from GLC2000 (see Table B1).

Number Description ECCO (g MJ−1) R Sample size Rank

1 Tree cover, broadleaved, evergreen 111± 2 0.61 2459 1
2 Tree cover, broadleaved, deciduous, closed 87± 2 0.53 1418 4
3 Tree cover, broadleaved, deciduous, open 58± 1 0.56 2596 2
4 Tree cover, needle-leaved, evergreen 57± 2 0.49 832 8
5 Tree cover, needle-leaved, deciduous 94± 2 0.52 1987 10
6 Tree cover, mixed-leaf type 62± 6 0.66 80 15
9 Mosaic: tree cover/other natural vegetation 64± 3 0.71 346 12
11 Shrub cover, closed–open, evergreen 108± 4 0.64 452 13
12 Shrub cover, closed–open, deciduous 38± 1 0.62 1798 3
13 Herbaceous cover, closed–open 45± 2 0.47 878 6
14 Sparse herbaceous or sparse shrub cover 45± 3 0.39 363 9
15 Regularly flooded shrub and/or herbaceous cover 101± 5 0.61 357 14
16 Cultivated and managed areas 59± 2 0.57 630 5
17 Mosaic: cropland/tree cover/other natural vegetation 62± 3 0.40 464 7
18 Mosaic: cropland/shrub or grass cover 69± 3 0.66 398 11

year). The total FRP identifies how much each of these differ-
ent biomes contributes to the total annual emissions (Sect. 5).
The emission coefficients vary between 111 and 38 g MJ−1,
where the largest CO emissions relative to FRP are from “tree
cover, broadleaved, evergreen” (biome 1), and the lowest are
from “shrub cover deciduous” (biome 12), meaning 3 times
more CO is emitted from broadleaved evergreen trees (biome
1) compared to deciduous shrub (biome 12) for a fire that
burns with equivalent heat energy. Evergreen shrub also has
a high emission coefficient of 108 g MJ−1 (biome 11), and
even though both biome 11 and 12 are shrub, they are quite
different biomes, based on their CO emissions and way they
burn as well their location and occurrence. Evergreen shrub
(biome 11) is not very common (it covers approximately
0.5 % of the Earth’s surface) and appears primarily in Central
Asia and in some parts of northern Canada and Alaska (see
Fig. B2 and Table B1), whereas deciduous shrub covers ap-
proximately 2.2 % of the Earth’s surface and grows globally
(see Fig. B2 and Table B1). Correlation coefficients vary sig-
nificantly for different biomes. Most biomes have a moderate
to high correlation with a correlation coefficient that is be-
tween approximately 0.5–0.9. The lowest correlation coeffi-
cient (R = 0.39) is found for sparse herbaceous/shrub (biome
14) meaning that the CO emissions are quite variable. A sim-
plified classification of forest, shrub, and grassland is not ap-
propriate based on our results. For example the ECCO for dif-
ferent types of shrubs has both the largest and smallest emis-
sion coefficients, and forests vary between roughly 38 and
108 g MJ−1. An attempt was made to simplify the biomes
following the approach of Mebust et al. (2011); however, this
depreciated the correlation coefficients significantly.

The results using the MODIS MCD12C1 land classifica-
tion instead are shown in Table 3. For water, snow/ice, ur-
ban, and sparsely vegetated, no EC has been derived as there
were unsurprisingly no fires found in the direct emissions
from TROPOMI in these land types. As expected the ECs
for broadleaved evergreen forest are the highest (as for the
GLC2000 definition) with 129 g MJ−1, and the lowest are
found for closed shrublands (23 g MJ−1).

GFED relies on only six different types of vegetation
(AGRI: agricultural waste burning; BORF: boreal forest
fires; DEFO: tropical deforestation and degradation; PEAT:
peat fires; SAVA:savanna, grassland, and shrubland fires; and
TEMF: temperate forest fires), and the results of the emis-
sion coefficients using the TROPOMI direct emission esti-
mates (and MODIS FRP) are shown in Table 4. This pro-
vides the opportunity to be able to compare the emission
factors from GFED and GFAS directly (shown in Table E1,
although the conversion factor to convert the ECs to EFs
can change by a factor of 4 depending on the study used
(Wooster et al., 2005; Kaiser et al., 2012), limiting a mean-
ingful comparison). From our analysis, PEAT has the highest
ECs (183 g MJ−1), and the lowest are found for agricultural
waste burning.

There are certain advantages to combining the TROPOMI-
derived ECs for CO and the MODIS FRP. It is possible with
this approach to obtain an inventory of annual (or monthly)
CO emissions from wild fires because of the more continuous
and diurnal coverage of MODIS FRP with at least four over-
passes at various times during day and night (GFAS FRP).
This can then be used to make a comparison between emis-
sion inventories and TROPOMI-derived CO. There is also
the potential to apply theses ECs to other years (even before
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Table 3. Emission coefficients for CO (ECCO) ± the 99 % confidence interval (note this is only a mathematical error for the determination
of the slope), correlation coefficient (R), number of fires (sample size), and rank of importance in terms of total FRP with 1 being the biome
contributing the most to the emissions (“Rank”). The values are derived from TROPOMI and MODIS FRP for fires globally between 2019
and 2021 for a total of over 15 000 fires. The biome definition is taken from MODIS MCD12C1.

Description ECCO (g MJ−1) R Sample size Rank

Evergreen needle-leaved forests 76± 4 0.61 246 9
Evergreen broadleaved forests 129± 3 0.61 1903 4
Deciduous needle-leaved forests 69± 7 0.48 100 12
Deciduous broadleaved forests 39± 2 0.42 425 7
Mixed forests 78± 6 0.47 212 8
Closed shrublands 23± 3 0.52 61 13
Open shrublands 44± 2 0.32 718 6
Woody savannas 82± 1 0.59 2558 3
Savannas 77± 1 0.48 6202 1
Grasslands 56± 1 0.56 2486 2
Permanent wetlands 87± 12 0.38 64 5
Croplands 37± 2 0.58 353 10
Mosaic 43± 4 0.92 23 11

Table 4. Emission coefficients for CO (ECCO) ± the 99 % confi-
dence interval (note this is only a mathematical error for the deter-
mination of the slope), correlation coefficient (R), number of fires
(sample size), and rank of importance in terms of total FRP with 1
being the biome contributing the most to the emissions (“Rank”).
The values are derived from TROPOMI and MODIS FRP for fires
globally between 2019 and 2021 for a total of over 15 000 fires. The
biome definition is taken from GFEDv4.

Description EFCO (g kg−1) R Sample size Rank

AGRI 49± 2 0.65 391 5
BORF 91± 2 0.51 2845 3
DEFO 52± 1 0.50 1381 2
PEAT 183± 35 0.59 25 6
SAVA 60± 1 0.53 9831 1
TEMF 110± 4 0.60 764 4

the launch of TROPOMI); the following section will discuss
this in more detail.

5 Global CO total emissions

Applying TROPOMI–MODIS-derived ECs (from Sect. 4) to
daily integrated MODIS FRE (which captures the diurnal
fire activity) can help to obtain the total CO emissions and
can allow comparison with existing fire emission invento-
ries. The ECs (derived in Sect. 4) are applied to the daily
GFAS FRP here, assimilated FRP observations from the
Terra MODIS and Aqua MODIS satellite sensors. The do-
main is global with a resolution of 0.1° on a regular latitude–
longitude grid. The time period between 2003 and the present
is covered. The resulting top-down emissions, referred to as
“TROPOMI–FRE”, can be used to study the distribution of
fire emissions more generically. Figure 7 shows the distri-

bution of the CO emissions for 2019 by (a) biome, (b) re-
gion, and (c) month. Most CO emissions are from evergreen
forests (biome type 1), which also has one of the largest ECs
for CO (see Table 2). About two-thirds of biomass burning
CO emissions are from forests (GLC2000 type 1–6). The re-
gions affected by the largest CO fire emissions are SHAF
(26.5 %) and SHSA (16.8 %). The least affected are EURO
and the MIDE; these regions have the least number of fires
and the lowest biomass burning CO emissions, below 1 % of
the global emissions. The annual cycle is a little more evenly
distributed with emissions between roughly 5 %–14 % and
shows the peak of CO emissions in August (14 %) with the
lowest emissions in May (4.9 %). It should be noted that
2019 was an unusual year for Australia with high-intensity
fires in December 2019 (during the 2019/20 Australian sum-
mer), also known as the “black summer” (e.g. van der Velde
et al., 2021; Pope et al., 2021). These fires contributed signif-
icantly to the global December emissions (Fig. 7c). The type
of biome burned was Eucalyptus forest, which is classified as
biome 1.

The total biomass-burning-related CO emissions using
TROPOMI–FRE are approximately 290 Mt in 2019. Us-
ing different land classifications we get 308 Mt using the
MCD12C1 classification and 265 Mt for the GFED classi-
fication; these help to determine an overall uncertainty for
the methodology and the total emissions of the TROPOMI–
MODIS top-down emissions. Using the coarser classification
of GFED leads to lower emissions (∼ 15 Mt) in the SHSA
and SHAF region compared to using the ECs for GLC2000
or MCD12C1 classification. To assess the uncertainty of the
total annual emissions of our estimates (TROPOMI–FRE),
we also used emission coefficients derived from fires of in-
dividual years (2019 to 2021, using the GLC2000 classifi-
cation). Using emission coefficients from 2019, 2020, and

https://doi.org/10.5194/acp-24-10159-2024 Atmos. Chem. Phys., 24, 10159–10186, 2024



10172 D. Griffin et al.: TROPOMI-derived biomass burning CO emissions

Figure 7. Analysis of the 2019 TROPOMI–FRE CO fire emissions: (a) emissions by different biomes as defined in Table B1, (b) by
geographical regions from GLC2000 as defined by Giglio et al. (2013), and (c) by month.

2019–2021 combined did not impact the total emissions for
individual regions or globally (see Fig. D1); 2021 seems to
be the anomaly for which the total global emissions reduced
by approximately 20 %–25 %, due to overall lower ECCO
(for biomes 1–3, see Table D3, which affected the SHAF re-
gion the most and almost halved the emissions in 2021 com-
pared to using the ECs from other years). This shows that
the uncertainty of our approach is at least 25 % for the global
emissions, but for individual regions an uncertainty of 50 %
should be assumed. The impact of using ECs from individual
years is greater than the impact of using different definitions
of biomes. It should be noted that the uncertainty discussed
here is only due to the ECs; the uncertainty due to GFAS
FRE (not provided) does not go into this estimate. Thus, the
total uncertainty of the TROPOMI–FRE top-down emissions
is expected to be higher. For most biomass burning emission
inventories, an uncertainty of a factor of 2 is assumed (Pan
et al., 2020; Wiedinmyer et al., 2023).

The total from TROPOMI–FRE may be compared to those
from other fire emission inventories: GFFEPS (337 Mt), the
top-down inventory GFAS (364 Mt), and the bottom-up in-
ventories GFED (408 Mt), FINN v1.5 (295 Mt), and FINN
v2.5 (579 Mt). The breakdown for 14 common geograph-
ical regions around the globe, as defined by Giglio et al.
(2013, Fig. 1), can be seen in Fig. 8. Even though the
TROPOMI–FRE product presented here is based on GFAS
FRP, there are significant differences between these two in-
ventories. This is most noticeable in the EQAS and BOAS
region where TROPOMI–FRE is significantly lower and the
SHAF region where it is higher. FINN v2.5 stands out as the
fire emission inventory with the highest emissions, almost
twice as large as FINN v1.5. FINN v2.5 emissions are espe-
cially high for SEAS. The inventories consistently show the
largest CO emissions due to biomass burning from SHSA
and SHAF (with most fires just south of the Equator), a re-
sult of the Amazon tropical forest fires and Congo’s forested
ecosystem, respectively. For BONA, TENA, CEAM, NHSA,
EURO, MIDE, NHAF, and CEAS, there is agreement within
a factor of 2 (but often better than that) between the differ-

ent inventories. EQAS and BOAS are the regions where CO
emissions are the most variable and the least consistent be-
tween the different inventories with rates between approxi-
mately 10–80 and 10–70 Mt for 2019, respectively. The most
noticeable differences are for FINN v1.5 and v2.5, which are
exceptionally high in the SEAS region compared to all other
estimates. CO emissions from EQAS and BOAS seem high
for the GFED and GFAS estimates compared to the other in-
ventories. BONA CO emissions are also about twice as high
for GFED and GFAS compared to the other estimates. AUST
is very low for FINN v1.5 (roughly a factor of 5) compared
to the others. The low bias in GFFEPS (as found in Sect. 3)
cannot be seen in this comparison. One possibility is that the
bias seen in the previous section is due to a inaccurate di-
urnal pattern, but there could be other reasons too. To be
certain, further investigation is required that is outside the
scope of this study. Overall, Fig. 8 highlights that there are
large discrepancies especially for certain regions around the
globe with regards to biomass-burning-related (CO) emis-
sions. Using a measurement-based approach can help with
the evaluation of the different inventories, as was done in
Sect. 3 for individual fires. Again, it should be highlighted
that all these top-down and bottom-up inventories rely to a
certain extent on good coverage of hotspot locations. If the
fire hotspots cannot be measured by MODIS (due to clouds
or thick smoke), the emissions will be underestimated, which
is a difficult bias to properly correct for without introducing
further assumptions and uncertainties. If anything, the true
CO fire emissions are likely higher than the ones presented
here, due to missed fire hotspots and the underestimate of
large fires (with thick smoke).

5.1 CO emissions over the past 2 decades

The inventories discussed in the previous section provide
data for various past years, except for GFFEPS (currently
only available for 2019). For our independent estimates, we
relied on daily FRP data from GFAS, which is based on
MODIS FRP, available from 2003 to the present. Under the
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Figure 8. Comparison of total CO emissions from fires in 2019 for different fire emission inventories and TROPOMI–FRE based on different
land classification for different geographical regions (as defined by Giglio et al., 2003).

assumption that the ECCO values (as derived in Sect. 4) re-
main relatively stable over the years, we conducted an ex-
tensive analysis of the entire time series and calculated CO
emissions spanning from 2003 to 2021 (refer to Fig. 10) us-
ing the GLC2000 classification for the ECs. Furthermore, we
also present data from the other four inventories for the same
time frame. The results are visualized in Fig. 9.

As expected, the emissions from biomass burning in var-
ious regions across the globe exhibit significant interannual
variability. Notably, EURO and MIDE consistently report the
lowest biomass burning emissions throughout the entire time
series, which are barely noticeable in the figures. The pre-
dominant source of biomass burning CO emissions is from
SHAF and SHSA, followed by NHAF. This consistent pat-
tern is evident for all the inventories analyzed.

To enhance the clarity of emission identification and
changes across different regions, we have depicted emissions
by region in Fig. 10. The rate of change for this time pe-
riod has been quantified for each inventory, and the results
are presented in Table 5. Significant rates of change (with a
p value below 5 %) are highlighted in bold, while all other
rates of change are statistically insignificant.

Globally, CO emissions experience a decrease rang-
ing from 5.1 to 8.7 Mt(CO) yr−1 between 2003 and 2021
across all inventories, with the exception of GFED. No-
tably, GFED does not reflect a global decrease due to
the substantial increase in CO emissions within the BOAS
region, amounting to 19.8 Mt(CO) yr−1. This overall de-
crease is primarily driven by significant reductions in
SHSA (ranging from 2.1 to 6.3 Mt(CO) yr−1), NHAF (rang-
ing from 0.6 to 7.6 Mt(CO) yr−1), SHAF (ranging from
0.9 to 5.6 Mt(CO) yr−1), and CEAS (ranging from 0.3 to
3.3 Mt Mt(CO) yr−1), all of which show statistically signif-
icant decreases across at least four inventories.

In contrast, CO emissions from biomass burning are on
the rise in TENA, with an increase ranging from 0.2 to
4.1 Mt(CO) yr−1. Additionally, emissions in the EQAS re-
gion exhibit an interannual cycle that appears to correlate
with El Niño years, resulting in higher emissions across all
inventories in 2006, 2009, 2014, 2015, and 2019.

These findings align with prior research. Giglio et al.
(2013) reported a decreasing trend in the annual area of land
burned since 2000, which corroborates our observed reduc-
tion in CO emissions. Moreover, Zheng et al. (2021) also
observed a decline in burned area between 1998 and 2015
through satellite observations but reported stable or only
slight decreases in biomass burning emissions. The satel-
lite instrument Measurement of Pollution in the Troposphere
(MOPITT) on board the TERRA satellite (Drummond et al.,
2010) has been observing CO since 200. Buchholz et al.
(2021) showed that MOPITT CO has been steadily decreas-
ing by −0.50 % per year between 2002 and 2018. No study
examining fire emissions for the time period presented here
currently exists to our knowledge.

6 Conclusions

In this study, we presented an approach to compare
TROPOMI directly derived biomass burning CO emissions
with those from bottom-up and top-down emission inven-
tories and emission prediction systems. With TROPOMI
CO observations, biomass burning emissions can be esti-
mated from individual overpasses, resulting in roughly 5000
high-quality fire emission estimates globally per year. The
TROPOMI-derived CO estimates have previously been val-
idated with aircraft-derived emission rates (Stockwell et al.,
2022); here, we further established and automated an estima-
tion method and performed model sensitivity tests to verify
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Figure 9. Total CO emissions from fires between 2003 and 2021 for different geographical regions (as defined by Giglio et al., 2003) from
FINN1.5, FINN2.5, GFED v4.1, GFAS, and TROPOMI–GFAS, which combines GFAS FRP and TROPOMI–MODIS ECCO (as defined in
Table 5).

Figure 10. To illustrate the trend of CO fire emissions, the sum of all five inventories (FINN1.5, FINN2.5, GFED v4.1, GFAS, and
TROPOMI–GFAS) is shown for the different geographical regions between 2003 and 2021.
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Table 5. Trends of CO emissions from wild fires (in units of Mt yr−1) between 2003 and 2021 for five different fire emission inventories
discussed in this study. Bold numbers indicate a significant trend (with a p value smaller than 0.05); for all others the trend is not significant.
A negative number demonstrates declining emissions, and a positive number indicates increasing emissions. Note that the uncertainty of
these trends is large, which can be seen by the range of values across the different emission inventories.

TROPOMI–
Region GFAS GFED GFAS FINN1.5 FINN2.5

Global −5.3 0.4 −5.1 −8.2 −8.7
BONA 0.0 11.9 −0.1 −0.1 0.3
TENA 0.2 4.1 0.2 0.0 0.4
CEAM −0.1 −1.2 0.0 0.0 −0.5
NHSA 0.0 0.1 0.0 0.0 −0.1
SHSA −2.1 −7.3 −2.2 −3.0 −6.3
EURO 0.0 −0.2 0.0 0.0 −0.1
MIDE 0.1 0.1 0.2 0.0 0.0
NHAF −1.3 −7.6 −1.0 −0.6 0.5
SHAF −1.1 −5.6 −0.9 −1.0 0.8
BOAS 0.2 19.8 0.1 −0.8 −0.2
CEAS −0.3 −3.3 −0.4 −0.6 −0.7
SEAS −0.5 −1.7 −0.5 −1.2 −1.4
EQAS −0.2 −6.7 −0.4 −0.8 −1.6
AUST −0.1 1.6 0.0 0.1 0.1

the robustness and uncertainties of the approach. Applying
the same method to synthetic model VCDs showed that the
method is robust and is capable of deriving the model in-
put emissions when appropriate quality filters are applied.
The success rate depends primarily on favourable meteoro-
logical conditions, including stable atmospheric conditions,
low cloud and smoke cover, and no significant wind shear
in the area, as well as the proximity of other nearby sources
(especially upwind). Applying appropriate filtering for un-
favourable wind conditions is the key for this method to work
well and to reduce uncertainties of the emission estimates.
The sensitivity tests show that the method’s uncertainty is ap-
proximately 34 % (and 57 % total uncertainty including the
uncertainty of VCDs and winds).

Even though emissions for many fires are derived directly
from TROPOMI CO, TROPOMI alone cannot be used to
study total emissions, because too many fires are missed
or filtered due to unfavourable meteorological conditions,
and the satellite is limited to a single daily overpass at
13:30. Thus, a top-down emission inventory was obtained
(TROPOMI–FRE): the TROPOMI directly derived CO emis-
sions have been used to obtain ECs with respect to MODIS
FRP. These ECs are applied to GFAS FRE and result in to-
tal emissions. The TROPOMI directly derived CO emissions
have generally an average correlation with FRP (R ∼ 0.5−
0.6) for most biomes; the slope (burning efficiency) varies
by biome. In this study we used the GLC2000, MCD12C1,
and GFED biome classification and showed that there are
large differences of EC for different types of forests. Based
on this analysis we would not recommend a more simplified
classification (e.g. for forest, shrub, grass). The TROPOMI–

FRE top-down emission uncertainties (based on the uncer-
tainties of the ECs) are at least 50 % for regional emissions
or 25 % for global emissions. Note that the total uncertainty
is likely larger as the uncertainty of GFAS FRE (unknown)
is not accounted for. We also found that the FRP is strongly
influenced by thick smoke, which can influence these types
of top-down emission estimates and leads to an underesti-
mate of fire emissions for fires with thick smoke (typically
large fires). The directly derived TROPOMI CO emission
estimates are not impacted as much by the smoke and have
been used here to verify and analyze this issue for individ-
ual fires. This study highlighted the importance of hotspots:
when these are obscured, fire emissions cannot be estimated
correctly with neither top-down nor bottom-up, which both
rely on MODIS- or VIIRS-derived fire products. Differences
between flaming and smoldering are also expected and will
influence the correlation between the CO emissions and FRP;
however, it is very difficult to determine the burning stage
especially on a global scale for thousands of fires. When es-
timating the ECs the smoldering and flaming stages are ne-
glected. There is much uncertainty in this method as a single
EC is assumed for each biome that is based on emission es-
timates at around 13:30 local time, and thus the TROPOMI
scenes in general represent a small selection of conditions. It
is unlikely to be representative of all fires or fire stages. The
EC can also be affected by sampling biases because the size
of fires and the meteorological conditions that are selected. In
the near future geostationary satellites can be used to study
total daily emissions and the ECs at different times of day.

In the comparison to GFFEPS, we identified the limitation
to hotspot detection. GFFEPS relies on the satellite-detected
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hotspots: these feed directly into the estimate of burned area,
which is used to derive the bottom-up emissions. Thus, if
not all hotspots are captured, the emissions will be underes-
timated. This discrepancy can be corrected for, but further
analysis is needed to determine how exactly this can be ac-
counted for.

The comparison of TROPOMI–FRP-derived top-down
emissions with other inventories reveals disparities and high-
lights the substantial uncertainties associated with fire emis-
sion estimates. Notably, GFFEPS generally exhibits the clos-
est agreement with TROPOMI–FRE (e.g. total emissions for
2019: 337 vs. 290 Mt of CO for GFFEPS versus TROPOMI–
FRE, respectively) , although some exceptions are evident in
regions such as SHSA, NHSA, SEAS, and AUST. Possible
reasons for the discrepancy are the omission of small fires,
the absence of detected hotspots, and an underestimation of
FRP, ultimately contributing to an overall underestimation of
total emissions. FINNv2.5 shows the largest discrepancies
with TROPOMI–FRE where the FINNv2.5 global emissions
(579 Mt) are almost twice those of TROPOMI–FRE; in the
SEAS region the FINNv2.5 emissions are higher by a factor
of 5: 20 Mt versus 100 Mt.

Examining the trends over the past 2 decades (corre-
sponding to the MODIS lifetime), it appears that global CO
biomass burning emissions have, on the whole, decreased.
The trend (between−8.7 and−5.1 Mt yr−1) is significant for
all inventories, except GFED (this is driven by the high in-
crease for BOAS of almost 20 Mt yr−1). The trend of biomass
burning emissions is highly region-specific, with the highest
reductions occurring in SHSA, SHAF, NHAF, and CEAS.
Conversely, biomass burning emissions in TENA are on the
rise (by 0–4 Mt yr−1). For all other regions, the variability
within the past 2 decades has been too substantial to deter-
mine a statistically significant trend.

Overall, directly derived TROPOMI CO emissions and
CO VCD enhancements are a great tool for validation of
fire emission models, e.g. GFFEPS. With this it was possible
to pinpoint several issues, which either have been addressed
or will be addressed in future versions of GFFEPS, such as
the obstructed hotspots. Geostationary satellite sensors, such
as TEMPO (covering North America), Geostationary Envi-
ronment Monitoring Spectrometer (GEMS), and Sentinel-4
(covering Europe and Africa), will help to validate the diur-
nal pattern of emissions (e.g. for NO2 and HCHO; note that
none of the current geostationary satellites have the ability to
measure CO). WildFireSat (Johnston et al., 2020) will help
with the FRP and hotspot count in the afternoon during the
peak of the fire activity.
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Appendix A: Effect of the TROPOMI averaging kernel

Figure A1. Effect of applying the TROPOMI averaging kernel for a fire that overlapped well with the GEM-MACH model (using GF-
FEPS fire emissions). The averaging-kernel-corrected columns are estimated using the corrected averaging kernel AVKcorr=

∫ z
0 AVKz ·

Nzdz/
∫ z

0Nzdz that is then applied to the CO columns: VCDcorr = VCD/AVKcorr, where Nz is the GEM-MACH CO profile. The original
CO columns are shown in the left panel, the corrected ones in the middle panel, and the difference (VCD–VCDcorr) in the right panel.
The emissions were estimated with the original and corrected VCDs and show an increase of 17 % when the corrected VCDs are used. The
example shown is for the same fires as in Fig. 5 top panel (21 May 2019 at 57° N and 118° W).

Appendix B: Regions and biomes

Figure B1. Polygons used to define the geographical region; these are based on the GFED regions from Giglio et al. (2003). Abbrevia-
tions are as follows: boreal North America (BONA), temperate North America (TENA), Central America (CEAM), Northern Hemisphere
South America (NHSA), Southern Hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), Northern Hemisphere Africa
(NHAF), Southern Hemisphere Africa (SHAF), boreal Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), equatorial Asia (EQAS),
and Australia and New Zealand (AUST).
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B1 GLC2000

Figure B2. GLC2000 biomes (see Bartholomé and Belward, 2005). The definitions of biomes 1 to 18 can be found in Table B1.

Table B1. GLC2000 biomes (see Bartholomé and Belward, 2005). The extent of the biomes is also included in the table in km2 as well as in
percentage relative to the total Earth’s surface (assuming 5.1× 108 km2). Note that the GLC2000 dataset does not cover the entire globe. It
covers the areas between 90° N and 56° S. Therefore, the area of water, snow, and ice only takes anything north of 56° S into account.

Number Description Area (km2) Area (%)

1 Tree cover, broadleaved, evergreen Land Cover Classification System > 15 1.2× 107 2.4
2 Tree cover, broadleaved, deciduous, closed 6.5× 106 1.3
3 Tree cover, broadleaved, deciduous, open 3.7× 106 0.7
4 Tree cover, needle-leaved, evergreen 9.1× 106 1.8
5 Tree cover, needle-leaved, deciduous 3.8× 106 0.7
6 Tree cover, mixed-leaf type 3.2× 106 0.6
7 Tree cover, regularly flooded, fresh water 5.7× 105 0.1
8 Tree cover, regularly flooded, saline water 1.1× 105 0.02
9 Mosaic: tree cover/other natural vegetation 2.4× 106 0.5
10 Tree cover, burned 3.0× 105 0.05
11 Shrub cover, closed–open, evergreen 2.1× 106 0.4
12 Shrub cover, closed–open, deciduous 1.1× 107 2.2
13 Herbaceous cover, closed–open 1.3× 107 2.6
14 Sparse herbaceous or sparse shrub cover 1.3× 107 2.7
15 Regularly flooded shrub and/or herbaceous cover 1.7× 106 0.3
16 Cultivated and managed areas 1.7× 107 3.4
17 Mosaic: cropland/tree cover/other natural vegetation 3.5× 106 0.7
18 Mosaic: cropland/shrub or grass cover 3.1× 106 0.6
19 Bare areas 2.0× 107 3.9
20 Water bodies (natural & artificial) 3.3× 108 65.4a

21 Snow and ice (natural & artificial) 2.8× 105 0.6b

22 Artificial surfaces and associated areas 2.8× 105 0.05

a Does not include water south of 56° S. b Does not include Antarctica.
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Appendix C: TROPOMI–GFFEPS comparison

Table C1. TROPOMI-derived CO emissions versus GFFEPS CO
emissions for different regions around the globe.

Sample
Region Slope R RMSE size

BONA 0.31 0.36 1976 183
TENA 0.42 0.51 1074 45
CEAM 1.80 0.59 401 22
NHSA 0.82 0.74 249 58
SHSA 0.42 0.33 844 789
EURO 0.20 0.44 215 7
MIDE −0.60 −0.90 300 3
NHAF 0.19 0.31 446 557
SHAF 0.14 0.31 441 918
BOAS 0.35 0.56 895 403
CEAS 0.22 0.29 395 121
SEAS 0.33 0.07 579 203
EQAS 0.49 0.40 928 58
AUST 0.10 0.09 2986 672

Table C2. TROPOMI-derived CO emissions versus GFFEPS CO
emissions for GLC2000 biomes (see Table B1 around the globe).

Fuel Sample
type Slope R RMSE size

1 0.14 0.02 2794 706
2 0.14 0.23 866 356
3 0.25 0.41 885 768
4 0.47 0.44 1227 233
5 0.34 0.54 1008 248
6 0.32 0.77 1988 36
9 0.25 0.59 633 78
11 0.11 0.07 1545 150
12 0.40 0.53 444 519
13 0.25 0.34 640 193
14 0.61 0.35 395 172
15 0.25 0.37 564 85
16 0.46 0.34 199 131
17 0.32 0.40 806 166
18 0.12 0.73 1342 107
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Appendix D: ECCO for different years

Figure D1. TROPOMI–FRE emissions between 2003 and 2021 based on different emission coefficients estimated from single years (2019–
2021; see Tables D1, D2, and D3) and combined years (2019–2021; see Table 2). While individual ECCO values change, overall the change is
small, particularly using TROPOMI emission estimates from 2019, 2020, and “combined” (2019–2021). The ECCO in 2021 is significantly
lower for biomes 1–3, leading to lower emission estimates of approximately 60 Mt (CO) globally (∼ 20%).

Table D1. Same as Table 2 but for 2019 only. Note that 2019 was the year of the “black summer” fires in Australia that burned mostly type-1
vegetation. Those were extreme fires with very thick smoke.

ECCO Sample
Number Description (g MJ−1) R size Rank

1 Tree cover, broadleaved, evergreen 150 0.55 498 1
2 Tree cover, broadleaved, deciduous, closed 100 0.61 194 4
3 Tree cover, broadleaved, deciduous, open 53 0.71 357 2
4 Tree cover, needle-leaved, evergreen 56 0.47 183 8
5 Tree cover, needle-leaved, deciduous 111 0.47 220 10
6 Tree cover, mixed-leaf type 67 0.65 31 15
9 Mosaic: tree cover/other natural vegetation 72 0.82 44 12
11 Shrub cover, closed–open, evergreen 100 0.78 89 13
12 Shrub cover, closed–open, deciduous 28 0.37 220 3
13 Herbaceous cover, closed–open 58 0.5 82 6
14 Sparse herbaceous or sparse shrub cover 31 0.28 103 9
15 Regularly flooded shrub and/or herbaceous cover 67 0.54 64 14
16 Cultivated and managed areas 28 0.36 62 5
17 Mosaic: cropland/tree cover/other natural vegetation 58 0.43 83 7
18 Mosaic: cropland/shrub or grass cover 69 0.46 60 11
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Table D2. Same as Table 2 but for 2020 only.

ECCO Sample
Number Description (g MJ−1) R size Rank

1 Tree cover, broadleaved, evergreen 101 0.71 459 1
2 Tree cover, broadleaved, deciduous, closed 93 0.57 225 4
3 Tree cover, broadleaved, deciduous, open 79 0.42 346 2
4 Tree cover, needle-leaved, evergreen 61 0.52 151 8
5 Tree cover, needle-leaved, deciduous 90 0.43 294 10
6 Tree cover, mixed-leaf type 47 0.28 5 15
9 Mosaic: tree cover/other natural vegetation 67 0.22 47 12
11 Shrub cover, closed–open, evergreen 75 0.26 103 13
12 Shrub cover, closed–open, deciduous 43 0.76 227 3
13 Herbaceous cover, closed–open 45 0.30 139 6
14 Sparse herbaceous or sparse shrub cover 56 0.38 30 9
15 Regularly flooded shrub and/or herbaceous cover 124 0.63 89 14
16 Cultivated and managed areas 38 0.67 146 5
17 Mosaic: cropland/tree cover/other natural vegetation 46 0.28 58 7
18 Mosaic: cropland/shrub or grass cover 50 0.34 56 11

Table D3. Same as Table 2 but for 2021 only.

ECCO Sample
Number Description (g MJ−1) R size Rank

1 Tree cover, broadleaved, evergreen 59 0.52 507 1
2 Tree cover, broadleaved, deciduous, closed 42 0.30 252 4
3 Tree cover, broadleaved, deciduous, open 28 0.22 439 2
4 Tree cover, needle-leaved, evergreen 55 0.49 340 8
5 Tree cover, needle-leaved, deciduous 92 0.30 915 10
6 Tree cover, mixed-leaf type 45 0.29 25 15
9 Mosaic: tree cover/other natural vegetation 65 0.69 75 12
11 Shrub cover, closed–open, evergreen 123 0.53 101 13
12 Shrub cover, closed–open, deciduous 34 0.43 295 3
13 Herbaceous cover, closed–open 36 0.50 173 6
14 Sparse herbaceous or sparse shrub cover 78 0.52 49 9
15 Regularly flooded shrub and/or herbaceous cover 52 0.49 56 14
16 Cultivated and managed areas 94 0.60 130 5
17 Mosaic: cropland/tree cover/other natural vegetation 85 0.34 68 7
18 Mosaic: cropland/shrub or grass cover 63 0.88 87 11

Appendix E: Emission factors

Table E1. Emission factors for CO from this work using a variable conversion factor “variable” from Kaiser et al. (2012) and a universal
conversion factor “universal” of 0.368 kg MJ−1 (Wooster et al., 2005) to the emission coefficients as in Table 4. The emission factors (from
this study) depend greatly on the conversion factor, which differs by as much as a factor of 4. The emission factors for GFED and GFAS are
listed for comparison.

Conversion Variable Universal GFED GFAS
Description factor (kg MJ−1) (g kg−1) (g kg−1) (g kg−1) (g kg−1)

AGRI 0.29 169 133 102 92
BORF 1.55 59 247 127 106
DEFO 0.96 54 141 93 NA
PEAT 5.87 31 497 210 210
SAVA 0.78 77 163 63 61
TEMF 0.49 224 299 88 101
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Data availability. TROPOMI data can be downloaded from
https://doi.org/10.5270/S5P-bj3nry0 (Copernicus Sentinel-5P,
2024). The MODIS fire product is publicly available for download
at http://modis-fire.umd.edu/index.php (NASA Near Real-Time and
MCD14DL MODIS Active Fire Detections, 2024). The location of
fires and the TROPOMI CO emission estimates can be found here:
https://collaboration.cmc.ec.gc.ca/cmc/arqi/Griffin_et_al_fireco/
(Griffin, 2024).
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