

Supplement of

Radiation fog properties in two consecutive events under polluted and clean conditions in the Yangtze River Delta, China: a simulation study

Naifu Shao et al.

Correspondence to: Chunsong Lu (luchunsong110@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

The root-mean-square error (RMSE), mean bias (MB), the normalized mean bias (NMB), normalized mean error (NME), mean fractional bias (MFB), and mean fractional error (MFE) are calculated as follows (Eq. S1-S6):

RMSE =
$$\sqrt{\sum_{i=1}^{n} \frac{(M_i - O_i)^2}{n}}$$
 (S1)

$$MB = \frac{1}{n} \sum_{i=1}^{n} (M_i - O_i)$$
(S2)

NMB =
$$\frac{\sum_{i=1}^{n} (M_i - O_i)}{\sum_{i=1}^{n} O_i}$$
 (S3)

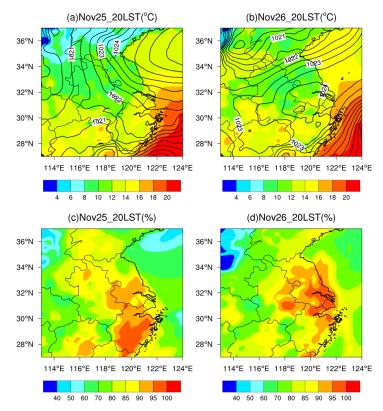
NME =
$$\frac{\sum_{i=1}^{n} |M_i - O_i|}{\sum_{i=1}^{n} O_i}$$
 (S4)

MFB =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{(M_i - O_i)}{(O_i + M_i/2)}$$
 (S5)

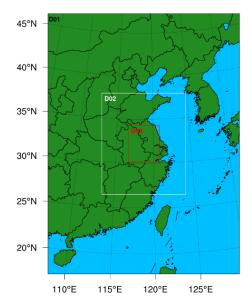
MFE =
$$\frac{1}{n} \sum_{i=1}^{n} \frac{|M_i - O_i|}{(O_i + M_i/2)}$$
 (S6)

where M and O represent the results from simulation and observation; n is the total number of observation stations.

The following equations S7-S10 are the calculations about contributions to turbulent kinetic energy (TKE) including wind shear (TKE_{shear}), buoyancy (TKE_{buoy}), dissipation (TKE_{diss}), and vertical mixing (TKE_{mixing}).


$$TKE_{\text{shear}} = -\overline{u'w'}\frac{\partial u}{\partial z} - \overline{v'w'}\frac{\partial v}{\partial z}$$
(S7)

$$TKE_{\text{buoy}} = \frac{g}{\theta} \overline{\theta'_{v} w'}$$
(S8)


$$TKE_{diss} = \frac{q^3}{B_1 L}$$
(S9)

$$TKE_{\text{mixing}} = -\frac{1}{2}\frac{\partial}{\partial z}\overline{q'w'}$$
(S10)

where $\overline{u'w'}$ and $\overline{v'w'}$ are the Reynolds stress of the turbulent zonal pulsation u' and meridional pulsation v' in the vertical direction respectively, u and v are the zonal and meridional components of the horizontal wind, g is the acceleration of gravity, θ is potential temperature, $\overline{\theta'_vw'}$ is virtual potential temperature turbulent flux, φ is the dynamic physical quantity (e.g. u and v) or thermal quantity (e.g. θ), $\overline{\varphi'w'}$ is the turbulent flux of dynamic or thermal quantity, q is related with TKE and its calculation is $q = \sqrt{2TKE}$, B₁ is closing constant, L is the master length scale, z is the height above ground.

Figure S1. Surface weather map at 20:00 local standard time (LST = Universal Time Coordinated + 8 h) on 25 and 26 November 2018. (a-b) the shaded color is 2 m temperature (°C), the contour line is surface pressure (hPa), (c-d) the 2 m relative humidity (%). The time "Nov25_20LST" means 20:00 LST on 25 November 2018. The other time expressions follow the same notation.

Figure S2. The model domain configuration with 3 nested domains and D01-D03 stand for domain 01-03, respectively.

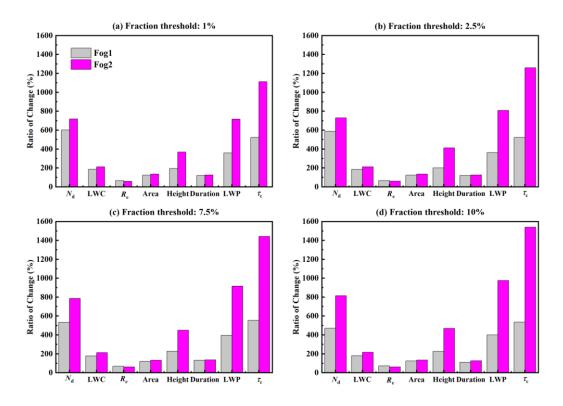
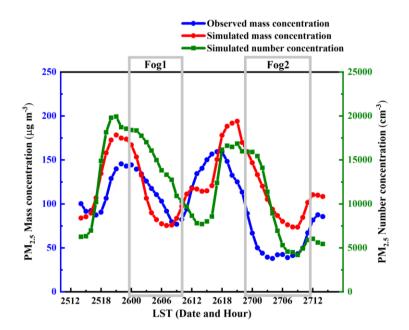
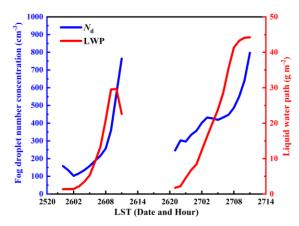




Figure S3. Aerosol effect on relative changes in macro- and microphysical properties during the first fog (Fog1) and the second fog (Fog2). Figure S3 a–d are the results with fog fraction area thresholds 1%, 2.5%, 7.5%, and 10% respectively. N_d , LWC, R_e , Area, Height, Duration, LWP, and τ_c indicate fog number droplet concentration, liquid water content, effective radius, fog area fraction, fog-top height, liquid water path, and fog optical depth, respectively. The ratio of changes is calculated as Polluted/Clean.

Figure S4. The timeseries of $PM_{2.5}$ mass concentration and aerosol number concentration in Nanjing (the blue line: observed $PM_{2.5}$ mass concentration, the red line: simulated $PM_{2.5}$ mass concentration and the green line: simulated $PM_{2.5}$ number concentration). Fog1 and Fog2 in the light grey box are the two fog events. Time '2512' indicates 12:00 local standard time (LST) (LST = Universal Time Coordinated + 8 h) on 25 November 2018. The other time expressions follow the same notation.

Figure S5. The timeseries of average liquid water path (LWP) in domain 03 under polluted and clean conditions (the red line: polluted conditions, the blue line: clean conditions). Time '2520' indicates 20:00 local standard time (LST) (LST = Universal Time Coordinated + 8 h) on 25 November 2018. The other time expressions follow the same notation.