Measuring and modeling investigation of the net photochemical ozone production rate via an improved dual-channel reaction chamber technique

Yixin Hao1,2,⋆, Jun Zhou1,2,⋆, Jie-Ping Zhou1,2, Yan Wang1,2, Suxia Yang1,2, Yibo Huangfu1,2, Xiaobing Li1,2, Chunsheng Zhang3, Aiming Liu3, Yanfeng Wu1,2, Yaqing Zhou1,2, Shuchun Yang1,2, Yuwen Peng1,2, Jinjun He1,2, Xin Song1,2, Yubin Chen1,2, Bin Yuan1,2, and Min Shao1,2

1Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
2Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
3Shenzhen National Climate Observatory, Shenzhen 518040, China

⋆These authors contributed equally to this work.

Correspondence: Jun Zhou (junzhou@jnu.edu.cn) and Bin Yuan (byuan@jnu.edu.cn)

Received: 9 December 2022 – Discussion started: 7 February 2023
Revised: 27 June 2023 – Accepted: 14 July 2023 – Published: 6 September 2023

Abstract. Current process-based research mainly uses box models to evaluate photochemical ozone production and destruction rates, and it is unclear to what extent the photochemical reaction mechanisms are elucidated. Here, we modified and improved a net photochemical ozone production rate (NPOPR, $P(O_3)_{\text{net}}$) detection system based on the current dual-channel reaction chamber technique, which makes the instrument applicable to different ambient environments, and its various operating indicators were characterized, i.e., “airtightness”, light transmittance, wall losses of the reaction and reference chambers, conversion rate of O_3 to NO_2, air residence time, and performance of the reaction and reference chambers. The limits of detection of the NPOPR detection system were determined to be 0.07, 1.4, and 2.3 ppbv h$^{-1}$ at sampling flow rates of 1.3, 3, and 5 L min$^{-1}$, respectively. We further applied the NPOPR detection system to field observations at an urban site in the Pearl River Delta (China). During the observation period, the maximum value of $P(O_3)_{\text{net}}$ was 34.1 ppbv h$^{-1}$, which was \sim 0 ppbv h$^{-1}$ at night within the system detection error and peaked at approximately noon local time. The daytime (from 06:00–18:00 LT) average value of $P(O_3)_{\text{net}}$ was 34.1 ppbv h$^{-1}$, which was \sim 0 ppbv h$^{-1}$ at night within the system detection error and peaked at approximately noon local time. The daytime (from 06:00–18:00 LT) average value of $P(O_3)_{\text{net}}$ was 34.1 ppbv h$^{-1}$, which was \sim 0 ppbv h$^{-1}$ at night within the system detection error and peaked at approximately noon local time. The daytime (from 06:00–18:00 LT) average value of $P(O_3)_{\text{net}}$ was 34.1 ppbv h$^{-1}$, which was \sim 0 ppbv h$^{-1}$ at night within the system detection error and peaked at approximately noon local time. The daytime (from 06:00–18:00 LT) average value of $P(O_3)_{\text{net}}$ was 34.1 ppbv h$^{-1}$, which was \sim 0 ppbv h$^{-1}$ at night within the system detection error and peaked at approximately noon local time. The daytime (from 06:00–18:00 LT) average value of $P(O_3)_{\text{net}}$ was 34.1 ppbv h$^{-1}$, which was \sim 0 ppbv h$^{-1}$ at night within the system detection error and peaked at approximately noon local time. The daytime (from 06:00–18:00 LT) average value of $P(O_3)_{\text{net}}$ was 34.1 ppbv h$^{-1}$, which was \sim 0 ppbv h$^{-1}$ at night within the system detection error and peaked at approximately noon local time. The daytime (from 06:00–18:00 LT) average value of $P(O_3)_{\text{net}}$ was 34.1 ppbv h$^{-1}$, which was \sim 0 ppbv h$^{-1}$ at night within the system detection error and peaked at approximately noon local time. The daytime (from 06:00–18:00 LT) average value of $P(O_3)_{\text{net}}$ was 34.1 ppbv h$^{-1}$, which was \sim 0 ppbv h$^{-1}$ at night within the system detection error and peaked at approximately noon local time.

We investigated the detailed photochemical O_3 formation mechanism in the reaction and reference chambers of the NPOPR detection system using a zero-dimensional box model. We found that the photochemical reactions in the reaction chamber were very close to those in ambient air, but there was not zero chemistry in the reference chamber because the reaction related to the production and destruction of RO_2 ($= HO_2 + RO_2$) continued in the reference chamber, which led to a small amount of $P(O_3)_{\text{net}}$. Therefore, the $P(O_3)_{\text{net}}$ measured here can be regarded as the lower limit of the real $P(O_3)_{\text{net}}$ in the atmosphere; however, the measured $P(O_3)_{\text{net}}$ was still \sim 7.5 to 9.3 ppbv h$^{-1}$ higher than the modeled $P(O_3)_{\text{net}}$ value depending on different modeling methods, which may be due to the inaccurate estimation of HO$_2$ / RO$_2$ radicals in the modeling study. Short-lived intermediate measurements coupled with direct $P(O_3)_{\text{net}}$ measurements are needed in the future to better understand O_3 photochemistry. Our results show that the NPOPR detection system can achieve high temporal resolution and continuous field observations, which helps us to better understand photochemical O_3 formation and provides a key scientific basis for continuous improvement of air quality in China.
1 Introduction

Surface O₃ pollution has become a major challenge in air quality management in China (Shen et al., 2021). Elevated surface O₃ mixing ratios exert severe adverse effects on public health, such as respiratory diseases, and the estimated annual mortality attributable to surface O₃ exposure exceeds 150,000 deaths in China (Malley et al., 2017). O₃ pollution is also detrimental to key staple crop yields, reducing the yields of wheat, soybean, and maize by up to 15%, and is threatening global food security (Avnery et al., 2011; Mills et al., 2018; Karakatsani et al., 2010; Berman et al., 2012; O’Neill et al., 2003). As a greenhouse gas, O₃ also contributes significantly to climate change (Bell et al., 2004). With the rapid economic development and urbanization in the Pearl River Delta (PRD) region in China, O₃ pollution is pretty severe, especially in summer and autumn (Zou et al., 2015; Zhang et al., 2021).

The variation in O₃ in the planetary boundary layer is predominantly influenced by deposition, advection transport, vertical mixing (i.e., entrainment from the stratosphere), meteorological factors, and chemical reactions. Therefore, the O₃ budget in the boundary layer can be expressed as Eq. (1):

\[
\frac{\partial [O_3]}{\partial t} = \frac{P(O_3) - D(O_3)}{P(O_3)_{net}} - \frac{v}{H} [O_3] + u_i \frac{\partial [O_3]}{\partial u_i} + STE, \tag{1}
\]

where \(S_D\), \(A\), and STE represent the surface deposition, advection, and stratosphere–troposphere exchange (STE), respectively; \([O_3]\), \(P(O_3)\), and \(D(O_3)\) are the ambient O₃ mixing ratios, photochemical O₃ production and its loss rate, respectively; \(v\), \(H\), and \(u_i\) represent the O₃ deposition velocity, mixing layer height, and velocity in three directions, respectively; and \(A\) consists of \(u_i\) times the O₃ gradient in those three directions.

Tropospheric O₃ is a key component of photochemical smog that is mainly formed by photochemical reactions of nitrogen oxides (NOₓ = NO + NO₂) and volatile organic compounds (VOCs) (Lee et al., 2010). The specific process of the photochemical reaction is the photolysis of NO₂ at < 420 nm to generate O(¹P) atoms, thereby promoting the formation of O₃ (Sadanaga et al., 2017). Simultaneously, there is a RO₂ (RO₂ = OH + HO₂ + RO₂) radical cycle in the troposphere, which continuously provides HO₂ and RO₂ to oxidize NO to NO₂, resulting in the accumulation of O₃ (Shen et al., 2021; Sadanaga et al., 2017; Cazorla and Brune, 2010).

Typical meteorological scenarios for the occurrence of O₃ pollution episodes in polluted urban centers are usually characterized by weak winds, strong solar radiation, and high temperature \(T\). Under such conditions, local formation of O₃ plays a crucial role in the rapid increase in surface O₃ in daytime. In addition, in Eq. (1) the surface deposition and advection of O₃ are proportional to ambient O₃ mixing ratios, \([O_3]\), which is mainly generated by local photochemistry (Cazorla and Brune, 2010). If \(P(O_3)_{net}\) can be reduced by regulatory measures, overall O₃ levels will decline proportionately over time (Cazorla and Brune, 2010); thus, the investigation of the \(P(O_3)_{net}\) formation mechanism is urgently needed.

Current studies on \(P(O_3)_{net}\) estimation mainly rely on modeling methods. The gas-phase chemical mechanisms were frequently used to identify key drivers of O₃ pollution events and provide guidance for making effective O₃ reduction strategies, such as the Master Chemical Mechanism (MCM), the Regional Atmospheric Chemistry Mechanism (RACM), the Carbon Bond Mechanisms (CBMs), and the Mainz Organic Mechanism (MOM) (Shen et al., 2021; Kanaya et al., 2016; Wang et al., 2014; Tadic et al., 2020; Ren et al., 2013; Lu et al., 2010; Zhou et al., 2014; Mazzucca et al., 2016). However, uncertainties in emission inventories, chemical mechanisms, and meteorology make it difficult to perfectly reproduce real atmospheric processes, which can lead some bias in modeling the \(P(O_3)_{net}\). According to the existing field observations, researchers found that the mixing ratios of HO₂ or RO₂ obtained from the model simulation were inconsistent with those obtained from the direct measurement, leading to the deviation of \(P(O_3)_{net}\) between observation and model simulation results (Wang et al., 2014; Tadic et al., 2020; Ren et al., 2013; Martinez, 2003). Therefore, we urgently need a method that can directly measure the \(P(O_3)_{net}\).

Recently, researchers have developed sensors that can directly measure \(P(O_3)_{net}\) in the atmosphere using the dual-channel chamber technique (Sadanaga et al., 2017; Cazorla and Brune, 2010; Baier et al., 2015, 2017; Sklaveniti et al., 2018), where ambient air is introduced into two chambers of identical size: one UV transparent chamber (reaction chamber) and one UV protection chamber (reference chamber). In the presence of solar UV light, O₃ is produced by photochemical reactions in the reaction chamber but not in the reference chamber. The system does not directly measure O₃ mixing ratios, it measures the combined mixing ratios of O₃ and nitrogen dioxide (NO₂). \(P(O_3)_{net}\) is determined by the difference in \(O_3\) (\(O_3 = O_3 + NO_2\)) mixing ratios between the reaction and reference chambers. These studies have greatly helped us to understand the O₃ photochemical formation mechanism, but defects still exist in current studies; for example, the sensors developed by Cazorla and Brune (2010) and Baier et al. (2015) both have an NO₂-to-O₃ converter unit and use a modified O₃ monitor (Thermo Scientific, Model 49i, USA) to measure O₃, but the zero point of the O₃ monitor is easy to drift, and together with the limitation in the conversion efficiency of NO₂ to O₃ (∼99.9 %) and the effects of the \(T\) and relative humidity (RH) to O₃ monitor, this method can introduce large measurement uncertainties. Sklaveniti et al. (2018) have shortened the average residence time in the chambers to 4.5 min, which reduced the scattering and increased the time resolution of \(\Delta O_3\) measurement, but large wall loss still exists in their system at 5% and 3% for O₃ and NO₂, respectively. Sadanaga et al. (2017) passed
the NO standard gas into the perfluoroalkoxy (PFA) tube to convert O\(_3\) into NO\(_2\) to detect O\(_x\), which is easy to operate, but the laser-induced fluorescence (LIF) NO\(_2\) detector is less portable and maintainable. Furthermore, all the current sensors have different degrees of wall loss of NO\(_2\) and O\(_3\) that can even reach 15 \%, which greatly affect the accuracy of the evaluation of \(P(O_3)_{\text{net}}\).

In this study, we modified and improved a \(P(O_3)_{\text{net}}\) sensor based on the dual-channel technique as described above and named it the net photochemical ozone production rate (NPOPR) detection system. Section 2 discusses the improvement and characterization of the NPOPR detection system. Furthermore, we applied the NPOPR detection system to an observation campaign conducted at Shenzhen Meteorological Gradient Tower (SZMGT) in the Pearl River Delta (PRD) region in China. A zero-dimensional box model based on the Framework for 0-D Atmospheric Modeling (F0AM) v3.2 coupled with MCM v3.3.1 was used to simulate the photochemical reactions inside both the reaction and reference chambers in the NPOPR detection system, which allowed us to assess the ability of the current modeling method to model \(P(O_3)_{\text{net}}\), as described in Sect. 3. The current research could help us study the source and formation mechanism of O\(_3\) and provide effective theoretical support for the prevention and control of O\(_3\) pollution. Because the system can directly obtain real-time \(P(O_3)_{\text{net}}\) under different environmental conditions, it can meet richer and more specific research needs.

2 Method and materials

2.1 Development of the NPOPR detection system

A schematic and an actual image of the NPOPR detection system are shown in Fig. 1. The integral construction is similar to the \(P-L(O_3)\) measurement system built by Sadanaga et al. (2017) and Sklaveniti et al. (2018), which mainly consists of reaction and reference chambers with the same geometry and made of quartz (190.5 mm inner diameter and 700 mm length; more details can be found in Fig. S1 in the Supplement). To prevent photochemical reactions inside the reference chamber, an ultraviolet (UV) protection Ultem film (SH2CLAR, 3 M, Japan) was used to cover the outer surface to block sunlight with wavelengths \(< 390\) nm. During the experiment, both the reaction and reference chambers were located outdoors and exposed to sunlight directly to simulate genuine ambient photochemistry reactions. Ambient air was introduced into the reaction and reference chambers at the same flow rate, and a Teflon filter was mounted before the chamber inlet to remove fine particles. A stream of air from the two chambers was alternately introduced into an NO reaction chamber every 2 min to convert O\(_3\) in the air to NO\(_2\) in the presence of high mixing ratios of NO (O\(_3 \pm NO = NO_2\)) and the O\(_3\) mixing ratios from the outlet of the NO reaction chamber, i.e., the total NO\(_2\) mixing ratios including the inherent NO\(_2\) in the ambient air and that converted from O\(_3\), were measured by a cavity-attenuated phase shift (CAPS) NO\(_2\) monitor (Aerodyne research, Inc., Billerica MA, USA) to avoid other nitrogen oxide interference in the NO\(_2\) measurement (such as alkyl nitrates, peroxyacetyl nitrates, peroxynitric acid, nitrogen pentoxide). Compared to previous studies that used a dual-channel UV absorption O\(_3\) monitor (Cazorla and Brune, 2010) or a laser-induced fluorescence (LIF) NO\(_2\) monitor (Sadanaga et al., 2017) for O\(_3\) measurements, our choice could make the NPOPR detection system have a more stable zero baseline and be more portable by assembling each part together, i.e., putting the CAPS NO\(_2\) monitor, the automatic sampling system, and the automatic data sampling system onto the indoor cabinets with the push–pull base and putting the dual chambers onto the outdoor shelf with the push–pull base. Additionally, we modified the air sampling system to adjust the total airflow rates freely from 1.3 to 5 L min\(^{-1}\) in the reaction and reference chambers, which enabled us to achieve different air residence times from 3.8 to 21 min. This time range covered all the residence times from previous studies using different O\(_3\) measurement techniques, which ranged from 4.5 to 20.5 min (Cazorla and Brune, 2010; Baier et al., 2015; Sadanaga et al., 2017; Sklaveniti et al., 2018). According to the simulation results described in Sect. 3, the reaction rates of O\(_3\) formation and destruction pathways and the radicals that play critical roles in photochemical O\(_3\) formation, such as HO\(_2\), RO\(_2\), and OH, reached quasi-steady states in approximately 3 min; thus, it was reasonable for us to set the airflow rate highest at 5 L min\(^{-1}\), where the sampled air has already reacted for 3.8 min in the reaction and reference chambers. On the other hand, this also demonstrated that it was reasonable to set the alternate sampling time for the reaction and reference chambers at 2 min, where the sampled air actually has already reacted for at least 3.8 min in the reaction and reference chambers. The switch system was controlled by two Teflon three-way solenoid valves (001-0028-900, Parker, GER) located before the NO reaction chamber (see Fig. 1). We used homemade circuit control software (four-channel valves boxed) and a solenoid valve (001-0028-900, Parker, GER) to automatically switch the sampling lines every 2 min. To keep the flow rates in the reaction and reference chambers the same and avoid gas flow accumulation in the chamber, a pump (pump 3) was connected to the Teflon three-way solenoid valves in parallel with the NO reaction chamber to evacuate the air that was not introduced into the NO reaction chamber. To reduce NO interference, the system used O\(_x\) to infer the amount of O\(_3\) generated by photochemical reactions (Liu, 1977; Pan et al., 2015; Lu et al., 2010). The difference between the O\(_3\) mixing ratios in the reaction and reference chambers, denoted by \(\Delta O_3\), represents the amount of O\(_3\) generated by the photochemical reaction. \(P(O_3)_{\text{net}}\) was obtained by dividing \(\Delta O_3\) by the average residence time of air in the reaction chamber (\(\tau\)):
Igor Pro version 6 was used to calculate $P(O_3)_{\text{net}}$ through the following steps: (1) separate the data of the reaction and the reference chambers into two sets using the recorded valve number of 1 (reaction chamber) and 0 (reference chamber) during the sampling time; (2) for each 2 min period of data, delete the first 20 s and the last 20 s when the signal was not stable, then average the rest of the data and do the interpolation calculation for the reference chamber dataset; (3) calculate the difference between the O_3 mixing ratios in the reaction and reference chambers (i.e., ΔO_3) at the time when the reaction chamber measured O_3; and (4) divide ΔO_3 by the average residence time of air in the reaction chamber (τ) and obtain $P(O_3)_{\text{net}}$ at a time resolution of 4 min.

The major improvements of the NPOPR detection system described here compared to previous studies to optimize $P(O_3)_{\text{net}}$ measurements are as follows: (1) we improved the design of the reaction and reference chambers to ensure that they have good “airtightness”, which will increase the measurement accuracy of different species inside the chambers (more details can be found in Sect. 2.2 and Sect. S1 in the Supplement). (2) Two pumps (labeled pump 1 and pump 2 in Fig. 1) were added directly after the reaction and reference chambers to continuously draw ambient air through the two chambers (as the makeup flow) to adjust the total airflow rates freely from 1.3 to 5 L min$^{-1}$ in the chambers. By doing this, we were able to achieve different limits of detection (LODs) of the NPOPR detection system (see Sect. 2.4), making the instrument applicable to different ambient environments, i.e., in highly polluted areas, we could use higher airflow rates to reduce the wall loss effects of the chambers, and in less polluted areas, we could use lower flow rates to increase the instrument LOD. (3) We characterized the NPOPR detection system at different airflow rates (including 1.3, 2, 3, 4, and 5 L min$^{-1}$) and tested the conversion efficiency of O_3 by NO to NO$_2$ in the NO reaction chamber at different NO mixing ratios and NO reaction chamber lengths. These efforts enabled us to better understand the running parameters of the NPOPR detection system and perform data corrections under different airflow rates (see Sect. 2.2). (4) We tested the performance of both the reaction and reference chambers by combining the field measurements and MCM modeling, which indicated that reaction pathways of $P(O_3)$ and $D(O_3)$ and the radicals that play critical roles in photochemical O_3 formation, such as HO$_2$, RO$_2$, and OH, reached quasi-steady states in approximately 3 min, thus ensuring that the lowest air residence time of 3.8 min (at an airflow rate of 5 L min$^{-1}$) in the reaction and reference chambers was long enough to obtain accurate $P(O_3)_{\text{net}}$ values (see Sect. 3.2). These efforts made the NPOPR detection system less prone to biases than other systems and increased its applicability.

2.2 Characterization of the NPOPR detection system

We characterized the NPOPR detection system following the same procedures as previous researchers, including the residence time of the air, the wall losses of NO$_2$ and O_3, the transmittance of light and temperature differences in the reaction and reference chambers, and the quantitative conversion efficiency of O_3 to NO$_2$ (α) in the NO reaction chamber. Additionally, we investigated the residence time of the air and the wall losses of NO$_2$ and O_3 in the reaction and reference chambers at different flow rates (including 1.3, 2, 3, 4, and 5 L min$^{-1}$) and the conversion efficiency of O_3 by NO to NO$_2$ in the NO reaction chamber at different NO mixing ratios and NO reaction chamber lengths. The detailed experimental performances and data analysis are shown in Sect. S1, and the corresponding results are described as follows.

2.2.1 The residence time

We tested the residence time of air in both chambers under different airflow rates, including 1.3, 2, 3, 4, and 5 L min$^{-1}$, and the obtained related residence time in the reaction chamber was 0.35, 0.16, 0.11, 0.07, and 0.06 h, respectively. By setting different airflow rates, we were able to obtain different residence times and thus different LODs of the NPOPR detection system, which make it applicable to different ambient environments. To make sure that the mean residence time of air is the same in the reaction and reference chambers, we also tested the residence time of air in the reference chamber in parallel, which were not much different to the values in the reaction chamber, as shown in Table S1. The experimental schematic diagram is shown in Fig. S2, and the related results of different airflow rates are shown in Fig. S3 and Table S1.

2.2.2 Wall losses of NO$_2$ and O_3

At airflow rates of 1.3, 2, 3, 4, and 5 L min$^{-1}$, the wall losses of O_3 in the reaction chamber were found to be approximately 2 %, 0 %, 0 %, 0 %, and 0 %, respectively, and the wall losses of O_3 in the reference chamber were found to be approximately 2 %, 1 %, 1 %, 0 %, and 0.7 %, respectively. While the wall losses of NO$_2$ in the reaction chamber at airflow rates of 1.3, 2, 3, 4, and 5 L min$^{-1}$ were found to be approximately 4 %, 4 %, 2 %, 0 %, and 0.3 %, respectively, the wall losses of NO$_2$ in the reference chamber were found to be approximately 2 %, 1 %, 0 %, 0 %, and 0.6 %, respectively. The experimental schematic diagram is shown in Figs. S4–S6, and the related results of different airflow rates are shown in Figs. S5–S6 and Tables S2–S5. We further compared the wall losses of O_3 and NO$_2$ in the reaction and reference chambers at 5 L min$^{-1}$ with previous studies (as shown in Table S6).
and found that they were significantly smaller, but even with a flow rate of 1.3 L min$^{-1}$, the wall losses were still smaller than 4% and 2% in the reaction chamber and the reference chambers, respectively. We also tested the wall losses of NO$_2$ and O$_3$ in the chamber at a 5 L min$^{-1}$ flow rate at different humidities of 35%–75%; the detailed results are shown in Figs. S7 and S8, which shows that the variation in humidity changed the wall loss of NO$_2$ and O$_3$ by 0.03%–0.12% and 1.06%–1.19%, respectively, which is much smaller than the instrument detection error (which is 2% at ambient NO$_2$ mixing ratios of 0–100 ppb), indicating the small effect of O$_x$ loss on $P(O_3)_{net}$ measurements in our NPOPR detection system.

Figure 1. (a) Schematic and (b) actual image of the NPOPR detection system.
transmissivities of the tested species from the measurements conducted with the set photolysis frequencies using SERIC XG-500B sunlight (this study) and ambient values (literature). It should be noted that the errors listed here are relatively large and may not reliable due to a limited number of measurement points (three points for each species). The calculated transmittivity errors are 0.07 for all species based on the ±5% measurement error of the instrument.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(J(\text{NO}_2))</td>
<td>0.985 ± 0.037</td>
<td>0.974</td>
<td>0.990</td>
<td>0.986</td>
</tr>
<tr>
<td></td>
<td>0.094 ± 0.014</td>
<td>0.021</td>
<td>0.01</td>
<td>0.121</td>
</tr>
<tr>
<td>(J(\text{O}^3\text{D}))</td>
<td>1.020 ± 0.04</td>
<td>0.991</td>
<td>0.978</td>
<td>1.030</td>
</tr>
<tr>
<td></td>
<td>0.019 ± 0.011</td>
<td>0.0058</td>
<td>0.001</td>
<td>~0</td>
</tr>
<tr>
<td>(J(\text{HONO}))</td>
<td>0.983 ± 0.037</td>
<td>0.976</td>
<td>0.982</td>
<td>0.988</td>
</tr>
<tr>
<td></td>
<td>0.002 ± 0.0002</td>
<td>0.0067</td>
<td>~0</td>
<td>0.017</td>
</tr>
</tbody>
</table>

2.2.3 The light transmittance and temperature differences in the reaction and reference chambers

It is worth noting that there was still low transmittance of light ranging from 390 to 790 nm through the UV protection film, so the reference chamber could not be regarded as completely dark; thus, we tested the solar UV transmittance through the reaction and reference chambers of the NPOPR detection system in the laboratory using a sunlight simulation lamp (SERIC XG-500B, Japan) to provide different intensities of illumination. The photolysis frequencies of \(\text{NO}_2\), \(\text{O}_3\), \(\text{HONO}\), \(\text{H}_2\text{O}_2\), \(\text{NO}_3_M\) (photolysis of \(\text{NO}_3\) generates \(\text{NO} + \text{O}_2\)), \(\text{NO}_3_R\) (photolysis of \(\text{NO}_3\) generates \(\text{NO}_2 + \text{O}\)), \(\text{HCHO}_M\) (photolysis of HCHO generates \(\text{H}_2 + \text{CO}\)), and \(\text{HCHO}_R\) (photolysis of HCHO generates \(\text{H} + \text{HCO}\)) inside and outside the reaction and reference chambers were measured using an actinic flux spectrometer (PFS-100; Focused Photonics Inc., China). Table 1 presents the \(J(\text{NO}_2)\), \(J(\text{O}^3\text{D})\), and \(J(\text{HONO})\) results for the outside and inside chambers from this study and from the literature. \(J(\text{H}_2\text{O}_2)\), \(J(\text{NO}_3_M)\), \(J(\text{NO}_3_R)\), \(J(\text{HCHO}_M)\), and \(J(\text{HCHO}_R)\) are shown in Table S7.

The photolysis frequencies of all species inside the reaction chamber were in agreement with those measured outside the reaction chamber within 4%. Table S7 shows that the transmissivities of \(J(\text{H}_2\text{O}_2)\), \(J(\text{NO}_3_M)\), \(J(\text{NO}_3_R)\), \(J(\text{HCHO}_M)\), and \(J(\text{HCHO}_R)\) in the reaction chamber were more than 90%. However, we have observed that the transmissivities of \(J(\text{O}^3\text{D})\) were even higher than those of \(J(\text{HONO})\) (as shown in Table 1) in the reference chamber (which blocks sunlight at wavelengths < 390 nm); theoretically, this is not possible according to JPL Publication 19-5 (Burkholder et al., 2020), where the absorption cross section of \(\text{HONO}\) at wavelengths of 390–395 nm ranged from approximately 4.0 to 17.1 × 10^{-21} \text{cm}^2, which is about 2 or 3 orders of magnitude higher than that of ozone (which ranged from approximately 0.8 to 2.6 × 10^{-23} \text{cm}^2 at wavelengths of 390–410 nm), and the photolysis quantum yield of \(\text{HONO}\) at wavelengths of 390–395 nm is unity, which is about 10 times higher than that of ozone (~0.08). This will surely make the \(J\) values of \(\text{HONO}\) inside the reference chamber (which only has sunlight with wavelengths > 390 nm) higher than that of ozone according to the Eq. (S9). We also found that the transmissivities of photolysis frequencies of \(\text{NO}_3\) and \(\text{O}_3\) in the reference chamber obtained from the tropospheric ultraviolet and visible (TUV) model simulation (as described in Sect. 3.2) were 0.01 and 0, respectively, as shown in Table S13. Therefore, we believe the non-zero measurement results of the transmissivities of photolysis frequencies of \(\text{O}_3\) shown in Tables 1 and S7 are mostly probably due to the instrument measurement error, this error is relatively large due to a limit number of measurement points (three points for each species). We further evaluated the measurement error of \(J\) values based on the instrument measurement error of the actinic flux spectrometer, which can reach ±5% according to Bohn and Lohse (2017), and re-evaluated the transmittivity error listed in Tables 1 and S7 following the procedures described in the Supplement (Sect. S1.5). The calculation result from Eq. (S5) shows that the transmissivity errors are 0.07 for all species; within this error range, \(J(\text{O}^3\text{D})\), \(J(\text{HONO})\), \(J(\text{H}_2\text{O}_2)\), \(J(\text{HCHO}_M)\), and \(J(\text{HCHO}_R)\) can be considered statistically indistinguishable from 0 in the reference chamber. However, \(J(\text{NO}_2)\), \(J(\text{NO}_3_M)\), and \(J(\text{NO}_3_R)\) still show distinctly positive values. Specifically, the transmissivities of \(J(\text{NO}_3_M)\) and \(J(\text{NO}_3_R)\) of the reference chamber were more than 90% (Table S7). The influence of the measurement error of \(J\) values of all species on \(P(\text{O}_3)_{\text{net}}\) will be discussed in Sect. 3.

We further detected the temperature in both the reaction and reference chambers when running the NPOPR detection system in an ambient observation campaign during November 2022 on the Panyu Campus of Jinan University in Guangzhou, China (23°02′N, 113°36′E). We found that the UV protection Ultem film on the reference chamber did not block the heat outside the chamber, and the temperature remained the same in the reaction and reference chambers during the measurement test, as shown in Fig. S10.

2.2.4 The quantitative conversion efficiency of \(\text{O}_3\) to \(\text{NO}_2\) (\(\alpha\))

The quantitative conversion efficiency of \(\text{O}_3\) to \(\text{NO}_2\) (\(\alpha\)) in the NO reaction chamber is crucial for accurate measurement of \(P(\text{O}_3)_{\text{net}}\). Here, we used a perfluoralkoxy (PFA)
tube (outer diameter of 12.7 mm, inner diameter of 9.5 mm) as the NO reaction chamber. The experimental schematic diagram is shown in Fig. S12. Known mixing ratios of O$_3$ and NO standard gas were introduced into the NO reaction chamber, and NO reacted with O$_3$ to produce NO$_2$. To avoid the influence of small amounts of NO$_2$ impurity in the NO standard gas used for conversion, we added a cylinder filled with partialized crystals of FeSO$_4$·7H$_2$O to reduce NO$_2$ in the NO/N$_2$ gas cylinder to NO. We injected ~ 1800 ppbv NO into the NO reaction chamber and tested the NO$_2$ mixing ratios from its outlet using a CAPS NO$_2$ monitor, as shown in Fig. S13. We found that the standard deviation of the NO$_2$ mixing ratios was lower than 0.027 ppbv, which is smaller than the baseline drifts of the CAPS (which were 0.043 and 0.030 ppbv (1σ) at integration times of 35 and 100 s, respectively, as mentioned in Sect. 2.3), and thus we believe the particulate crystals of FeSO$_4$·7H$_2$O performed well and that the potential bias introduced by the impurity in NO mixing ratio for $P(O_3)_{\text{net}}$ was negligible. Finally, the total NO$_2$ mixing ratios, including that from the ambient air, were measured using a CAPS NO$_2$ monitor ([NO$_2$]$_{\text{CAPS}}$). The O$_3$ mixing ratios were controlled at approximately 310 ppbv according to its maximum mixing ratio range in the normal ambient atmosphere (to ensure that all ambient and newly generated O$_3$ can react with NO and produce equivalent amounts of NO$_2$). An O$_3$ generator equipped with a low-pressure mercury lamp was employed to generate O$_3$, and the generated O$_3$ mixing ratios ([O$_3$]$_g$) were measured by a 2B O$_3$ monitor as mentioned above. Here, we note that the O$_3$ mixing ratios were diluted by the added NO/N$_2$ gas (with a flow rate of 20 mL min$^{-1}$) in the NO reaction chamber (with a total flow rate of 1.11 L min$^{-1}$). Taking 1800 ppbv NO/N$_2$ gas as an example, the relationship between [NO$_2$]$_{\text{CAPS}}$ and [O$_3$]$_g$ can be described by Eq. (3):

$$[\text{NO}_2]_{\text{CAPS}} = \frac{1.09}{1.11}[\text{O}_3]_g \alpha.$$

To determine the optimal length of the NO reaction chamber and NO mixing ratios, we performed a cross test of α under the following scenarios: the NO-reaction chamber lengths were increased from 30 to 650 cm in 50 cm steps, and the NO standard gas (102.1 ppmv) was diluted to 600, 900, 1200, 1500, 1800, 2100, and 2400 ppbv in the NO reaction chamber. The results are shown in Fig. 2. We found that at [O$_3$]$_g$ of approximately 310 ppbv, with NO mixing ratios \geq 1800 ppbv in the NO reaction chamber, α reached 99 %, 99.6 %, and 99.9 % with NO reaction chamber lengths of 50, 70, and 100 cm, respectively, where the corresponding O$_3$ residence times in the NO reaction chamber were 1.95, 2.74, and 3.91 s, respectively. Considering both the optimal reaction time in the NO reaction chamber and α, we selected the NO reaction chamber length of 100 cm with an NO mixing ratio of 1800 ppbv for the NPOPR detection system.

2.2.5 The airtightness of the reaction and reference chambers

We also checked the airtightness of the reaction and reference chambers by passing through gases with different flow rates based on the schematic diagram shown in Fig. S14 and compared the values of (airflow rate × pressure) between the inlet and outlet of the chambers (as indicated in Fig. 3). We found that the deviations in (airflow rate × pressure) at the inlet and outlet of the reaction and reference chambers at different flow rates were < 3 % (as shown in Table S8), indicating the good airtightness of the reaction and reference chambers. This ensured that the photochemical reactions in the reaction and reference chambers would not be affected by the ambient air outside the chambers.

2.2.6 The flow states in the reaction and reference chambers

We calculated the Reynolds number to check the gas flow state in the reaction and reference chambers. The Reynolds number (expressed as Eq. 4) is a dimensionless number that
can be used as the basis for judging the flow characteristics of a fluid:

\[Re = \frac{\rho v d}{\mu}, \]

where \(v, \rho, \) and \(\mu \) are the flow velocity, density, and viscosity coefficient of the fluid, respectively. In this study, the fluid is air, and \(d \) is the equivalent diameter of the reaction and reference chambers. The calculated Reynolds numbers in the two chambers under flow rates of 1.3, 2, 3, 4, and 5 L min\(^{-1}\) were 9.39, 14.58, 21.75, 29.05, and 36.34, respectively, indicating laminar flows in both chambers at different flow rates.

2.2.7 The HONO production in the reaction and reference chambers

We tested the HONO production in the reaction and reference chambers under weather conditions similar to those during the SZMGT observations (humidity of 60\%–90\% at a temperature of \(\sim 20^\circ\text{C} \) and \(J(\text{NO}_2) \) of \(\sim 0–8 \times 10^{-3} \text{ s}^{-1} \)) at a 5 L min\(^{-1}\) sampling flow rate. We found that the HONO mixing ratios in the reaction and reference chambers were almost the same and not statistically different from that in the ambient air within the standard deviation, as shown in Fig. S9; therefore, we assumed that the HONO production in the reaction and reference chambers would not cause a significant difference in \(P(\text{O}_3)_{\text{net}} \) in the two chambers. Unfortunately, we did not test HONO during the field observation period, but we have added the modeled HONO produced from the precursors before the ambient air was injected into the NPOPR detection system, as described in Sect. 3.2.

2.3 Calibration and measurement error of the CAPS NO\(_2\) monitor

The \(\text{O}_3 \) in the NPOPR detection system was measured by the CAPS NO\(_2\) monitor. Detailed descriptions of this technique can be found elsewhere (Kebabian et al., 2008, 2005). We calibrated the CAPS NO\(_2\) monitor using a NO\(_2\) standard gas (with an original mixing ratio of 2.08 ppmv), which was calibrated using the gas-phase titration method using NO standard gas and excessive \(\text{O}_3 \). The related experimental results are shown in Fig. S15. The detailed calibration procedure is as follows. First, (a) inject \(\sim 10–100 \text{ ppbv of NO}_2 \) standard gas for 30 min to passivate the surfaces of the monitor and then inject dry pure air for \(\sim 10 \) min to minimize the zero-point drift, which was 0.043 and 0.047 ppbv at integration times of 35 and 100 s, respectively, and resulted in LODs of CAPS of 0.13 and 0.14 ppbv (3\(\sigma \)), respectively. Second, (b) inject a wide range of NO\(_2\) mixing ratios (from 0–160 ppbv) prepared by mixing the NO\(_2\) standard gas with ultrapure air into the CAPS NO\(_2\) monitor and repeat the experiments three times at each NO\(_2\) mixing ratio. The final results are shown in Fig. 4. To check the baseline drift of the CAPS at different humidities, we added another two sets of tests (as shown in Fig. S11) using ambient air and wet pure air and found that (a) when injecting ambient air into the CAPS (RH ranged from \(\sim 30\%–35\% \)), the baseline drifts were 0.035 and 0.032 ppbv (1\(\sigma \)) at integration times of 35 and 100 s, respectively, and (b) when injecting wet pure air into the CAPS (RH ranged from 35\%–70\%), the baseline drifts were 0.043 and 0.030 ppbv (1\(\sigma \)) at integration times of 35 and 100 s, respectively. These baseline drifts were smaller than those when injecting dry pure air to estimate the LOD of the CAPS. We chose the largest baseline drift when injecting dry pure air to estimate the \(P(\text{O}_3)_{\text{net}} \) error in the following analysis; by doing this, we were able to include all the short-duration baseline drifting in the CAPS NO\(_2\) monitor under different humidities.

To obtain an accurate measurement error of the CAPS NO\(_2\) monitor \((O_{\text{SCAPS}})_{\text{error}} \), we fitted the calibration results with a 68.3\% confidence level, and the blue line in Fig. 4 represents the maximum fluctuation range under this confidence level. \((O_{\text{SCAPS}})_{\text{error}} \) was then calculated from the fluctuation range of the 68.3\% confidence interval of the calibration curve. The relationship between \((O_{\text{SCAPS}})_{\text{error}} \) and the measured \(\text{O}_3 \) value \((O_{\text{m measured}}) \) can be expressed as a power function curve, as shown in Eq. (5):

\[
(O_{\text{SCAPS}})_{\text{error}} = 9.72 \times [O_{\text{m measured}}]^{-0.0024}. \tag{5}
\]

Subsequent \(P(\text{O}_3)_{\text{net}} \) error estimation according to the instrument measurement error of the CAPS NO\(_2\) monitor and the \(\text{O}_3 \) light-enhanced loss in the reaction and reference chambers are described in Sect. S2.

2.4 The measurement error of \(P(\text{O}_3)_{\text{net}} \) and the LOD of the NPOPR detection system

To assess the measurement error of \(P(\text{O}_3)_{\text{net}} \) and the LOD of the NPOPR detection system, dry pure air was introduced into the NPOPR detection system in sequence to adjust the system for \(\sim 2 \) h, followed by dry pure air or ambient air
when the time resolution of the CAPS NO2 monitor was 1 s and the integration time period was 100 s (the measurement durations for the reaction and reference chambers were both 2 min). The LOD of the NPOPR detection system was obtained as 3 times the measurement error of \(P(\text{O}_3)_{\text{net}} \), which was determined at a time resolution of 4 min by propagating the errors of the \(\text{O}_3 \) measured by the CAPS NO2 monitor when ultrapure air or ambient air was introduced into the NPOPR detection system, combined with the related (\(\tau \)) under different flow rates, i.e., (\(\tau \)) was 0.063 h at a flow rate of 5 L min\(^{-1} \). The detailed calculation method is shown in Eq. (6):

\[
\text{LOD} = \frac{3 \times \sqrt{[(O_3)_{\text{rea SD}}]^2 + [(O_3)_{\text{ref SD}}]^2}}{\tau}.
\] (6)

where \([O_3]_{\text{rea SD}}\) and \([O_3]_{\text{ref SD}}\) represent the standard deviation of \(O_3 \) in the reaction and reference chambers measured by the CAPS NO2 monitor with an integration time period of 100 s, respectively.

However, considering that the background \(O_3 \) mixing ratios (measured by the CAPS NO2 monitor of the air in the reference chamber) changed when measuring the ambient air, the measured \(O_3 \) errors in the reaction and reference chambers changed with the \(O_3 \) mixing ratios (as shown in Sect. 2.3), and the LOD must also be a function of the intrinsic ambient and photochemically formed \(O_3 \) and NO2 mixing ratios (i.e., the \(O_3 \) mixing ratios measured by the CAPS NO2 monitor). It is worth noting that the measured \(O_3 \) errors may also be influenced by the light-enhanced loss of \(O_3 \) in the reaction and reference chambers under ambient conditions when the light intensity (especially \(J(\text{O}^1D) \)) and \(O_3 \) mixing ratios are high, as tested and shown in Sect. S1, but this effect is included in the measured \(O_3 \) errors. Therefore, when injecting ambient air into the NPOPR detection system, the error and LOD of \(P(\text{O}_3)_{\text{net}} \) with a residence time of \(\tau \) can be calculated using Eqs. (7) and Eq. (8), respectively:

\[
P(\text{O}_3)_{\text{net error}} = \left(\frac{O_y}{\text{rea error}} \right)_{\text{rea measured}}^2 + \left(\frac{O_y}{\text{ref error}} \right)_{\text{ref measured}}^2 + \left(\frac{9.72 \times [O_3]_{\text{rea SD}} - 1.0024}{\text{rea SD}} \right)^2 + \left(\frac{9.72 \times [O_3]_{\text{ref SD}} - 1.0024}{\text{ref SD}} \right)^2 \right)^{1/2}.
\] (7)

\[
\text{LOD} = 3 \times P(\text{O}_3)_{\text{net error}}.
\] (8)

where \((O_y)_{\text{rea error}}\) and \((O_y)_{\text{ref error}}\) represent the measurement error caused by the light-enhanced loss of \(O_3 \) in the reaction and reference chambers, respectively, and \(9.72 \times [O_3]_{\text{rea SD}} - 1.0024\) and \(9.72 \times [O_3]_{\text{ref SD}} - 1.0024\) represent the standard deviation of \(O_3 \) in the reaction and reference chambers caused by the CAPS NO2 monitor with an integration time period of 100 s, respectively. More details about the \((O_y)_{\text{rea error}}\) and \((O_y)_{\text{ref error}}\) estimation method can be found in Sect. S2.

In conclusion, the LOD of the NPOPR detection system is determined to be 3 times \(P(\text{O}_3)_{\text{net error}} \), where \(P(\text{O}_3)_{\text{net error}} \) is mainly determined by the measurement error of \(O_3 \) (including the \(O_3 \) measurement error of the CAPS NO2 monitor, the light-enhanced loss of \(O_3 \), and the chamber \(O_3 \) losses). Because the measurement error of the CAPS NO2 monitor decreases with increasing \(O_3 \) mixing ratios (as shown in Sect. 2.3), higher LODs could be obtained when injecting dry pure air into the NPOPR detection system, which were approximately 0.07, 1.4, and 2.3 ppbv h\(^{-1} \) at airflow rates of 1.3, 3, and 5 L min\(^{-1} \), respectively. The results are summarized in Table S9.

During the field observations, the LOD values were highly dependent on the ambient conditions, especially the light intensity and the \(O_3 \) mixing ratios, and higher \(O_3 \) mixing ratios and lower light intensity will likely result in lower LOD values.

2.5 Laboratory tests of the NPOPR detection system

We conducted an experiment in the laboratory to test the performance of the NPOPR detection system at Jinan University Panyu Campus (23.0° N, 113.4° E) on 26 March 2021. Ambient air (5 L min\(^{-1} \)) was simultaneously injected into the reaction and reference chambers of the NPOPR detection system in parallel, and the sunlight simulation lamp mentioned above was used to simulate sunlight radiation. The light intensities of the sunlight simulation lamp were decreased from 26 000 to 0 cd in steps of 3700 cd, where cd indicates the SI light intensity unit candela. \(P(\text{O}_3)_{\text{net}} \) was 28.6 ppbv h\(^{-1} \) at a light intensity of 26 000 cd and gradually approached 0 ppbv h\(^{-1} \) at 0 cd (as shown in Fig. 5), indicating that the \(P(\text{O}_3)_{\text{net}} \) change due to the different sunlight radiation could be captured well by the NPOPR detection system.

3 Atmospheric study and discussion

3.1 Field observations

The self-built NPOPR detection system was employed in the field campaign conducted at SZMGT, which is located in Shenzhen, China (as shown in Fig. S17), from 7 to 9 December 2021. During the campaign, to achieve the lowest \(O_3 \) and NO2 wall loss, we used a 5 L min\(^{-1} \) airflow rate in the reaction and reference chambers (with a residence time of ~ 4 min). The photolysis frequencies of different species were measured using the actinic flux spectrometer as mentioned above. \(O_3 \) and NOx (NO + NO2) mixing ratios were measured using a 2B O3 monitor and a chemiluminescence NOx monitor (Model 42i, Thermo Fisher Scientific, USA), respectively. \(T \) and RH were measured by a portable weather station (Met Pak, Gill Instruments Ltd, UK). Volatile organic compounds (VOCs) were measured by high-resolution pro-
Figure 5. (a) Measured O₃ mixing ratios in the reaction and reference chambers and (b) the related \(P(O_3)_{\text{net}} \) as a function of the light intensity during the experiment.

Figure 6 presents the temporal and diurnal variations in the \(P(O_3)_{\text{net}} \) at SZMGT, \(O_3 \), NO, NO₂, NOₓ, \(T \), RH, \(J(\text{O}^3\text{D}) \), and \(J(\text{NO}_2) \) mixing ratios at SZMGT during the campaign. During the measurement period, \(P(O_3)_{\text{net}} \) ranged from \(\sim 0 \) to \(34.1 \pm 7.8 \) ppbv h⁻¹, with an average daytime (from 06:00–18:00 LT) value of \(12.8 (\pm 5.5) \) ppbv h⁻¹. The maximum \(P(O_3)_{\text{net}} \) at SZMGT was lower than that measured in the urban area of Houston in the United States (40–50 and 100 ppbv h⁻¹ in autumn and spring, respectively) (Baier et al., 2015; Ren et al., 2013), close to that measured in Indiana in the United States (≈ 30 ppbv h⁻¹ in spring) (Sadanaga et al., 2017) and much higher than that measured at the Wakayama Forest Research Station in a remote area of Japan (10.5 ppbv h⁻¹ in summer) (Sadanaga et al., 2017) and in an urban area of Pennsylvania in the United States (≈ 8 ppbv h⁻¹ in summer) (Cazorla and Brune, 2010). The result indicates the rationality of the measured \(P(O_3)_{\text{net}} \) in this study. From previous studies, the \(O_3 \) pollution in the PRD area is more severe in summer and autumn than in winter and spring (Zhang et al., 2021). In this study, \(P(O_3)_{\text{net}} \) was measured in wintertime, which was already high, so we believe that the \(O_3 \) pollution of the PRD is severe and urgently needs to be controlled. More measurements of \(P(O_3)_{\text{net}} \) worldwide are listed in Table S10, and we found that \(P(O_3)_{\text{net}} \) was much higher in urban areas than in remote areas using both modeling and direct measurement methods.

According to the diurnal variation in all the measured pollutant indicators, \(P(O_3)_{\text{net}} \) started to increase at approximately 07:00 LT, which may be due to two reasons: (1) the rise in \(O_3 \) precursors (i.e., \(\text{VOCs} \)) due to air from the high-altitude atmospheric residual layer transported downward near the surface at this time and (2) the increase in solar radiation intensity after 07:00 LT, which increased the atmospheric oxidation capacity. These two factors jointly enhanced the photochemical oxidation reaction of \(\text{VOCs} \) and gradually increased \(P(O_3)_{\text{net}} \). \(P(O_3)_{\text{net}} \) then peaked at approximately 12:00 LT; this was consistent with \(J(\text{NO}_2) \), but this peak time occurred earlier than that of \(O_3 \), which peaked at approximately 14:00 LT, which may be due to the photochemical reactions dominating \(O_3 \) mixing ratio changes between 12:00 and 14:00 LT. After 14:00 LT, the \(O_3 \) mixing ratios started to decrease, which may be due to other processes dominating the \(O_3 \) mixing ratio changes at this time, such as \(O_3 \) reacting with other pollutants or surface deposition and the outflow of \(O_3 \) by physical transport. In conclusion, the changes in \(O_3 \) mixing ratios were influenced by both photochemical production and physical transport. Because \(\text{HO}_2 \) and \(\text{RO}_2 \) were not well captured in the model, the simulations could lead to an underestimation of \(P(O_3)_{\text{net}} \).

3.2 Model simulation of \(P(O_3)_{\text{net}} \) in the reaction and reference chambers

3.2.1 Modeling method

To obtain a comprehensive understanding of the ozone production rate \(P(O_3) \) and ozone destruction rate \(D(O_3) \) during a 4 min photochemical reaction in the reaction and reference chambers, we modeled \(P(O_3) \) and \(D(O_3) \) at 12:00 LT on 7 December 2021 based on field observation data using a zero-dimensional box model based on the F0AM v3.2 coupled with MCM v3.3.1, which contains a total of 143 \(\text{VOCs} \), more than 6700 species, involving more than 17 000 reactions (Jenkin et al., 2015). \(P(O_3)_{\text{net}} \) can be expressed by the difference between \(P(O_3) \) and \(D(O_3) \), and \(P(O_3) \) and \(D(O_3) \) can be expressed as Eqs. (9) and (10), respectively.

\[
P(O_3) = k_{\text{HO}_2+\text{NO}}[\text{HO}_2][\text{NO}] + \sum_i k_{\text{RO}_2+\text{NO}}[\text{RO}_2,i][\text{NO}][\psi_i], \tag{9}
\]

\[
D(O_3) = k_{\text{O}(^1\text{D})+\text{H}_2\text{O}}[\text{O}(^1\text{D})][\text{H}_2\text{O}] + k_{\text{OH}+\text{O}_3}[\text{OH}][\text{O}_3] + k_{\text{HO}_2+\text{O}_3}[\text{HO}_2][\text{O}_3] + \sum_i (k_{\text{O}_3+\text{Alkenes}}[\text{O}_3][\text{Alkenes}_i]) + k_{\text{OH}+\text{NO}_2}[\text{OH}][\text{NO}_2] + k_{\text{RO}_2+\text{NO}_2}[\text{RO}_2,i][\text{NO}_2]. \tag{10}
\]

where \(k_{M+N} \) represents the bimolecular reaction rate constant of \(M \) and \(N \) and \(\psi_i \) is the yield of \(\text{NO}_2 \) from the \(\text{RO}_2,i+\text{NO} \) reaction. The relevant reaction rates of \(P(O_3) \) and \(D(O_3) \) and the \(\text{VOC} \) mixing ratios from 7–9 December...
Three-stage simulations were carried out to obtain the 4 min photochemical reactions in the reaction and reference chambers, and all three-stage models were operated in a time-dependent mode with a 1 s resolution. In the first stage, to establish a real atmospheric environment system, all observations on 7 December 2021 from 06:00–11:30 LT were used to constrain the model to obtain the mixing ratios of the unmeasured species in the ambient atmosphere, including oxygenated VOCs (OVOCs, in total 16 species), and non-methane hydrocarbons (in total 47 species), O$_3$, NO, NO$_2$, J values, T, RH, and pressure (P). Because O$_3$–NO–NO$_2$ was not in a steady state when all species were constrained, we conducted a second-stage simulation from 11:30–12:00 LT. In this stage, we used the output mixing ratios of the unmeasured species from the simulation in the last 1 s of the first-stage simulation as the input, which were not constrained after providing initial values. For the measured species, O$_3$, NO, and NO$_2$ were no longer constrained after providing initial values, while all other variables (including NO$_x$, VOCs, J values, RH, T, P) were still constrained in a time-dependent mode with a 1 s resolution after providing initial values. In the third-stage, we modeled the 4 min photochemical reactions in the reaction and reference chambers. We used the output mixing ratios of the unmeasured species (i.e., OH, HO$_2$, RO$_2$, SO$_2$, HONO) from the simulation in the last 1 s of the second-stage simulation and all measured values (i.e., O$_3$, NO, NO$_2$, VOCs, J values, RH, T, P) as the model input, which were not constrained after providing initial values. In addition, while maintaining the setup conditions for the second-stage of the simulation, we extended the simulation of the environment to 12:04 LT to obtain the modeled P(O$_3$)$_{\text{net}}$ in the environment in the third-stage simulation. The result is shown as an orange point in Fig. 10d. Figure 7 shows an explicit explanation of the third-stage simulation in the reaction and reference chambers.

Specifically, because the photolysis frequencies play critical roles in the simulation of P(O$_3$)$_{\text{net}}$, the J values obtained from two methods (labeled methods I and II) were used in the third-stage 4 min simulation. The J values used in method I were obtained from the measured values (including J(NO$_2$), J(O$_{1D}$), J(HONO), J(H$_2$O$_2$), J(NO$_3$$_M$), J(NO$_3$$_R$), J(HCHO$_M$), and J(HCHO$_R$)), and the simulated values were obtained using the TUV model (version 5.3) (including J(HNO$_2$), J(CH$_3$CHO), J(MACR), J(MEK), J(HOCH$_2$CHO), J(C$_2$H$_5$CHO), J(C$_3$H$_7$CHO), and J(C$_4$H$_9$CHO)), while the J values in method II were all obtained from the simulated values using the TUV model; detailed information on these two methods is introduced in Sect. S4 (Tables S12 and S13, respectively).

Figure 6. (a) Time series and (b) average diurnal variations in P(O$_3$)$_{\text{net}}$, J(NO$_2$), J(O$_{1D}$), T, RH, O$_3$, NO$_2$, and NO measured at SZMGT from 7 to 9 December 2021. The shaded areas represent the error of each measured species, where the error of P(O$_3$)$_{\text{net}}$ was calculated according to the method described in Sect. 2.4.
Table 2. O₃ production and destruction reactions and the relevant reaction rates used in the model.

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Rate coefficient (unit)</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃ production pathways – $P(O_3)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RO₂ + NO → RO + NO₂</td>
<td>$2.7 \times 10^{-12} \times \exp(360/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R1)</td>
</tr>
<tr>
<td>HO₂ + NO → OH + NO₂</td>
<td>$3.45 \times 10^{-12} \times \exp(270/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R2)</td>
</tr>
<tr>
<td>O₃ loss pathways – $D(O_3)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O₃ + hv → O¹D + O₂</td>
<td>Measured $JO¹D$ (s⁻¹)</td>
<td>(R3)</td>
</tr>
<tr>
<td>O₃ + C₂H₂ → HCHO + CH₂O</td>
<td>$9.1 \times 10^{-15} \times \exp(-2580/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R4)</td>
</tr>
<tr>
<td>O₃ + C₂H₆ → CH₂OOB + CH₃CHO</td>
<td>$2.75 \times 10^{-15} \times \exp(-1880/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R5)</td>
</tr>
<tr>
<td>O₃ + C₃H₆ → CH₃CHOAA + HCHO</td>
<td>$2.75 \times 10^{-15} \times \exp(-1880/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R6)</td>
</tr>
<tr>
<td>O₃ + C₄H₈ → CH₂OOE + MACR</td>
<td>$3.09 \times 10^{-15} \times \exp(-1995/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R7)</td>
</tr>
<tr>
<td>O₃ + C₅H₁₀ → CH₂OOE + MVK</td>
<td>$2.06 \times 10^{-15} \times \exp(-1995/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R8)</td>
</tr>
<tr>
<td>O₃ + C₆H₁₂ → HCHO + MACROOA</td>
<td>$3.09 \times 10^{-15} \times \exp(-1995/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R9)</td>
</tr>
<tr>
<td>O₃ + C₇H₁₄ → HCHO + MVKOOA</td>
<td>$2.06 \times 10^{-15} \times \exp(-1995/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R10)</td>
</tr>
<tr>
<td>O₃ + HO₂ → OH</td>
<td>$2.03 \times 10^{-16} \times (T/300)^{0.57} \times \exp(693/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R11)</td>
</tr>
<tr>
<td>RO₂ + NO₂ → peroxo nitrates</td>
<td>$(3.28 \times 10^{-28} \times 7.24 \times 10^{18} \times P/T \times (T/300)^{-6.87} \times 1.125 \times 10^{-11} \times (T/300)^{-1.105}) \times \exp(10^{(\log(1000/300)/(1 + (\log(10(2.916 \times 10^{-17} \times 7.24 \times 10^{18} \times P/T \times (T/300)^{-7.265}))/0.75 - 1.27 \times \log(1000/300))^2)))}$</td>
<td>(R12)</td>
</tr>
<tr>
<td>NO₂ + OH → HNO₃</td>
<td>$(3.2 \times 10^{-30} \times 7.24 \times 10^{18} \times P/T \times (T/300)^{-4.5}) \times 3 \times 10^{-11} \times \exp(10^{(\log(1000/41)/(1 + (\log(10((1.2 \times 10^{-16} \times 7.24 \times 10^{18} \times P/T \times (T/300)^{-4.5})/3 \times 10^{-11}))/((0.75 - 1.27 \times (\log(10(0.41)))))^2)))))}$</td>
<td>(R13)</td>
</tr>
<tr>
<td>O₃ + OH → HO₂</td>
<td>$1.70 \times 10^{-12} \times \exp(-940/T)$ (molec.⁻¹ cm³ s⁻¹)</td>
<td>(R14)</td>
</tr>
</tbody>
</table>

* The rate coefficient obtained from the MCM v3.3.1 model.

Figure 7. Explicit explanation of the third-stage model simulation. The input meteorological conditions are as follows: P is 1015.3 hPa, T is 295.6 K, and RH is 39.7%.

3.2.2 Radical chemistry in the reaction and reference chambers

The variations in the radical mixing ratios (i.e., HO₂, OH, RO₂) and NO₃, NO, NO₂, and O₃ mixing ratios obtained from methods I and II during the third-stage 4 min model simulation are shown in Figs. 8 and S18, respectively. The production and destruction reactions of HO₂, OH, RO₂, and NO₃ in the reaction and reference chambers obtained from methods I and II are shown in Figs. 9 and S19, respectively; the production and destruction reactions of RO₃ in the reaction and reference chambers obtained from methods I and II are shown in Figs. 10 and S20, respectively.
II are shown in Fig. S20; the detailed RO₃ production pathways of NO₃ + VOCs are shown in Fig. S21; and the final modeling results are shown in Figs. 10 and S22.

From Fig. 8, in the reaction chamber the HO₂, OH, RO₂, and NO₃ concentrations first slightly increased and then became stable, and their final concentrations were 2.00 × 10⁸, 7.64 × 10⁶, 1.08 × 10⁶, and 8.47 × 10⁵ molec. cm⁻³, respectively. In the reference chamber, the HO₂ and RO₂ concentrations dropped during the first half minute and rose afterward. The final HO₂ concentration (1.35 × 10⁸ molec. cm⁻³) was lower than that in the reaction chamber, while the RO₂ concentration exceeded that in the reaction chamber at the end of the second minute and gradually became stable at 1.27 × 10⁸ molec. cm⁻³. The OH concentration dropped significantly at the first minute and then became stable at approximately 6.16 × 10⁵ molec. cm⁻³. The NO₃ concentration rose significantly during the 4 min simulation and reached 3.55 × 10⁷ molec. cm⁻³ at the end, which was much higher than that in the reaction chamber.

The OH, HO₂, RO₂, and NO₃ concentrations greatly impact the O₃ production and destruction rate. To better understand the factors that drive the OH, HO₂, RO₂, and NO₃ concentration changes, we have added their production and destruction pathways in Fig. 9. We found that the decrease in HO₂ and RO₂ concentrations in the reference chamber in the first half minute was mainly due to NO titration effects, as high NO mixing ratios existed during the first half minute. The increase in HO₂ concentrations afterward was largely attributable to RO + O₂ reaction / RO decomposition, OH + CO / VOC reaction, OVOC photolysis (i.e., C₃H₄O₂, C₂H₂O₂, C₄H₆O₂), and NO₃ + VOC reactions, and the increases in RO₂ concentrations afterward were largely attributable to OH + VOC oxidation, OVOC photolysis, and O₃ + VOC reactions. The main OH sources in the reference chamber were HO₂ + NO in both methods I and II. Due to sufficiently high J(NO₃) (~90 % of that in the reaction chamber) and NO₂ concentrations in the reference chamber, the NO₃ photolysis and NO₂ + NO₃ reaction consumed NO₃ in the reference chamber, but the NO₃ concentrations were still sufficiently high due to high production rates of NO₃ at the same time. The main NO₃ source in the reference chamber was the NO₂ + O₂ reaction, followed by N₂O₅ decomposition. The NO concentrations were relatively high in the first minute and consumed NO₃ very quickly, but due to continuous NO₃ sources, the net NO₃ production rates (P(NO₃)net) were positive (as shown in Fig. 9), which caused the NO₃ concentration to continue to increase (as shown in Fig. 8d). The main difference in NO₃ production in the reference chamber compared to that in the reaction chamber was the much higher N₂O₅ decomposition, which was mainly due to the high NO₂ concentrations in the reference chamber. On the other hand, although the NO + NO₃ reaction was also one of the dominant NO₃ destruction pathways, NO₃ consumed by the NO + NO₃ reaction was significantly smaller than NO₃ produced by the NO₂ + O₂ reaction. Furthermore, in order to check if the NO₃ + VOC reaction exists, we extracted all the P(RO₃) pathways related to NO₃ + VOC reactions during the third-stage 4 min model simulation in the reaction and reference chambers in method I, as shown in Fig. S21. We found that the NO₃ + VOC reactions are mostly related to the OVOCs (i.e., 6-ethyl-m-cresol and 3-ethyl-6-methylbenzene-1,2-diol). The production and destruction rates of RO₃ are shown in Fig. S20.

3.2.3 P(O₃)net formation and destruction pathways in the reaction and reference chambers

Figure 10a–d show the modeled P(O₃)net and the sources and sinks of various species during the third-stage 4 min simulation. Figure 10a shows the steady state of P(O₃)net and the various species in the ambient atmosphere achieved in the last 1 s of the second-stage simulation. Figure 10b and c show the modeled P(O₃)net and the O₃ chemical budgets in the reaction and reference chambers during the model simulation period. Figure 10d summarizes the modeled P(O₃)net in the ambient air (represented as blue and orange points at the time when the ambient air was going in and out of the NPOPR detection system, respectively) and the modeled P(O₃)net in the reaction and reference chambers. To compare the modeled results with our measured results, we calculated the integral mean of the modeled P(O₃)net in the reaction and reference chambers and appended the related measured P(O₃)net value during the 4 min simulation time onto Fig. 10d (green maker). Furthermore, the reaction weights of different production and destruction reaction processes of O₃ are shown in Fig. 10e–h.

Figure 10a–h show the contributions of different reaction pathways to P(O₃) and D(O₃). P(O₃) and D(O₃) were almost the same within the 4 min reaction in the reaction chamber (all species reached a steady-state condition), while P(O₃) and D(O₃) in the reference chamber significantly decreased within the first minute and remained stable in the following minutes. In the reaction chamber, the HO₂ + NO reaction contributed the most to P(O₃), accounting for 62.6 % of the total P(O₃), with an integral mean value of 17.5 ppbv h⁻¹ in the reaction chamber. The second important pathway of P(O₃) was RO₂ + NO (accounting for 37.4 % of the total P(O₃)). The RO₂ + NO core reaction accounts for more than approximately 1200 types of RO₂ radicals, and the pathway of CH₃O₂ + NO contributed 7.5 % to the total P(O₃). The most important contributor of D(O₃) was OH + NO₂ (48.8 %), followed by RO₂ + NO₂ (33.3 %), O₃ photolysis (13.0 %), O₃ + OH (2.3 %), O₃ + HO₂ (1.7 %), C₃H₆ + O₃ (0.4 %), C₂H₄ + O₃ (0.3 %), and C₂H₄ + O₃ (0.2 %). In the reference chamber, the integral mean value of the HO₂ + NO reaction was 2.3 ppbv h⁻¹, which had the largest contribution to P(O₃) (accounting for 55.0 %). The second-largest contributor to P(O₃) was RO₂ + NO (accounting for 45.0 % of the total P(O₃)), in which the pathway of CH₃O₂ + NO con-

https://doi.org/10.5194/acp-23-9891-2023
distributed 6.6 % to the total $P(O_3)$. The most important contributor of $D(O_3)$ was RO$_2$ + NO$_2$ (50.8 %), followed by OH + NO$_2$ (37.0 %), O$_3$ + HO$_2$ (4.9 %), C$_3$H$_6$ + O$_3$ (2.3 %), C$_3$H$_4$ + O$_3$ (1.5 %), O$_3$ + OH (1.4 %), O$_3$ photolysis (1.2 %), and C$_2$H$_4$ + O$_3$ (0.9 %). For all $P(O_3)$ reactions, the weight of the RO$_2$ + NO reaction in the reference chamber was 7.5 % higher than that in the reaction chamber; however, for all $D(O_3)$ reactions, the weight of the RO$_2$ + NO reaction in the reference chamber was 17.5 % higher than that in the reaction chamber, which mitigated the high $P(O_3)$ value caused by RO$_2$ + NO in the reference chamber. Furthermore, the weight of the OH + NO$_2$ reaction in the reference chamber was 11.9 % lower than that in the reaction chamber, which may be the main reason that led to NO$_2$ mixing ratios in the reference chamber being much higher than those in the reaction chamber. It is worth noting that the different reaction pathways of $P(O_3)$ and $D(O_3)$ stabilized at approximately 1.5 min for both methods I and II (as shown in Figs. 10 and S22, respectively), and the radicals that play critical roles in photochemical O$_3$ formation, such as HO$_2$, RO$_2$ and OH, reached quasi-steady states in approximately 3 min (as shown in Figs. 8 and S18). As the lowest experimental residence time in the reaction and reference chambers was 3.8 min at an airflow rate of 5 L min$^{-1}$, the photochemical reaction time at different airflow rates in the NPOPR detection system was sufficient for $P(O_3)_{\text{net}}$ investigation, and it is reasonable for us to set the alternate ambient air sampling time for the reaction and reference chambers to 2 min, where the ambient air actually had already reacted for at least 3.8 min in the chambers.

The $P(O_3)_{\text{net}}$ value measured by the NPOPR detection system at 12:04 LT was 26.0 ppbv h$^{-1}$, which is 1.4 ppbv h$^{-1}$ higher than the modeled $P(O_3)_{\text{net}}$ value in the ambient air (orange point in Fig. 10d; 24.6 ppbv h$^{-1}$) and 7.5 ppbv h$^{-1}$ higher than the modeled $P(O_3)_{\text{net}}$ value of the NPOPR detection system (brown point in Fig. 10d; 18.5 ppbv h$^{-1}$, as calculated from the integral mean of $P(O_3)_{\text{net}}$ in the third-stage 4 min simulation in the reaction and reference chambers). Here, we note that for a better comparison between the measured and modeled $P(O_3)_{\text{net}}$ values, the measured $P(O_3)_{\text{net}}$ used here was obtained from a 4 min time resolution, which is 1.4 ppbv h$^{-1}$ higher than the measured $P(O_3)_{\text{net}}$ value used in Fig. 6 (1 h time resolution). The ratio of the measured and modeled $P(O_3)_{\text{net}}$ values was 1.4, which is consistent with the measured-to-modeled ratio of the cumulative $P(O_3)_{\text{net}}$ (1.3 and 1.4) obtained from previous studies (Cazorla et al., 2012; Ren et al., 2013), where $P(O_3)_{\text{net}}$ values were also directly measured in the atmosphere and were independent of the OH and HO$_2$ measurements. The reason for the difference between the measured and modeled $P(O_3)_{\text{net}}$ here may be due to the inaccurate estimation of HO$_2$ / RO$_2$ radicals; for example, Ren et al. (2013) found that $P(O_3)$ calculated from the modeled HO$_2$ was lower than that calculated from the measured HO$_2$. The unknown HO$_2$ source should be identified for a more accurate estimation of $P(O_3)_{\text{net}}$ in future studies.

Figure 8. The variations in (a) HO$_2$, (b) RO$_2$, (c) OH, (d) NO$_3$, (e) NO, NO$_2$, and (f) O$_3$ mixing ratios during the third-stage 4 min model simulation using method I. The mixing ratio changes in these items for method II are shown in Fig. S18.
Figure 9. Production and destruction pathways of OH (a1, b1), HO\(_2\) (a2, b2), RO\(_2\) (a3, b3), and NO\(_3\) (a4, b4) during the third-stage 4 min model simulation in the reaction and reference chambers in method I. The related content for method II is shown in Fig. S19 in the Supplement.

Additionally, the modeled \(P(O_3)_{\text{net}}\) using the \(J\) values obtained from method II was 9.3 ppbv h\(^{-1}\) lower than the measured \(P(O_3)_{\text{net}}\), and this discrepancy was slightly larger than that using method I, as shown in Sect. S4 (Fig. S22). The differences in the measured and modeled \(P(O_3)_{\text{net}}\) using methods I and II were 28.8 % and 35.8 %, respectively. This difference was mainly due to the transmittance of \(J(\text{NO}_2)\) in method II (30 %) being much higher than that in method I (9 %), and NO\(_2\) photolysis products were involved in the main reaction of \(O_3\) production through HO\(_2\) + NO and RO\(_2\) + NO, so the modeled \(P(O_3)_{\text{net}}\) in the reference cham-
Figure 10. (a–c) Modeled $P(O_3)_{\text{net}}$ values and O_3 chemical budgets in (a) ambient air when injected into the reaction and reference chambers and (b–c) the reaction and reference chambers during the 4 min model simulation. (d) $P(O_3)_{\text{net}}$, where $P(O_3)_{\text{net modelled ambient}}$ represents the modeled $P(O_3)_{\text{net}}$ in the ambient air at the time before (blue point) and after (orange point) the sampled ambient air was injected into the dual-channel reaction chamber. $P(O_3)_{\text{net modelled reaction chamber}}$ and $P(O_3)_{\text{net modelled reference chamber}}$ represent the $P(O_3)_{\text{net}}$ change trends during the 4 min photochemical reactions in the reaction and reference chambers, respectively. $P(O_3)_{\text{net modelled chamber}}$ represents the difference of $P(O_3)_{\text{net modelled reaction chamber}}$ and $P(O_3)_{\text{net modelled reference chamber}}$, and $P(O_3)_{\text{net modelled integral mean}}$ represents the integral mean of the $P(O_3)_{\text{net modelled chamber}}$. Moreover, $P(O_3)_{\text{net measured NPOPR}}$ is the $P(O_3)_{\text{net}}$ measured by NPOPR detection system. (e–h) Reaction weights of each production and destruction reaction process of O_3 in the reaction and reference chambers in method I.

number was slightly overestimated in method II, thus leading to an underestimation of the final $P(O_3)_{\text{net}}$.

Furthermore, because the NO$_2$ data used here were measured by a commercially available chemiluminescence NO$_x$ monitor, the NO$_2$ and NO$_x$ mixing ratios could be overestimated due to NO$_2$ interference (i.e., HNO$_3$, peroxyacetyl nitrate (PANs), HONO) (Dunlea et al., 2007). According to our results, the chemiluminescence technique could bias NO$_2$ by 5% compared to the CAPS technique, which is regarded as a trustworthy NO$_2$ measurement technique without chemical interference. Therefore, we simulated the interference of NO$_2$ measured by a chemiluminescence NO$_x$ monitor in method I by reducing and increasing the ambient NO$_2$ mixing ratios in the reaction and reference chambers by 5% in the third-stage 4 min simulation. The results showed that increasing and decreasing NO$_2$ by 5% resulted in a decrease in $P(O_3)_{\text{net}}$ by 1.64% and 3.68%, respectively (as shown in Fig. S23), which is much smaller than the biases caused by $P(O_3)_{\text{net}}$ in the reference chamber (which were 13.9% and 22.3% for methods I and II, respectively). To evaluate the $P(O_3)_{\text{net}}$ error caused by the measurement error of J values, we introduced a ±5% error to the measured J values during the third stage of the 4 min simulation in method I. The modeled $P(O_3)_{\text{net}}$ results are presented in Fig. S24 in the Supplement. We observed that the inclusion of a −5% measurement error in J values led to a decrease in $P(O_3)_{\text{net}}$ of 7.27%, while adding a +5% measurement error in J values caused an increase in $P(O_3)_{\text{net}}$ of 3.08%. This implies that the maximum bias of $P(O_3)_{\text{net}}$ caused by the measurement error of J values falls within the error range of the currently assessed $P(O_3)_{\text{net}}$ error, which was 13.9% for method I. Therefore, we conclude that this type of error will not influence our final modeling results and conclusions.
In conclusion, modeling tests demonstrated that the radicals and gas species in the reaction chamber of the NPOPR detection system were similar to those in genuine ambient air, but these radicals also unexpectedly existed in the reference chamber. This was mainly because the UV protection film used by the reference chamber did not completely filter out sunlight, which led to the low transmittance of light ranging from 390 to 790 nm. The \(P(\text{O}_3)_{\text{net}} \) biases caused by this interference modeled in methods I and II were 13.9 % and 22.3 %, respectively, which ensured that the measured \(P(\text{O}_3)_{\text{net}} \) by the NPOPR detection system should be regarded as the lower limit values of real \(P(\text{O}_3)_{\text{net}} \) in the atmosphere. We recommend that the \(J \) values obtained from method I should be used in the model simulation, which can better explain the photochemical formation of \(\text{O}_3 \) in the actual atmosphere, but if direct \(J \) value measurements cannot be achieved during field observations, the \(J \) values obtained from method II would also be acceptable in modeling studies.

4 Conclusions

We modified and improved a net photochemical ozone production rate (NPOPR) detection system based on a dual-channel reaction chamber technique that provides more accurate results and has broader application potential compared to previous studies. The main improvements of the NPOPR detection system compared to previous studies were as follows: (1) the improvement of the design of the reaction and reference chambers to make sure they have good airtightness; (2) a change to the air sampling structure to enable the total airflow rates to change freely from 1.3 to 5 L min\(^{-1}\) in the reaction and reference chambers, which can make the NPOPR detection system achieve different limits of detection (LODs) and applicable to different ambient environments; (3) characterization of the NPOPR detection system at different airflow rates to optimize the \(P(\text{O}_3)_{\text{net}} \) measurements, where the LODs of the NPOPR detection system are 0.07, 1.4, and 2.3 ppbv h\(^{-1}\) at airflow rates of 1.3, 3, and 5 L min\(^{-1}\), respectively; and (4) testing of the performance of both reaction and reference chambers by combining the field measurement and the MCM modeling method.

The NPOPR detection system was employed in the field observation at the Shenzhen Meteorological Gradient Tower (SZMGT), which is located in the PRD, China. During the measurement period, the \(P(\text{O}_3)_{\text{net}} \) was around zero during nighttime and ranged from ~0 to 34.1 ± 7.8 ppbv h\(^{-1}\) during daytime (from 06:00–18:00 LT), with an average value of 12.8 (± 5.5) ppbv h\(^{-1}\). In addition, \(P(\text{O}_3)_{\text{net}} \) starts to increase at around 07:00 LT; this may be due to the rise in the \(\text{O}_3 \) precursors (i.e., VOCs) transported down from the high-altitude atmospheric residual layer to near the surface and the increase in solar radiation intensity increasing the atmospheric oxidation capacity. \(P(\text{O}_3)_{\text{net}} \) then reaches a peak at around 12:00 LT, and by coupling this with diurnal \(\text{O}_3 \) mixing ratio trends, we confirmed that the ground-level \(\text{O}_3 \) mixing ratios were influenced by both photochemical production and physical transport.

In order to clarify the detailed photochemical reaction processes in the reaction and reference chambers of NPOPR detection system, we modeled the \(P(\text{O}_3)_{\text{net}} \) on 7 December 2021 at 12:00–12:04 LT in the reaction and reference chambers using MCM v3.3.1. As the photolysis frequencies of different species (\(J \) values) play critical roles in the formation of \(P(\text{O}_3)_{\text{net}} \), the \(J \) values obtained from two methods were used in the 4 min chamber photochemical reaction (labeled as methods I and II); in method I, eight main \(J \) values (e.g., \(J(\text{NO}_2), J(\text{O}^1\text{D}), J(\text{HONO}) \)) were measured directly, and other \(J \) values were obtained from the simulated values using the tropospheric ultraviolet and visible (TUV) radiation model, while in method II, \(J \) values were all obtained from the simulated values using the TUV model (as described in Sect. 3.2). Modeling tests demonstrated that the mixing ratios of different radicals and gas species (i.e., \(\text{OH}, \text{HO}_2, \text{RO}_2, \text{NO}_3, \text{NO}, \text{NO}_2 \) and \(\text{O}_3 \) in the reaction chamber were similar with those in the real ambient environment, but because the UV protection film used by the reference chamber does not completely filter out the sunlight, there was low transmittance of light that ranged from 390 nm to 790 nm, which caused a low amount of \(P(\text{O}_3)_{\text{net}} \) in the reference chamber. In the reaction chamber, the contribution of different reactions to \(P(\text{O}_3) \) and \(D(\text{O}_3) \) modeled by methods I and II were quite similar, where the \(\text{HO}_2 + \text{NO} \) reaction contributed most to \(P(\text{O}_3) \) (≈62.6 %), followed by the \(\text{RO}_2 + \text{NO} \) reaction (≈37.4 %). The \(\text{OH} + \text{NO}_2 \) reaction contributed most to \(D(\text{O}_3) \), which accounted for ≈48.9 %, followed by the \(\text{RO}_2 + \text{NO}_2 \) reaction \(\text{O}_3 \) photolysis, which accounted for ≈33.3 % and 13.0 %, respectively. In the reference chamber, the contribution of different reactions to \(P(\text{O}_3) \) and \(D(\text{O}_3) \) modeled by method I and II were different, where the \(\text{HO}_2 + \text{NO} \) reaction contributed ≈55.0 % and ≈58.2 % to the total \(P(\text{O}_3) \), respectively, and \(\text{RO}_2 + \text{NO} \) contributed ≈44.9 % and 41.8 % to the total \(P(\text{O}_3) \), respectively. The most important contributor of \(D(\text{O}_3) \) modeled by method I was \(\text{RO}_2 + \text{NO}_2 \) (50.8 %), followed by \(\text{OH} + \text{NO}_2 \) (37.0 %), while the most important contributor of \(D(\text{O}_3) \) modeled by method II was \(\text{OH} + \text{NO}_2 \) (46.8 %), followed by \(\text{RO}_2 + \text{NO}_2 \) (44.1 %). For all \(P(\text{O}_3) \) reactions, the weight of the \(\text{RO}_2 + \text{NO} \) reaction in the reference chamber was 7.5 % and 4.3 % higher than that in the reaction chamber in method I and II, respectively; however, for all \(D(\text{O}_3) \) reactions, the weight of \(\text{RO}_2 + \text{NO}_2 \) reaction in the reference chamber was 17.5 % and 10.9 % higher than that in the reaction chamber in method I and II, respectively, which somewhat mitigates the high \(P(\text{O}_3) \) caused by \(\text{RO}_2 + \text{NO} \) in the reference chamber. The different reaction pathways of \(P(\text{O}_3) \) and \(D(\text{O}_3) \) had stabilized at around 1.5 min, and the radicals that play critical roles in photochemical \(\text{O}_3 \) formation, such as \(\text{HO}_2, \text{RO}_2, \) and \(\text{OH} \), reached quasi-steady states in
about 3 min; the long-enough ambient air residence times in the
reaction and reference chambers (≥ 3.8 min) make the
photochemical reaction time at different airflow rates in the
NPOPR detection system sufficient enough for investigat-
ing the $P(O_3)_{\text{net}}$, and it is reasonable for us to set the alter-
nate ambient air sampling time for the reaction and reference
chambers at 2 min as the ambient air has actually already re-
ducted for at least 3.8 min in the chambers.

The biases of the modeled $P(O_3)_{\text{net}}$ caused by the inter-
ference of the reactions in the reference chamber in meth-
ods I and II were 13.9 % and 22.3 %, respectively; thus, the
measured $P(O_3)_{\text{net}}$ by the NPOPR detection system should
be regarded as the lower limit values of the real $P(O_3)_{\text{net}}$ in
the atmosphere. Nevertheless, the measured $P(O_3)_{\text{net}}$ values
were 7.5 and 9.3 ppb h$^{-1}$ higher than the modeled $P(O_3)_{\text{net}}$
values obtained from methods I and II, respectively, which
may be due to the inaccurate modeling of HO$_2$ / RO$_2$
radicals. Short-lived intermediate measurements coupled with
direct $P(O_3)_{\text{net}}$ measurements are needed in a future study
in order to better understand the photochemical O$_3$
production and destruction mechanisms. We recommend that the
J values obtained from method I should be used in the model
formation, which can better explain the photochemical for-
mation of O$_3$ in the actual atmosphere, but if direct J value
measurements cannot be achieved during field observations,
the J values obtained from method II would also be accept-
able in modeling studies.

The self-built NPOPR detection system in this study filled
the gap in the observation method in China. The research
results not only help us to better understand the tropospheric
O$_3$ budget but also provide an important data basis for formu-
lating correct O$_3$ pollution prevention measures and control
strategies.

Data availability. The observational data used in this study
are available from the corresponding authors upon request
(junzhou@jnu.edu.cn).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-23-9891-2023-supplement.

Author contributions. JZ, BY, and MS designed the experiment.
JZ and YHa developed and assembled the NPOPR detection system.
YHa, JZ, JPZ, BY, YWa,YWu,ShY,YP,JQ,XH,XS, and YC
collected and analyzed the data. YHa and JZ wrote the manuscript.
All authors revised the manuscript.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. We thank Nan Ma and Xiaofeng Su from
the Institute for Environmental and Climate Research of Jinan Uni-
versity for the HONO production experiment.

Financial support. This research has been supported by
the Natural Science Foundation of Guangdong Province
(grant no. 2020A151110526) and the Key-Area Research
and Development Program of Guangdong Province
(grant no. 2020B1111360003).

Review statement. This paper was edited by Anne Perring and
reviewed by two anonymous referees.

References

Baier, B. C., Brune, W. H., Miller, D. O., Blake, D., Long, R.,
Wisthaler, A., Cantrell, C., Fried, A., Heikes, B., Brown, S.,
McDuffie, E., Flocke, F., Apel, E., Kaser, L., and Weinheimer,
A.: Higher measured than modeled ozone production at in-
creased NO$_3$ levels in the Colorado Front Range, Atmos. Chem.
Phys., 17, 11273–11292, https://doi.org/10.5194/acp-17-11273-

Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M., and
Dominici, F.: Ozone and short-term mortality in 95 US ur-
ban communities, J. Am. Med. Assoc., 292, 2372–2378,

Berman, J. D., Fann, N., Hollingsworth, J. W., Pinkerton, K. E.,
Rom, W. N., Szema, A. M., Breyssie, P. N., White, R. H., and
Curriero, F. C.: Health benefits from large-scale ozone reduction
in the United States, Environ. Health. Persp., 120, 1404–1410,
https://doi.org/10.1289/ehp.1104851, 2012.

Bohn, B. and Lohse, I.: Calibration and evaluation of CCD spec-
troradiometers for ground-based and airborne measurements of
spectral actinic flux densities, Atmos. Meas. Tech., 10, 3151–

Burkholder, J., Sander, S., Abbatt, J., Barker, J., Cappa, C., Crounse,
J., Dibble, T., Huie, R., Kolb, C., and Kurylo, M.: Chemical
kinetics and photochemical data for use in atmospheric stud-
ies, evaluation number 19, Jet Propulsion Laboratory, National
Aeronautics and Space Administration, Pasadena, CA, http://
jpldataeval.jpl.nasa.gov (last access: 27 June 2023), 2020.

