

Supplement of

Measuring and modeling investigation of the net photochemical ozone production rate via an improved dual-channel reaction chamber technique

Yixin Hao et al.

Correspondence to: Jun Zhou (junzhou@jnu.edu.cn) and Bin Yuan (byuan@jnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

1 S1: The reaction and reference chambers.

2 1.1 Schematic diagram

3 The specifications of the reaction and reference chambers are basically the same, which are composed of a quartz glass cylinder, two O rings, two PTFE plates, and PTFE joint connections. Both inlet and outlet 4 5 of the quartz cylinder are connected to the PTFE plates and sealed by the O rings, the PTFE plates were 6 then fixed by the stainless-steel plates on a stainless-steel shelf. The length and inner diameter of the 7 quartz glass cylinder are 700 mm and 190.5 mm, respectively. The PTFE plate has a PTFE tube (outer 8 diameter of 12.7 mm) for air intake and outflow. For air inject, an PTFE tube passes through one PTFE 9 plate and is bent as "L-shape" at the inner surface side of the PTFE plate. The other PTFE plate on the 10 other side is equipped with a straight PTFE tube for air outflow (see Fig. S1).

13 **1.2 Residence time of air in the reaction and reference chambers**

The residence time of air in the two chambers ($\langle \tau \rangle$) are critical for calculating $P(O_3)_{net}$. The air flow rate through the reaction and reference chambers can be set at 1.3, 2, 3, 4, and 5 L min⁻¹, respectively, depending on the measurement environment, therefore the residence time of air in these two chambers under different air flow rates were also varied. The experimental schematic diagram and results of other air flow rates are shown in the Supplement (Figs. S2 and S3).

We first measured $\langle \tau \rangle$ by introducing a short pulse of NO₂ gas at 5 L min⁻¹ (obtained by mixing 0.2 L min⁻¹ of 2.08 ppmv NO₂ standard gas with 5.2 L min⁻¹ ultrapure) into the reaction and reference chambers at $\tau = 0$, the airflow rates in the reaction and reference chambers were controlled by the flow rate of the CAPS-NO₂ monitor (1.11 L min⁻¹) and pump (3.89 L min⁻¹), the time profile of NO₂ mixing ratios (C(τ)) at the exit of the chamber was measured using the CAPS-NO₂ monitor. The pulse width of 24 the introduced NO₂ gas was approximately 20 s and sufficiently shorter than $\langle \tau \rangle$. C(τ) is normalized by

Eq. (S1), which converts $C(\tau)$ to a probability density function $(E(\tau))$ (Sadanaga et al., 2017).

$$26 \qquad E\langle \tau \rangle = \frac{C(\tau)}{\int_0^\infty C(\tau) \, d\tau}$$
(S1)

27 $\langle \tau \rangle$ is an expectation value and was calculated using Eq. (S2).

$$28 \qquad \langle \tau \rangle = \int_0^\infty \tau \mathbf{E} \langle \tau \rangle \mathrm{d}\tau = \int_0^\infty \frac{\tau C(\tau)}{\int_0^\infty C(\tau) \,\mathrm{d}\tau} \,\mathrm{d}\tau \tag{S2}$$

Three sets of experiments of $\langle \tau \rangle$ of NO₂ in the reaction and reference chambers were carried out, and the average $\langle \tau \rangle$ of NO₂ in the reaction and reference chambers were both 0.063 h, indicating that there was no difference in the average $\langle \tau \rangle$ of the sampled air in these two chambers. We also investigated $\langle \tau \rangle$ of NO₂ at the flow rate of 1.3, 2, 3, and 4 L min⁻¹, the measured average $\langle \tau \rangle$ were all closed to the theoretical values. Figure S2 shows the schematic diagram of the experiments. We described the results at the flow rates of 1.3, 2, 3, 4, and 5 L min⁻¹ in Fig. S3 and Table S1.

41 Figure S3: Average $E(\tau)$ time profiles in (a) the reaction and (b) the reference chambers at the sampling flow

rates of 1.3, 2, 3, 4, and 5 L min⁻¹, respectively. The related residence time of NO₂ in the reaction and reference
chambers of each air flow rate is shown in Table S1.

43 44

15	Table S1 American meridance times of single the measting and references showhere
40	Table 51. Average residence time of air in the reaction and reference chambers.

	Average residence time (h)			
Flow rate of air (L min ⁻¹)	Reaction chamber	Reference chamber		
1.3	$0.350 {\pm} 0.0020$	0.321 ± 0.0026		
2	0.160 ± 0.0015	0.164 ± 0.0022		
3	0.111 ± 0.0004	0.142 ± 0.0002		
4	0.067 ± 0.0003	0.074 ± 0.0003		
5	0.063 ± 0.0007	0.063 ± 0.0005		

46 **1.3 Wall losses of NO₂ and O₃ in the reaction and reference chambers**

47 In order to investigate the wall loss of O_3 or NO_2 , we injected several steams of O_3 or NO_2 with different 48 mixing ratios into the reaction and reference chambers, and measured the O_3 or NO_2 mixing ratios at the 49 inlet and outlet of the chambers. The O_3 used here were generated by injecting the ultrapure air into an

- 50 O₃ generator (P/N 97-0067-02, Analytic Jena, USA), O₃ mixing ratios were measured by a 2B O₃ monitor
- 51 based on a dual-channel UV-absorption technique (Model 205, 2B Technology, USA), and NO₂ mixing
- 52 ratios was monitored by the CAPS-NO₂ monitor. The wall losses of O₃ and NO₂ can be calculated as:

53
$$O_{3 loss} = \left(1 - \frac{[O_3]_{out}}{[O_3]_{in}}\right) \times 100 \%$$
 (S3)

54
$$NO_{2 loss} = \left(1 - \frac{[NO_2]_{out}}{[NO_2]_{in}}\right) \times 100 \%$$
 (S4)

where $[O_3]_{out}$ and $[NO_2]_{out}$ represent the mixing ratio of gas passing through the reaction and reference chambers, $[O_3]_{in}$ and $[NO_2]_{in}$ represent the mixing ratio of gas passing through then bypass.

57 The experiments were conducted under dark conditions, the experimental schematic diagram is 58 shown in Fig. S4, and the results at the air flow rate of 1.3, 2, 3, 4, and 5 L min⁻¹ are shown in Figs. S5-59 S6 and Tables S2-S5. From Figs. S5-S6, at the air flow rate of 5 L min⁻¹, wall losses of O₃ in the reaction 60 and reference chambers were found to be approximately 0% and 0.7%, respectively, wall losses of NO₂ 61 were found to be approximately less than 1.0% for both chambers, which were smaller than the wall loss 62 of Ox in previous studies (as shown in Table S6), this indicates the small effects of Ox loss to $P(O_3)_{net}$ 63 measurements in our NPOPR detection system. To investigate the influence of different flow rates to the 64 Ox wall losses, we also tested the wall loss of O_x at flow rates of 1.3, 2, 3, and 4 L min⁻¹, respectively, 65 we found that with the increase of the flow rate, the Ox wall losses decreased, but even with the flow rate 66 of 1.3 L min⁻¹, the wall loses were still smaller than 4 % and 2 % in the reaction chamber and the reference 67 chambers, respectively, more details are shown in Table S2. At the air flow rates of 1.3, 2, 3, and 4 L min-¹, the wall losses of O₃ in the reaction chamber were found to be approximately 2 %, 0 %, 0 %, and 0 %, 68 69 respectively, the wall losses of O3 in the reference chamber was found to be approximately 2 %, 1 %, 70 1 %, and 0 %, respectively. While the wall losses of NO_2 in the reaction chamber at the air flow rates of 71 1.3, 2, 3, and 4 L min⁻¹ were found to be approximately 4 %, 4 %, 2 %, and 0 %, respectively, the wall 72 losses of NO2 in the reference chamber were found to be approximately 2 %, 1 %, 0 %, and 0 %, 73 respectively. The regression lines have non-zero intercepts but not significant. We added the regression 74 fittings without intercept, and compared the regression fitting results with and without intercept (as 75 shown in Figs. S5 and S6). We found that the O_3 and NO_2 wall losses were not much different (as shown 76 in Tables S2 and S3), and the wall loss affected by the fitting intercepts for NO₂ (at ambient mixing ratios 77 of 0-100 ppbv) and O₃ (at ambient mixing ratios of 0-200 ppbv) at the air flow rate of 5 L min⁻¹ were all

below 4 % (as shown in Tables S4 and S5). We found that when the O₃ have negative intercepts, the O₃
wall losses are still below 4 %, which is not significant.

80 Sklaveniti et al. (2018) found that the wall loss of NO_2 is significantly less than that of O_3 at higher 81 humidity levels. However, in our O₃ photo-enhanced uptake experiments, the wall loss of O₃ was almost 82 unaffected by humidity at a flow rate of 5 L min⁻¹. We also tested the wall losses of NO₂ and O₃ in the 83 chamber at a 5 L min⁻¹ flow rate at different humidities of 35-75 %, the detailed results are shown in Fig. 84 S7 and S8, which shows that the variation in humidity effected the wall loss of NO₂ and O₃ by 0.03-85 0.12 % and 1.06-1.19 %, respectively, which is much smaller than the instrument detection error (which 86 is 2 % at ambient NO₂ mixing ratios of 0-100 ppb), thus we didn't count this interference during the data 87 analysis.

88

(a) [O₃] By pass NO-reaction chambe (PFA) O₃ generator Zero air MFC Valve Over flow MFC [O₃] out NO standard gas (~100 ppmv) (b) [NO₂]_{ir} By pass NO-reaction chamber NO₂ standard gas (PFA) Zero air Valve MFC Over flow MFC [NO₂] out NO standard gas (~100 ppmv)

- 89
- 90

91 Figure S4: Schematic diagram for testing (a) O₃ and (b) NO₂ wall loss in the reaction and reference chambers

^{92 (}MFC: Mass Flow Controller).

Figure S5: Relationship between (a,b) [O₃]_{in} and [O₃]_{out} and (c,d) [NO₂]_{in} and [NO₂]_{out} in the reaction and reference chambers with intercepts at the flow rates of 1.3, 2, 3, 4, and 5 L min⁻¹, respectively, the solid lines represent the linear fitting of the O₃ or NO₂ mixing ratios at the inlet and outlet of the chambers.

99 Figure S6: Relationship between (a, b) [O₃]_{in} and [O₃]_{out} and (c,d) [NO₂]_{in} and [NO₂]_{out} in the reaction and 100 reference chambers without intercepts at the flow rates of 1.3, 2, 3, 4, and 5 L min⁻¹, respectively, the solid 101 lines represent the linear fitting of the O₃ or NO₂ mixing ratios at the inlet and outlet of the chambers.

103 Table S2. Wall losses of O₃ and NO₂ of the reaction and reference chambers with intercepts.

	Wall losses of O ₃ (%)		Wall losses of NO ₂ (%)			
Flow rate of air (L min ⁻¹)	Reaction chamber	Reference chamber	Reaction chamber	Reference chamber		
1.3	2.0	2.0	4.0	2.0		
2	0.0	1.0	4.0	1.0		
3	0.0	1.0	2.0	0.0		
4	0.0	0.0	0.0	0.0		
5	0	0.7	0.3	0.6		

108 Table S3. Wall losses of O₃ and NO₂ of the reaction and reference chambers without intercepts.

	Wall los	ses of O ₃ (%)	Wall loss	ses of NO ₂ (%)
(L min ⁻¹)	Reaction chamber	Reference chamber	Reaction chamber	Reference chamber
1.3	3.0	3.0	3.0	2.0
2	1.0	1.0	3.0	2.0
3	0.0	2.0	2.0	0.0
4	1.0	1.0	0.0	0.0
5	2.0	2.0	0.0	1.0

110 Table S4. NO₂ wall loss affected by the intercept.

	Wall loss affected by the intercept (NO ₂ , %)		
Ambient NO ₂ mixing ratios – (ppbv)	Reaction chamber	Reference chamber	
20	2.0	2.0	
40	1.0	1.5	
60	0.7	1.3	
80	0.5	1.2	
100	0.4	1.2	

112 Table S5. O3 wall loss affected by the intercept.

	Wall loss affected by the intercept (O ₃ , %)		
Ambient O ₃ mixing ratios - (ppbv)	Reaction chamber	Reference chamber	
50	3.9	2.9	
80	2.1	2.2	
120	1.1	1.8	
160	0.5	1.6	
200	0.2	1.5	

117 Table S6. O3 and NO2 wall loss from this study (at air flow rate of 5 L min⁻¹) and literatures (variable air flow

rate).

	Reaction chamber	Reference chamber	Literatures / air flow rate
O ₃ loss rate	<3 %	<3 %	Cazorla et al.,2010 / 1.5 L min ⁻¹
	1.3 %	1.4 %	Sadanaga et al.,2017 / 0.5 L min ⁻¹
	5-15 %	5-13 %	Sklaveniti et al., 2018 / 2.3 L min-1
	0 %	0.7 %	This study / 5.0 L min ⁻¹
NO ₂ loss rate	<1 %	<1 %	Cazorla et al.,2010 / 1.5 L min ⁻¹
	insignificant	insignificant	Sadanaga et al.,2017 / 0.5 L min ⁻¹
	<3%	<3 %	Sklaveniti et al., 2018 / 2.3 L min ⁻¹
	0.3 %	0.6 %	This study / 5.0 L min ⁻¹

119

Figure. S7 (a) and (c) represent the NO₂ wall loss at different humidities for the reaction and reference chambers, respectively, (b) and (d) represent the points fitted to all humidities, respectively. Uncertainty in the regression formula was one standard deviation (1σ) .

125

Figure. S8 (a) and (c) represent the O₃ wall loss at different humidities for the reaction and reference chambers,
 respectively, (b) and (d) represent the points fitted to all humidities, respectively. Uncertainty in the regression
 formula was one standard deviation (1σ).

1.4 HONO production in the reaction and reference chambers with variations of temperature and humidities

We tested the HONO production in the reaction and reference chambers under weather conditions similar to those during the SZMGT observations (humidities of 60-90% at a temperature of ~ 20 °C and $J(NO_2)$ of ~ 0-8 × 10⁻³ s⁻¹) at a 5 L min⁻¹ sampling flow rate. We found that the HONO mixing ratios in the reaction and reference chambers were almost the same and not statistically different from that in the ambient air within the standard deviation, as shown in Fig. S9; therefore, we assumed that the HONO production in the reaction and reference chambers would not cause a significant difference in $P(O_3)_{net}$ in the two chambers.

Figure. S9 (a) The mixing ratios of HONO in the reaction and reference chambers and (b) the difference of
 HONO mixing ratios the reaction and reference chambers.

141 **1.5 The light transmittance in the reaction and reference chambers**

138

142 We measured the transmittivities of all species as follows: we simulated the illumination by adjusting 143 the sun light (SERIC XG-500B) to provide different intensities of illumination to study the solar UV 144 transmittance through the reaction and reference chambers. The photolysis frequencies of the species 145 NO₂, O₃, and HONO, etc. were measured using the Actinic flux spectrometer (PFS-100; Focused 146 Photonics Inc). Measurements are performed in laboratory. The UV blocking of the reference chamber 147 coated with UV protection film was evaluated by comparing the radiation measurements outside the 148 reference chamber with the measurements inside the reference chamber. Similar measurements and 149 comparisons were made for transparent reaction chambers. The results for the reaction and reference 150 chambers are shown in Table S7.

151 According to the working theory of the actinic flux spectrometer, the measurement error may rise 152 from the angular response deviation of the quartz receiver head. According to Bohn et al. (2017), the 153 measurement error of the actinic flux spectrometer can reach±5 %. According to this, we re-evaluated 154 the transmittivity error listed in Table 1 and Table S7 as follows: ①calculate the absolute measurement 155 error of all measured J values inside and outside the reaction and reference chambers based on the ± 5 % 156 instrument measurement error; 2 calculate the average values of all the measured J values (including 157 (J(NO₂), J(O1D), J(HONO), J(H₂O₂), J(NO₃_M), J(NO₃_R), J(HCHO_M), and J(HCHO_R)) inside and 158 outside the chambers; ③calculate the propagated error of transmittivity, using the following error 159 propagation equation:

160
$$O_{\text{Transmittivity}} = \sqrt{\left(\frac{O_J \text{ value in}}{A_J \text{ value in}}\right)^2 + \left(\frac{O_J \text{ value out}}{A_J \text{ value out}}\right)^2}$$
(S5)

161 where $O_{\text{Transmittivity}}$ represents the transmittivity error; $O_{J \text{ value}_{in}}$ and $O_{J \text{ value}_{out}}$ represent the 162 measurement error of *J* value inside and outside the chambers, respectively; $A_{J \text{ value}_{in}}$ and $A_{J \text{ value}_{out}}$ 163 represent the average *J* values measured inside and outside the chambers, respectively.

165 Table S7. Photolysis frequency J (s⁻¹) of different species and the transmittivities of J values in the reaction 166 and reference chambers. The normal and bold fonts correspond to the transmittivities of J values in the 167 reaction (clear) and reference (Ultem coated) chambers, respectively. The "transmittivities" column shows the 168 transmittivities of the tested species from the measurements conducted with the set photolysis frequencies 169 using SERIC XG-500B sunlight (this study) and ambient (literature). It should be noted that the errors listed 170 here are relatively large and may not reliable due to a limited number of measurement points (three points 171 for each species). The calculated transmittivity errors are 0.07 for all species based on the ±5 % measurement 172 error of the instrument.

	Outside	Inside	Trans	smittivities
	Chamber chamber (s ⁻¹) (s ⁻¹)		Each experiment	Averaged
$J(NO_2)$	6.068E-03	5.744E-03	0.947	
	8.418E-03	8.598E-03	1.021	0.985
	1.360E-02	1.344E-02	0.988	±0.037
	5.996E-03	4.700E-04	0.078	
	1.064E-02	1.134E-03	0.107	0.094 +0.014
	1.382E-02	1.324E-03	0.095	±0.014
$J(O^1D)$	5.609E-05	5.484E-05	0.978	
	1.088E-04	1.151E-04	1.050	1.020 ±0.04
	1.240E-04	1.240E-04	1.000	
	7.005E-05	6.750E-07	0.010	
	9.825E-05	3.016E-06	0.031	0.019
	1.243E-04	2.205E-06	0.018	±0.011
J(HONO)	1.058E-03	9.994E-04	0.944	
	1.468E-03	1.494E-03	1.018	0.983 + 0.037
	2.376E-03	2.344E-03	0.986	_0.037
	1.047E-03	2.154E-06	0.002	
	1.281E-03	2.588E-06	0.002	0.002
	2.417E-03	5.596E-06	0.002	±0.0002
$J(H_2O_2)$	6.157E-06	5.818E-06	0.944	1.000

	1.370E-05	1.356E-05	0.990	± 0.060
	1.200E-05	1.279E-05	1.065	
	6.145E-06	3.451E-08	0.006	
	1.080E-05	4.942E-08	0.005	0.005 ±0.0006
	1.393E-05	6.160E-08	0.004	±0.0000
J(NO ₃ _M)	1.314E-02	1.277E-02	0.971	
	2.983E-02	2.993E-02	1.003	1.002
	1.849E-02	1.906E-02	1.086	±0.030
	1.284E-02	9.929E-03	0.773	
	2.342E-02	2.437E-02	1.041	0.916 +0.134
	3.040E-02	2.839E-02	0.934	±0.134
$J(NO_3_R)$	9.881E-02	9.575E-02	0.970	0.000
	2.224E-01	2.226E-01	1.001	0.999
	1.386E-01	1.425E-01	1.028	±0.030
	9.669E-02	7.461E-02	0.772	0.010
	1.751E-01	1.814E-01	1.036	0.913 +0.030
	2.268E-01	2.113E-01	0.932	±0.030
J(HCHO_M)	2.645E-05	2.492E-05	0.942	0.007
	5.927E-05	5.845E-05	0.986	0.997 ±0.006
	5.188E-05	5.514E-05	1.063	上0.000
	2.626E-05	1.017E-07	0.0038	0.001 =
	4.643E-05	1.810E-08	0.0004	0.0015 +0.002
	6.026E-05	1.620E-08	0.0003	-0.002
J(HCHO_R)	5.800E-05	5.737E-05	0.989	1 001
	5.081E-05	5.394E-05	1.062	1.021
	3.594E-05	3.617E-05	1.007	±0.004
	3.174E-05	2.670E-09	~0	0.0007
	4.561E-05	1.800E-07	0.0039	0.0026 +0.002
	5.892E-05	2.290E-07	0.0039	

176 Figure S10. Air temperature in the reaction and reference chambers during the ambient field observation on

177 Panyu campus of Jinan University.

Figure S11. Time series of CAPS baseline and RH when measuring ambient air (a), and when injecting wet
(b) and dry (c) pure air in the laboratory, respectively.

182 **1.5** The quantitative conversion efficiency of O₃ to NO₂ (α) in the NO-reaction chamber

184 Figure S12: Schematic diagram for measuring O₃ to NO₂ conversion efficiency in the NO-reaction chamber

185 (MFC: Mass Flow Controller).

186

183

187 Figure S13 Time series of NO₂ when injecting NO into CAPS-NO₂ monitor.

188 **1.6 The airtightness of the reaction and reference chambers**

193 rate and pressure at the chamber outlet.

195 Table S8: Airtightness estimate of the reaction and reference chambers by testing the differences of (air flow

	Inlet flow rate (L min ⁻¹)	Inlet pressure (PSIA)	Inlet flow rate × Inlet pressure	Outlet flow rate (L min ⁻¹)	Outlet pressure (PSIA)	Outlet flow rate × Outlet pressure	$\Delta \text{ (Air flow rate}_{\times} \\ \text{Pressure)} \\ \text{ (Difference at} \\ \text{ inlet and outlet)/} \\ \text{ (Inlet flow rate}_{\times} \\ \text{Inlet pressure)} \\ \text{ (%)} \\ \end{array}$
Reaction chamber	3.80	14.67	55.74	3.81	14.63	55.74	0.00
	3.46	13.48	46.64	3.51	13.43	47.14	1.07
	3.19	12.51	39.90	3.22	12.42	39.99	0.22
	2.93	11.54	33.81	3.00	11.53	34.59	2.33
Reference chamber	3.80	14.68	55.78	3.80	14.61	55.52	0.47
	3.33	13.04	43.42	3.38	13.00	43.94	1.20
	3.12	12.3	38.37	3.16	12.14	38.36	0.03
	2.83	11.25	31.84	2.91	11.24	32.71	2.73

196 rate × gas pressure) at the inlet and outlet of the reaction and reference chambers.

197 S2: The LOD and measurement error of the NPOPR detection system.

198 Table S9. The upper limit values of LODs of the CAPS-NO₂ monitor for the reaction chamber, reference 199 chamber, and P(O₃)_{net} at different flow rates.

200

Flow rate of air		LOD (3σ)	
(L min ⁻¹)	Reaction chamber (ppbv)	Reference chamber (ppbv)	P(O3) _{net} (ppbv h ⁻¹)
1.3	0.02	0.02	0.07
3	0.10	0.10	1.4
5	0.13	0.07	2.3

201

The $P(O_3)_{net}$ error was calculated according the instrumental error of the CAPS-NO₂ monitor and the O₃ light-enhanced loss in the reaction and reference chambers. More details are described as follows: *Calibration of CAPS NO₂ monitor* CAPS NO₂ monitor was used to measure the NO₂ standard gas after we have calibrated it using the gas-phase titration method using NO and O₃. We used the CAPS-NO₂ monitor reading as a transition value between the two to obtain the NO₂ standard gas and NO+O₃ mixing ratios corresponding to the same CAPS-NO₂ monitor reading. Results showed the purification of NO₂ standard gas was good enough to calibrate CAPS-NO₂ monitor, as shown in Fig. S15

Figure. S15 Correlation between NO₂ standard gas and the NO₂ generated using the gas-phase titration
 method (NO + O₃).

212 The instrumental error of CAPS-NO₂ monitor ($(O_{X_{CAPS}})_{error}$) was calculated from the fluctuation 213 range of the 68.3 % confidence interval of the calibration curve as shown in Fig. 4, the relationship 214 between the $(O_{X_{CAPS}})_{error}$ and the measured Ox value ($f_{measured}$) can be expressed as a power function 215 curve, as shown in Eq. (S6):

216
$$(O_{X_{CAPS}})_{error} = 9.72 f_{measured}^{-1.0024}$$
 (S6)

217 The light-enhanced loss of O_3 in the reaction and reference chambers at 5 L min⁻¹ (the ambient 218 observation used flow rate in this study) were investigated by carrying out the following experiment: 219 injecting the O₃ with a mixing ratio of about 130 ppbv generated by the O₃ generator (P/N 97-0067-02, 220 Analytic Jena US, USA) to ensure that no photochemical O₃ was produced during the outdoor experiment. 221 The $J(O^1D)$, T, RH, P, and O₃ mixing ratios at the inlet and outlet of the reaction and reference chambers 222 were measured simultaneously. The T and RH were measured by the thermometer (Vaisala, HMP110, 223 USA). The light-enhanced loss coefficient of $O_3(\gamma)$ was calculated using Eq. (S7), the relationship of 224 $J(O^{1}D)$ with γ is shown in Fig. S16a. The obtained γ - $J(O^{1}D)$ equation listed in Eq. (S7) was used to 225 correct the light-enhanced loss of O3 in the reaction and reference chambers during the daytime to 226 excluded the influence of light-enhanced loss.

227
$$\gamma = \frac{d[O_3] \times D}{\omega \times [O_3] \times \tau}$$
(S7)

where $d[O_3]$ represents the difference between the O₃ mixing ratios at the inlet and outlet of the reaction and reference chambers, D is the diameter of the chambers, ω is the average velocity of O₃ molecules, [O₃] is the injected O₃ mixing ratio at the inlet of the reaction and reference chambers, and τ is the average residence time of the air in the reaction and reference chambers.

232

Figure S16: The relationship of (a) γ and $J(O^1D)$ and (b) RH and $d[O_3]$ in the reaction and reference chambers, which is calculated from the 68.3 % confidence interval of the fitting lines between γ and $J(O^1D)$, the shaded areas represented the maximum fluctuation range under this confidence level.

When quantifying the light-enhanced O₃ loss ($d[O_3]$) during ambient air measurement, we first calculate γ using the measured $J(O^1D)$ and the γ - $J(O^1D)$ equations listed in Fig. S16a in the reaction and reference chambers, then using the measured [O₃] and Eq. (S7) to calculate $d[O_3]$.

The O₃ mixing ratio change after the correction of the light-enhanced loss of O₃ (d[O₃]) showed no clear correlation with RH for both reaction and reference chambers, as shown in Fig. S16b, which indicates that the RH had no influence to the O₃ mixing ratio change during the observation period. It should be noted that the final error of Ox of the reaction and reference chambers includes the measurement error of CAPS-NO₂ monitor (calculated by Eq. (S6)) and the error caused by γ , so the measured P(O₃)_{net} error can be calculated according to Eq. (7) in manuscript.

245
$$(O_X)_{error} = \sqrt{(O_{X\gamma})_{error}^2 + (O_{XCAPS})_{error}^2}$$
 (S8)

246 where $(O_{X_{\gamma}})_{\text{error}}$ represents the error of the Ox of the reaction and reference chambers corrected by γ .

248 S3: Supplement materials for the field observations.

249 Figure S17 shows the measurement site of the observation campaign, conducted at the Shenzhen

250 Meteorological Gradient Tower (SZMGT), which is located in Shenzhen, Pearl River Delta (PRD) region

in China.

Figure S17: (a)The geographic location of the measurement site and (b) the integrated ambient air backward trajectories during sampling period from 7 December, 00:00 to 10 December 2021, 00:00 in Shenzhen (China). The above figures were obtained by using the MeteoInfo weather mapping software in the TrajStat plugin (Deshpande et al., 2016; Hao et al., 2020). Figure S17b was obtained by the Internet-based Hybrid-Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model, the required data was downloaded via ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1 (NOAA). Frequency grid resolution: 5.0° × 5.0°, trajectory duration: 72 h. The air mass during the campaign were mainly from Jiangxi and Fujian, which had a 23.61 % probability, followed by Zhejiang, Anhui, east coast, and East China Sea, which had 19.44 %, 13.89 %, 11.11 %, and 8.33 % probability, respectively.

281 Table S10a: Summary of maximum *P*(O₃)_{net} of field measurements in literatures.

Table S10b: Summary of maximum *P*(O₃)_{net} of model simulation in literatures.

Measurement site	The type of site	Time	$P(O_3)_{net}$ (ppbv h ⁻¹)	Reference
Wakayama, Kyoto, Japan	remote area	27 July to 8 August 2014	$10.5 \text{ ppbv } h^{-1}$	Sadanaga et al., 2017
State College, Pennsylvania, U.S.A.	urban area	Summer 2008	~30 ppbv h ⁻¹	Cazorla et al., 2010
Houston, Texas, U.S.A.	urban area	October 2013	40-50 ppbv h ⁻¹	Baier et al., 2015
Bloomington, Indiana, U.S.A.	a site 2.5 km northeast of the Indiana University Bloomington campus	30 May 2010	~30 ppbv h ⁻¹	Sklaveniti et al., 2018
Houston, Texas, U.S.A.	urban area	15 April to 31 May 2009	$100 \text{ ppbv } h^{-1}$	Ren et al., 2013
Shenzhen,	a village in Bao'an district	7 to 9 December	34.1 ppbv h ⁻¹	This study
Guangdong, China	usuici	2021		

Site	The type of site	Time	$P(O_3)_{net} (ppbv h^{-1})$	Reference
Fukue Island, Japan	a remote area	May to June 2009	1-2 ppbv h ⁻¹	Kanaya et al., 2016
Chelmsford, Essex, U.K.	a site 2 miles west of Chelmsford in Essex and 25 miles north east of London	Summer 2003	7.2 ppbv h ⁻¹	Emmerson et al., 2007
Houston, Texas, U.S.A.	suburban area	the September 2013	$\sim 10 \text{ ppbv } h^{-1}$	Mazzuca et al., 2016
Houston, Texas, U.S.A.	urban area	from 15 April to 31 May 2009	15-20 ppbv h ⁻¹	Ren et al., 2013
Houston, Texas, U.S.A.	urban area	from August to September 2006	45 ppbv h ⁻¹	Chen et al., 2010; Chen et al., 2012
Houston, Texas, U.S.A.	urban area	September 2013	$\sim 30 \text{ ppbv } h^{-1}$	Mazzuca et al., 2016

286 S4: Supplement materials for the MCM modeling.

Chemicals	Classification	Mean±SD (pptv)	Chemicals	Classification	Mean±SD (pptv)
Alkanes		30516±27079	Aromatics		7098±5855
<i>n</i> -butane	NMHC	8803±6422	toluene	NMHC	3684±2688
propane	NMHC	7086±5169	<i>m</i> / <i>p</i> -xylene	NMHC	1392±1370
isobutane	NMHC	4983±3635	ethylbenzene	NMHC	591±582
ethane	NMHC	3461±2525	o-xylene	NMHC	572±563
isopentane	NMHC	1712±1249	benzene	NMHC	528±336
<i>n</i> -pentane	NMHC	1570±1146	styrene	NMHC	159±191
<i>n</i> -hexane	NMHC	633±462	1,2,4- trimethylbenzene	NMHC	39±29
2-methylpentane	NMHC	473±345	<i>m</i> -ethyltoluene	NMHC	38±28
3-methylpentane	NMHC	423±308	<i>p</i> -ethyltoluene	NMHC	21±15
3-methylhexane	NMHC	252±184	<i>n</i> -propylbenzene	NMHC	21±15
2-methylhexane	NMHC	195±142	o-ethyltoluene	NMHC	20±15
<i>n</i> -heptane	NMHC	178±130	isopropylbenzene	NMHC/	13±10
methylcyclopentane	NMHC	125±91	1,2,3-	NMHC	12±9
2,3-dimethylbutane	NMHC	122±89	trimethylbenzene 1,3,5- trimethylbenzene	NMHC	7±5
<i>n</i> -octane	NMHC	109±80	OVOCs		40695±2718 0
methylcyclohexane	NMHC	102±74	formaldehyde	OVOCs	10558±5113
2,2-dimethylbutane	NMHC	71±52	ethanol	OVOCs	10537±7136
<i>n</i> -dodecane	NMHC	68±50	methanol	OVOCs	10320±6944
<i>n</i> -decane	NMHC	49±35	acetone	OVOCs	5701±4024
<i>n</i> -nonane	NMHC	47±34	hydroxyacetone	OVOCs	4542±3227
<i>n</i> -undecane	NMHC	41±30	acetaldehyde	OVOCs	3010±1939
Alkenes		2419±2086	methyl ethyl ketone	OVOCs	2714±2277
ethylene	NMHC	$1493 {\pm} 1089$	acrolein	OVOCs	605±244
propylene	NMHC	411±300	methyl vinyl ketone	OVOCs	185±101
isoprene	BVOCs	351±182	methacrylaldehyde	OVOCs	128±70
1-butene	NMHC	163±119	<i>m</i> -cresol	OVOCs	46±43
1-pentene	NMHC	29±21	phenol	OVOCs	26±26
1-hexene	NMHC	15±11			
trans-2-butene	NMHC	11±8			
cis-2-butene	NMHC	11±8			
trans-2-pentene	NMHC	5±3			
cis-2-pentene	NMHC	3±2			
Acetylene		1858±1356			
Acetylene	NMHC	1858±1356			

287 Table S11. VOCs mixing ratios during 7-9 December 2021 in SZMGT (units: pptv) used by the model.

*NMHC: non-methane hydrocarbon, BVOCs: biogenic volatile organic compounds, OVOCs: oxygenated 288 289

volatile organic compounds.

290 4.1 J values used in the MCM model simulation

291 The J values obtained from two methods (labeled as method I and II) were used in the 3rd-stage 4-292 min simulation. The Tropospheric Ultraviolet and Visible (TUV) radiation model (version 5.3) (Lantz et 293 al., 1996; Madronich and Flocke, 1999) was used to provide a representative spectral actinic flux in these 294 two methods. The photolysis frequencies of each measured species used in TUV model $(J_{\text{value TUV}})$ were 295 calculated by numerical summation over wavelength (Calvert et al., 2002):

296
$$J_{\text{value }_{\text{TUV}}} = \int_{a}^{b} \delta_{i} \times \phi_{i} \times F_{i} \Delta \lambda_{i}$$
(S9)

297 where a and b represent the range of the set wavelength, δ_i , ϕ_i , and F_i stand for the absorption cross 298 section, quantum yield, and spectral actinic flux of the species *i*, respectively. The spectral actinic flux 299 was obtained from the TUV model, detailed information of these two methods is described in Tables S12 300 and S13.

301 Table S12. J values used in the model simulation in reaction and reference chambers.

		J values used in t	he model simulation			
		Measured <i>J</i> values: <i>J</i> (NO ₂), <i>J</i> (O ¹ D), <i>J</i> (HONO), <i>J</i> (H ₂ O ₂), <i>J</i> (NO ₃ _M), <i>J</i> (NO ₃ _R), <i>J</i> (HCHO_M), <i>J</i> (HCHO_R)	Unmeasured <i>J</i> values: <i>J</i> (HNO ₃), <i>J</i> (CH ₃ CHO), <i>J</i> (MACR), <i>J</i> (MEK), <i>J</i> (HOCH ₂ CHO), <i>J</i> (C ₂ H ₅ CHO), <i>J</i> (C ₃ H ₇ CHO), <i>J</i> (C ₄ H ₉ CHO), etc.			
	Method I	$J_{\rm trans\ measured} \times J_{\rm value\ measured}$	$J_{\text{trans }_{\text{TUV}}} \times J_{\text{NO2 }_{\text{measured}}} / J_{\text{NO2}_{\text{TUV}}} \times J_{\text{value }_{\text{TUV}}}$			
	Method II	$J_{\text{trans}_{\text{TUV}}} \times J_{\text{value}_{\text{TUV}}}$	$J_{\text{trans }_{\text{TUV}}} \times J_{\text{NO2 }_{\text{measured}}} / J_{\text{NO2}_{\text{TUV}}} \times J_{\text{value }_{\text{TUV}}}$			
302	*J _{value measur}	$_{\rm red}$ and $J_{\rm value}_{\rm TUV}$ represent the measured and TUV	modeled J values of different species, respectively.			
303	$J_{ m trans\ measure}$	drepresents the measured transmittivities of each me	easured species in the reaction and reference chambers,			
304	which are listed in Table S7; J trans TUV represents the transmittivities of each measured species used in TUV model					
305	in the react	tion and reference chambers, where the $J_{\text{trans }_{\text{TUV}}}$ in	the reaction chamber is regarded as 100 % J $_{\rm trans\ _{TUV}},$			
306	in the refer	rence chamber is calculated as $\frac{J_{\text{TUV}_{390,790 \text{ min}}}}{J_{\text{TUV}_{290,790 \text{ min}}}}$, where $J_{\text{TUV}_{390}}$	equals to the J value at the wavelength of 390– $^{1.790 \text{ nm}}$			
307	790 nm, J_{TU}	$_{V_{290.790nm}}$ quals to the J value at the wavelength of 2	290–790 nm, the detailed $J_{\text{trans }_{\text{TUV}}}$ values of different			
308	species are	shown in Table S13; $f_{NO2_{measured}}$ and $f_{NO2_{TUV}}$ rep	resent the measured and TUV modeled J_{N02} .			
309						
310	Table S13.	The transmittivities of J values used in TUV mo	odel (/ _{trans TUV}) described in Table S12.			

				Transr	nittivities			
	$J(NO_2)$	$J(O^1D)$	J(HONO)	$J(H_2O_2)$	J(NO ₃ _M)	$J(NO_3_R)$	J(HCHO_M)	J(HCHO_R)
Reaction chamber	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Reference chamber	0.30	0.00	0.01	0.00	1.00	1.00	0.01	0.01

311 4.2 The modeling results by using J values obtained from method II

The variations in the radical mixing ratios (i.e., HO₂, OH, RO₂) and NO₃, NO, NO₂, and O₃ mixing 312 ratios obtained from method I and method II during the 3rd-stage 4-min model simulation are shown in 313 314 Fig. 8 and Fig. S18, respectively. The production and destruction reactions of HO₂, OH, RO₂, and NO₃ in the reaction and reference chambers obtained from methods I and II are shown in Fig. 9 and Fig. S19, 315 316 respectively, the production and destruction reactions of RO_X in the reaction and reference chambers 317 obtained from methods I and II are shown in Fig. S20, the detailed ROx production pathways of 318 NO₃+VOCs are shown in Fig. S21, and the final modeling results are shown in Fig. 10 and Fig. S22. 319 From Fig. S18, in the reaction chamber, HO₂, OH, RO₂, and NO₃ mixing ratios increased slightly 320 in the first few seconds and then became stable, their final concentrations were 1.97×10^8 , 7.61×10^6 , 1.06×108, and 8.36×106 molecules cm⁻³, respectively. In the reference chamber, HO₂, OH, and RO₂ 321 322 concentrations declined in the 1st 20 seconds and then gradually became stable, their final concentrations were 8.11×10^7 , 1.08×10^6 , and 5.68×10^7 molecules cm⁻³, respectively. On the contrary, the NO₃ mixing 323

324 ratio slightly increased at the 1st 1-2 min and then became stable at 1.88×10⁷ molecules cm⁻³.

325 326

327 328

Figure S18: The variations of (a) HO₂, (b) RO₂, (c) OH, (d) NO₃ and (e) NO, NO₂, and (f) O₃ mixing ratios during the 3rd-stage 4-min model simulation using method II.

329

OH, HO₂, RO₂, and NO₃ concentrations greatly impact the O₃ production and destruction rate. To 330 better understand the factors that drive the OH, HO₂, RO₂, and NO₃ concentration changes in method II, 331 we have added their production and destruction pathways in Fig. S19. We found that the decrease in HO_2 332 and RO₂ concentrations in the reference chamber in the 1st half minute was mainly due to NO titration 333 effects, as high NO mixing ratios existed during the 1st half minute. The HO₂ and RO₂ concentrations 334 were became stable afterwards, the main production pathway for HO₂ was RO+O₂ reaction/RO 335 decomposition, followed by OH+VOCs reaction, OVOCs photolysis (i.e., C₃H₄O₂, C₂H₂O₂, C₄H₆O₂), 336 and NO3+VOCs reaction; while the main production pathway for RO2 was OH+ VOCs reaction, followed 337 by OVOCs photolysis (i.e., C₃H₄O₂, C₂H₂O₂, C₄H₆O₂), OH+CO, NO₃+VOCs reaction, etc.; the main 338 destruction pathways for HO₂ and RO₂ were HO2+NO and RO₂+NO, respectively. The main OH 339 production and destruction pathways in the reference chamber was HO₂+NO reaction and OH+ VOCs 340 reaction, respectively. Due to sufficiently high $J(NO_3)$ (~ 100 % of that in the reaction chamber) and NO₂ 341 concentrations in the reference chamber, the NO₃ photolysis and NO₂+NO₃ reaction consumed NO₃ in 342 the reference chamber, but the NO_3 concentrations were still high due to high production rates of NO_3 at 343 the same time. Similar with the results obtained from method I as described in the main manuscript, for 344 method II, the main NO₃ source in the reference chamber was the NO₂+O₃ reaction, followed by N₂O₅ 345 decomposition. The NO concentrations were relatively high in the 1st minute and consumed NO3 very 346 quickly, but due to continuous NO₃ sources, the net NO₃ production rates ($P(NO_3)_{net}$) were positive (as 347 shown in Fig. S19b4), which caused the NO_3 concentration to continue to increase (as shown in Fig. S18d). The main difference in NO₃ production in the reference chamber compared to that in the reaction 348 349 chamber was the much higher N_2O_5 decomposition, which was mainly due to the high NO_2 350 concentrations in the reference chamber. On the other hand, although the NO+NO3 reaction was also one 351 of the dominant NO₃ destruction pathways, NO₃ consumed by the NO+NO₃ reaction was significantly 352 smaller than NO₃ produced by the NO₂+O₃ reaction. The integrated production and destruction rates of 353 ROx are shown in Fig. S20.

Figure S19: Production and destruction pathways of OH(a1, b1), HO₂(a2, b2), RO₂(a3, b3), and NO₃(a4, b4)

Figure S20: Production and destruction pathways of RO_x during the 3rd-stage 4-min model simulation in the
 reaction and reference chambers (PAN: Peroxyacetyl Nitrate; PNs: formations of all peroxynitrate (including
 CH₃O₂NO₂ and PAN; X: PAN and the net loss of OH+NO to form HONO (usually small)).

Figure S21: The P(ROx) pathways related to NO₃+VOCs reactions during the 3rd-stage 4-minute model
 simulation in the reaction and reference chambers in method I (a)-(b) and method II (c)-(d).

369	Figures S22a–d show the modeled $P(O_3)_{net}$ and the source and sink of various species during the
370	3^{rd} -stage 4-min simulation in method II. Figure S22a shows the steady state of $P(O_3)_{net}$ and the various
371	species in the ambient atmosphere achieved in the last 1 s of the 2 nd -stage simulation; Figs. S22b-c show
372	the modeled $P(O_3)_{net}$ and the O_3 chemical budgets in the reaction and reference chambers during the
373	model simulation period; Figure S22d summarized the modeled $P(O_3)_{net}$ in the ambient atmosphere, and
374	that in the reaction and reference chambers, in order to compare the modeled results with our
375	measurement results, we calculated the integral mean of the modeled $P(O_3)_{net}$ in the reaction and
376	reference chambers and appended the related measured $P(O_3)_{net}$ value during this 4-min simulation time
377	onto Fig. S22d. Further, the reaction weights of different production and destruction reactions process of
378	O ₃ are shown in Figs. S22e–h.

381 Figure S22: (a)-(c) Modeled P(O₃)_{net} and O₃ chemical budgets in (a) the ambient air when injected into the 382 reaction and reference chambers and (b-c) the reaction and reference chambers during the 4-min model 383 simulation; (d) $P(O_3)_{net}$, where $P(O_3)_{net}$ modeled ambient represent the modeled $P(O_3)_{net}$ in ambient air at 384 the time before (blue marker) and after (orange marker) the sampled ambient air was injected into the dual-385 channel reaction chamber. $P(O_3)_{net}$ modeled reaction chamber and $P(O_3)_{net}$ modeled reference chamber 386 represent the P(O₃)_{net} change trends during the 4-min photochemical reactions in the reaction and reference 387 respectively. *P*(O₃)_{net}_modeled_chamber P(O₃)_{net_}modeled_reaction chamberchambers, = 388 $P(O_3)_{net}$ modeled reference chamber, and $P(O_3)_{net}$ modeled integral mean represents the integral mean of 389 the $P(O_3)_{net}$ modeled chamber. Moreover, $P(O_3)_{net}$ measured NPOPR is the $P(O_3)_{net}$ measured by NPOPR 390 detection system. (e)-(h) Reaction weights of each production and destruction reaction process of O₃ in the 391 reaction and reference chambers in method II.

393 Figure S23: $P(O_3)_{net}$ changing in the reaction and reference chambers in method I with ± 5 % of measured

394 NO₂.

395

Figure S24: P(O₃)_{net} changing in the reaction and reference chambers in method I with ± 5 % of measured J
 values.

398 From Fig. S22, the $P(O_3)$ and $D(O_3)$ were almost the same within the 4-min reaction in the reaction 399 chamber (all species reached a steady state condition), while the $P(O_3)$ and $D(O_3)$ in the reference 400 chamber decreased significantly within the 1st minute, and kept stable in the following minutes. In the 401 reaction chamber, the HO₂+NO reaction contributed most to $P(O_3)$, accounting for 62.5 % of the total $P(O_3)$, with the integral mean value of 17.5 ppbv h⁻¹ in the reaction chamber. The second important 402 403 pathway of $P(O_3)$ was RO_2 +NO (occupied 37.5 % of the total $P(O_3)$). The reaction of RO_2 +NO contained 404 more than 1200 types of RO₂ radicals, and the pathway of CH₃O₂+NO contributed 7.5 % of the total 405 $P(O_3)$. The most important contributor of $D(O_3)$ was OH+NO₂ (49.1 %), followed by RO₂+NO₂ (33.2 %), 406 O₃ photolysis (12.9 %), O₃+OH (2.3 %), O₃+HO₂ (1.6 %), C₅H₈+O₃ (0.4 %), C₃H₆+O₃ (0.3 %), and 407 $C_2H_4+O_3$ (0.2 %). In the reference chamber, the integral mean value of $P(O_3)$ was 3.7 ppbv h⁻¹, the 408 HO₂+NO contributed most to $P(O_3)$ (accounting for 58.2 % of the total $P(O_3)$), followed by RO₂+NO 409 (occupied 41.8 % of the total $P(O_3)$), in which the CH₃O₂+NO contributed 8.0 % of the total $P(O_3)$. The 410 most important contributor of $D(O_3)$ was OH+NO₂ (46.9 %), followed by RO₂+NO₂ (44.1 %), O₃+HO₂ 411 (3.2 %), C₅H₈+O₃ (1.9 %), O₃+OH (1.9 %), C₃H₆+O₃ (1.3 %), C₂H₄+O₃ (0.7 %), and O₃ photolysis 412 (0.0 %). For all $P(O_3)$ reactions, the weight of RO₂+NO reaction in the reference chamber was 4.3 % 413 higher than that in the reaction chamber, however, for all $D(O_3)$ reactions, the weight of RO₂+NO₂ 414 reaction in the reference chamber was 10.9 % higher than that in the reaction chamber, which will 415 somehow mitigate the high $P(O_3)$ caused by RO_2 +NO in the reference chamber. Figure S22d shows that the $P(O_3)_{net}$ (26.0 ppbv h⁻¹) measured by the NPOPR detection system was 9.3 ppbv h⁻¹ higher than the 416 modeled value (16.7 ppbv h⁻¹). This difference was much larger than 7.5 ppbv h⁻¹ obtained from method 417

- 418 I, this may be due to the transmittance of $J(NO_2)$ in the reference chamber in method II (~ 30 %) was
- 419 much higher than that in method I (~ 9 %), NO₂ photolysis products NO, it involved in the main O₃
- 420 production reactions HO₂+NO and RO₂+NO, so the modeled $P(O_3)_{net}$ in the reference chamber was
- 421 slightly overestimated in method II, thus leading to an underestimation of total $P(O_3)_{net}$.

423 References

- Baier, B. C., Brune, W. H., Lefer, B. L., Miller, D. O., and Martins, D. K.: Direct ozone production rate
 measurements and their use in assessing ozone source and receptor regions for Houston in 2013, Atmos.
- 426 Environ., 114, 83-91, http://dx.doi.org/10.1016/j.atmosenv.2015.05.033, 2015.
- 427 Calvert, J.G., Atkinson, R., Becker, K.H., Kamens, R.M., Seinfeld, J.H., Wallington, T.H., Yarwood, G.:
- 428 The mechanisms of atmospheric oxidation of the aromatic hydrocarbons, Oxford University Press,
- 429 2002.
- Cazorla, M., and Brune, W. H.: Measurement of ozone production sensor, Atmos. Meas. Tech., 3, 545555, https://doi.org/10.5194/amt-3-545-2010, 2010.
- 432 Chen, S., Ren, X., Mao, J., Chen, Z., Brune, W. H., Lefer, B., Rappenglück, B., Flynn, J., Olson, J., and
- 433 Crawford, J. H.: A comparison of chemical mechanisms based on TRAMP-2006 field data, Atmos.
- 434 Environ., 44, 4116-4125, https://doi.org/10.1016/j.atmosenv.2009.05.027, 2010.
- 435 Chen, S., and Brune, W. H.: Global sensitivity analysis of ozone production and O₃-NO_X-VOC limitation
- 436 based on field data, Atmos. Environ., 55, 288-296, https://doi.org/10.1016/j.atmosenv.2012.03.061,
 437 2012.
- 438 Deshpande, R. D., Medha, D., Virendra, P., Kumar, H., & Gupta, S. K. : Water vapor source identification
- 439 for daily rain events at Ahmedabad in semi-arid western India: Wind trajectory analyses.
- 440 Meteorological Applications, 22, 754–762. https://doi.org/10.1002/met.1515, 2016.
- 441 Emmerson. K. M., Carslaw. N. C., Carslaw. D. C., Lee. J. D., McFiggans. G., Bloss. W. J., Gravestock.
- 442 T., Heard. D. E., Hopkins. J., Ingham. T., Pilling. M. J., Smith. S. C., Jacob. M., and Monks. P. S.: Free
- radical modelling studies during the UK TORCH Campaign in Summer 2003, Atmos. Chem. Phys., 7,
- 444 167–181, https://doi.org/10.5194/acp-7-167-2007, 2007.
- 445 Hao, C., Song, L., and Zhao, W.: HYSPLIT-based demarcation of regions affected by water vapors from
- the South China Sea and the Bay of Bengal, European Journal of Remote Sensing, 54, 348-355,
- 447 https://doi.org/10.1080/22797254.2020.1795730, 2020.
- 448 Kanaya, Y., Tanimoto, H., Yokouchi, Y., Fumikazu Taketani, F. T., Komazaki, Y., Irie, H., Takashima, H.,
- 449 Pan, X., Nozoe, S., and Inomata, S.: Diagnosis of photochemical ozone production rates and limiting
- 450 factors in continental outflow air masses reaching Fukue Island, Japan: ozone-control implications,
- 451 Aerosol. Air. Qual. Res., 16, 430-441, https://doi.org/10.4209/aaqr.2015.04.0220, 2016.

- 452 Lantz, K.O., Shetter, R.E., Cantrell, C.A., Flocke, S.J., Calvert, J.G., Madronich, S.: Theoretical,
- 453 actinometric, and radiometric determinations of the photolysis rate coefficient of NO2 during the
- 454 Mauna Loa Observatory Photochemistry Experiment 2, J. Geophys. Res.-Atmos., 101, 14613-14630,

455 https://doi.org/10.1029/96JD00215,1996.

- Madronich, S. and Flocke, S. (ed. by P. Boule): The role of solar radiation in atmospheric chemistry, 2,
 Environmental photochemistry, 1-26, 1999.
- 458 Mazzuca, G. M., Ren, X., Loughner, C. P., Estes, M., Crawford, J. H., Pickering, K. E., Weinheimer, A.
- 459 J., and Dickerson, R. R.: Ozone production and its sensitivity to NOx and VOCs: results from the
- 460 DISCOVER-AQ field experiment, Houston 2013, Atmos. Chem. Phys., 16, 14463-14474,
 461 https://doi.org/10.5194/acp-16-14463-2016, 2016.
- 462 Ren, X., van Duin, D., Cazorla, M., Chen, S., Mao, J., Zhang, L., Brune, W. H., Flynn, J. H., Grossberg,
- 463 N., Lefer, B. L., Rappenglück, B., Wong, K. W., Tsai, C., Stutz, J., Dibb, J. E., Thomas Jobson, B.,
- 464 Luke, W. T., and Kelley, P.: Atmospheric oxidation chemistry and ozone production: Results from
- 465 SHARP 2009 in Houston, Texas, J. Geophys. Res.-Atmos., 118, 5770-5780,
 466 https://doi.org/10.1002/jgrd.50342, 2013.
- 467 Sadanaga, Y., Kawasaki, S., Tanaka, Y., Kajii, Y., and Bandow, H.: New system for measuring the
- 468 photochemical ozone production rate in the atmosphere, Environ. Sci. Technol., 51, 2871-2878,
- 469 https://doi.org/10.1021/acs.est.6b04639, 2017.
- 470 Sklaveniti, S., Locoge, N., Stevens, P. S., Wood, E., Kundu, S., and Dusanter, S.: Development of an
- 471 instrument for direct ozone production rate measurements: measurement reliability and current
- 472 limitations, Atmos. Meas. Tech., 11, 741-761, https://doi.org/10.5194/amt-11-741-2018, 2018.