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Abstract. Given the increasing complexity of the chemical composition of PM2.5, identifying and quantita-
tively assessing the contributions of pollution sources has played an important role in formulating policies to
control particle pollution. This study provides a comprehensive assessment between PM2.5 chemical character-
istics, sources, and health risks based on sampling data conducted over 1 year (March 2018 to February 2019) in
Nanjing. Results show that PM2.5 exhibits a distinct variation across different seasons, which is primarily driven
by emissions, meteorological conditions, and the chemical conversion of gaseous pollutants. First, the chemical
mass reconstruction shows that secondary inorganic aerosols (62.5 %) and carbonaceous aerosols (21.3 %) con-
tributed most to the PM2.5 mass. The increasing oxidation rates of SO2 and NO2 from summer to winter indicate
that the secondary transformation of gaseous pollutants is strongly positively correlated with relative humidity.
Second, the positive matrix factorization (PMF) method shows that identified PM2.5 sources include secondary
inorganic aerosol source (SIS, 42.5 %), coal combustion (CC, 22.4 %), industry source (IS, 17.3 %), vehicle
emission (VE, 10.7 %), fugitive dust (FD, 5.8 %), and other sources (1.3 %). The Hybrid Single-Particle La-
grangian Integrated Trajectory (HYSPLIT) model and the concentration-weighted trajectory (CWT) analysis are
used to further explore different spatial distributions and regional transport of sources. The concentrations (10–
11 µg m−3) of SIS and CC distribute in Nanjing and central China in winter. The concentrations (8–10 µg m−3)
of IS and VE are potentially located north of Jiangsu, Anhui, and Jiangxi. Finally, the health risk assessment
indicates that the carcinogenic and non-carcinogenic risks of toxic elements (Cr, As, Ni, Mn, V, and Pb) mainly
come from IS, VE, and CC, which are within the tolerance or acceptable level. Although the main source of
pollution in Nanjing is SIS at present, we should pay more attention to the health burden of vehicle emissions,
coal combustion, and industrial processes.
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1 Introduction

PM2.5 is particulate matter with an aerodynamic equivalent
diameter less than or equal to 2.5 µm, and it is one of the
most important air pollutants, which can affect air quality
(Sharma et al., 2020), atmospheric visibility (Tseng et al.,
2019), and ecosystems (Li et al., 2021). PM2.5 can directly
enter the human body through the respiratory system, lead-
ing to increased health risks (Kumar and Toshniwal, 2022;
Sulaymon et al., 2021). PM2.5 concentrations in the United
States and Europe have begun to decrease since the 1980s,
and those in Japan gradually decreased after 2012 (Zhang
et al., 2020). In China, the annual average concentration of
PM2.5 has decreased by 50 % with the implementation of the
Air Pollution Prevention and Control Action Plan (APPCAP)
in 2013. However, annual PM2.5 concentrations in most cities
are greater than 10 µg m−3, the air quality guideline of the
World Health Organization (Song et al., 2017; Zeng et al.,
2019; Cheng et al., 2021), and the number of deaths caused
by PM2.5 exceeds 1 million per year (Zhu et al., 2020). It
indicates that a comprehensive assessment between PM2.5
chemical characteristics, sources, and health risks is signif-
icant for pollution control measures in the key regions of
China.

Understanding the chemical composition of PM2.5 is im-
portant for formulating control strategies. Sulfate, nitrate,
and ammonium (SNA) are the major secondary inorganic
aerosols, whose chemical conversion occurs in homogeneous
and heterogeneous reactions (Fan et al., 2020; Chow et al.,
2022). Variations in the form of SO2−

4 and NH3 lead to vari-
ations in the acid–base balance of aerosols (Roper et al.,
2019). Organic carbon (OC) comprises thousands of organic
compounds. Elemental carbon (EC) is stable and mainly de-
rived from primary sources of combustion products (Wu et
al., 2020; Zhang et al., 2017). Both NO−3 /SO2−

4 and OC/EC
ratios can be reasonably used to evaluate the contribution of
mobile and stationary sources to PM2.5 in the atmosphere
(Zhan et al., 2021). To identify the sources of PM2.5, recep-
tor models have been developed, which include positive ma-
trix factorization (PMF), chemical mass balance (CMB), and
principal component analysis (PCA) (Zong et al., 2016; Lv
et al., 2020). Recently, the combination of the PMF model
and trajectory modeling has proven to be powerful to iden-
tify source regions and quantify chemical compositions for a
receptor site (Zheng et al., 2019). Air exposure models have
been widely used to compare the health outcomes of people
exposed to different levels of air pollution (Thurston et al.,
2016; Conibear et al., 2018). Long-term exposure to PM2.5
is particularly significant for cardiovascular disease mortal-
ity (Hayes et al., 2019). Trace metals (Cr, Ni, Mn, V, and Pb)
are a minor component of PM2.5 in qualitative terms, but the
health risk of toxic elements through inhalation of PM2.5 ex-
ceeds acceptable levels (Jiang et al., 2018; Jeong et al., 2019;
Xie et al., 2020). Health risk assessments have been widely
used to assess further the non-carcinogenic and carcinogenic

health risks of toxic elements in PM2.5 (Behrooz et al., 2021;
Fang et al., 2021; Li et al., 2022).

Chemical characteristics of PM2.5 have been widely in-
vestigated in the Beijing–Tianjin–Hebei (BTH) area, the
Yangtze River Delta (YRD), and the Pearl River Delta (PRD)
during the last decade (Huang et al., 2017; Liu et al., 2017;
T. T. Li et al., 2020). In the megacity of China, the occur-
rence of haze may be exacerbated by interactions between
aerosols and meteorological conditions and regional trans-
port (Zeng et al., 2019; Fan et al., 2020; Wang et al., 2023).
The YRD region is China’s scientific research base and com-
prehensive transportation hub. The annual PM2.5 concentra-
tion in the YRD has been reduced by 45.6 % from 2016 to
2018. However, as a megacity in the YRD, the PM2.5 in Nan-
jing still exceeds the National Ambient Air Quality Standard
(35 µg m−3 as an annual average) by more than 38 % (Nie
et al., 2018). Source apportionment studies mainly focus on
the relative importance of local emissions and regional trans-
portation on PM2.5 at a specific site using the PMF model and
the backward trajectory analysis (Zheng et al., 2019; Yan et
al., 2021; Lv et al., 2022). Some studies involved the health
risks of toxic elements in PM2.5 (Khan et al., 2016; Fang
et al., 2021), and only a few studies discussed the classifi-
cation of toxic elements according to PMF results (Wang et
al., 2019; S. B. Wang et al., 2020). However, there were two
shortcomings in previous studies. (1) Given the uneven geo-
graphical distribution of observation sites and difficulties in
data collection, most studies were based on short-term data
comparisons and lacked systematic comparisons of the dis-
tinctive seasonality, regional transport, and meteorological
effects of various elements and sources. (2) A comprehen-
sive assessment of the health risks of toxic elements in each
source of PM2.5 was still scarce, which limited the imple-
mentation of long-term pollution control measures in megac-
ities.

In this work, we provide high-quality composition data for
PM2.5 in the typical YRD city, including chemical character-
istics and diurnal variations. Moreover, the measured PM2.5
in its entirety is successfully apportioned to various con-
tributing sources by PMF and concentration-weighted tra-
jectory (CWT) methods. Finally, potential risks associated
with exposure to airborne toxic elements are identified based
on the health risk assessment. The results can systemati-
cally assess the relationship between chemical characteris-
tics, sources, and health risks of PM2.5, as well as serve to
guide PM2.5 control measures for other megacities.

2 Data and methodology

2.1 Chemical component sampling, air quality, and
meteorological data

Hourly concentrations of particulate matter (PM) compo-
nents from December 2018 to February 2019 in Nanjing
were used in this study. PM2.5 samples were collected on
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the rooftop of the School of Atmospheric Sciences, Xianlin
Campus, Nanjing University (32.12◦ N, 118.96◦ E). The ele-
mental carbon (EC), organic carbon (OC), 30 trace elements,
and 8 soluble components in aerosols were quantified in each
PM2.5 sample.

EC and OC samples were analyzed by the online carbon
fraction monitor (EA-32, EveriseTech Co., Beijing). Tak-
ing advantage of the fact that EC was more difficult to be
volatilized than OC, OC and EC were separated by step heat-
ing, catalyzed sequentially, and then determined by the non-
dispersive infrared method.

A total of 30 trace elements included Si, Al, As, Ca, K,
Co, Mo, Ag, Sc, Tl, Pd, Br, Te, Ga, Cs, Pb, Se, Hg, Cr,
Cd, Zn, Cu, Ni, Fe, Mn, Ti, Sb, Sn, and V. The components
of trace elements were collected by the atmospheric heavy
metal monitor (AMS-100, FPI Inc., Hangzhou). We used a
particle cutting head to collect particles with an aerodynamic
equivalent diameter of less than 100, 10, and 2.5 µm in the
ambient air; used organic microporous filter membranes to
enrich the collected particles; used the principle of β-ray ab-
sorption to detect the concentration of particles enriched on
the filter membranes; and used the principle of X-ray fluo-
rescence to detect the concentration of more than 30 types of
trace elements in the particles (S. B. Wang et al., 2020).

Eight soluble components included Na+, K+, Mg2+,
Ca2+, Cl−, NO−3 , SO2−

4 , and NH+4 . The soluble-component
sampling instrument was the in situ gas and aerosol compo-
sition monitor (IGAC, Greatest Idea Strategy Co., Taiwan).
It consisted of the wet concentric circular tube, the gas gel
processor, and the ion chromatograph. The sampling inlet
was about 20 m above the ground, and the flow rate was
16.67 L min−1. The collected liquid samples were filtered by
defoaming and then injected into the ion chromatography an-
alyzers to analyze the ion components from the gases and the
aerosols. The detection limits were below 0.12 µg m−3, and
the collection efficiency was higher than 90 % (Zhan et al.,
2021).

Air pollutants, including PM2.5, PM10, O3, NO2, SO2, and
CO, were monitored by the National Environmental Moni-
toring Center (NEMC) of China. The nationwide observa-
tion network began operating in 74 major cities in 2013,
and it included 1597 nonrural sites covering 454 cities by
2017 (Gao et al., 2021). The monitoring Xianlin Station
(32.10◦ N, 118.93◦ E) collected air pollutant data and auto-
matically measured hourly air pollutants. These data were
issued hourly on the national urban air quality real-time
publishing platform (https://air.cnemc.cn:18007/, last access:
7 April 2023). Meteorological parameters included air pres-
sure, air temperature, relative humidity, wind speed, and
boundary layer height. We collected hourly data from the
National Climatic Data Center (NCDC) of the University
of Wyoming website (http://weather.uwyo.edu/surface/, last
access: 7 April 2023). We extracted boundary layer height
data from the national benchmark at Nanjing station 58238
(32.00◦ N, 118.48◦ E) and were also acquired from this web-

site. The quality assurance and quality control (QA/QC) pro-
cedures were used at each site according to the method of Xie
et al. (2016) and Gao et al. (2021). PM2.5 component data
were collected hourly, and the study was based on high-time-
resolution data. We measured 10 % of all samples as parallel
sampling, and the pass rate was over 95 %. We defined the
missing sampling of atmospheric pollutant data as −999 to
facilitate PMF processing. The chemical mass reconstruction
method was used to correct potential measurement errors,
which is described in detail in Sect. 2.2. The QA/QC proce-
dures have passed the artificial random inspection of extreme
value and time consistency.

2.2 Mass and chemical composition determination for
PM2.5

Due to the limitation in sampling location and equipment, the
sum of measured species was often lower than the gravimet-
ric mass. Chemical mass reconstruction (CMR) attempted
to achieve closure between the gravitational mass and the
sum of components and correct potential measurement er-
rors. In this study, the reconstructed result and the gravimet-
ric result exhibited a significant correlation, with a mean R2

of 0.93, indicating that the chemical reconstruction method
had strong reliability. Following the work of Xu et al. (2021),
eight categories of chemical components in chemically re-
constructed PM2.5 can be expressed as follows:

PM2.5 = OM+EC+MD+TM+SO2−
4 +NO−3 +NH+4 +Cl−, (1)

where OM refers to the organic matter. The OC to OM
conversion coefficient at urban sites is 1.6 (Brokamp et al.,
2017). The calculation of mineral dust (MD) is based on
crustal element oxides (Yan et al., 2020):

MD= 2.14×Si+ 1.67×Ti+ 1.89×Al+ 1.40×Ca

+ 1.58×Mn+ 1.43×Fe+ 1.21×K+ 1.67×Mg, (2)

where Si is estimated by multiplying Al in crustal material
by a converting factor (3.14) (Zheng et al., 2019). Trace met-
als (TMs) represent the sum of 30 different types of heavy
metals:

TM= As+Co+Mo+Ag+Sc+Tl+Pd+Br+Te

+Ga+Cs+Pb+Se+Hg+Cr+Cd+Zn+Cu
+Ni+Sb+Sn+V+Ba. (3)

2.3 Identification of source by the positive matrix
factorization (PMF) model

The positive matrix factorization (PMF) was developed by
the Environmental Protection Agency (EPA) and has been
widely adopted to classify PM2.5 into different factors (Zong
et al., 2016). The US EPA PMF version 5.0 was referred to
in this study. The basic principle of the PMF model was
to calculate the weight error of each chemical component
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in the particulate matter and then determine its main pollu-
tion source and contribution rate by the least square method
(Paatero and Tapper, 1994). The equation of the PMF model
can be expressed as follow:

Xij =

p∑
k=1

gikfkj + eij , (4)

where Xij is the concentration of the ij th sample, gik repre-
sents the contribution of the ikth sample, fkj represents the
mass fraction of the kj th, and eij is the residual between the
measured mass concentration of the ij th sample and its an-
alytical value. The purpose of the PMF model is to find the
minimumQ value with the concentration file and uncertainty
file (uij ) introduced into the model. The objective functionQ
is defined as follows:

Qij =

n∑
i=1

m∑
j=1


Xij −

p∑
k=1

gikfkj

uij


2

, (5)

where Q is the sum of all sample residuals and their uncer-
tainties u. In this study, the fitting species included 41 types
of chemical species of PM2.5 that were selected and validated
to ensure that the value of the objective function Q was min-
imized.

Unc=
5
6
×MDL, (6)

Unc=
√

(error and fraction× concentration)2+ (0.5×MDL)2, (7)

where Unc is the uncertainty. MDL is the method detection
limit. If the concentration is less than or equal to the MDL
provided, Unc is calculated using a fixed fraction of the MDL
(Taylor et al., 2020). If the concentration is greater than the
MDL, the calculation is based on the concentration fraction
and MDL.

First, we excluded more than 50 % of the dataset for
species below the method detection limit (MDL) and retained
23 species that were significantly correlated with PM2.5. Sec-
ond, we calculated the uncertainty (Unc) for each species
based on the concentration fraction and MDL (Taylor et al.,
2020). Third, different numbers of factors were tested with
random seeds in 20 iterations of each run. When the num-
ber of factors was set to six, the fitting degree of the model
calculation results was the highest, with a correlation coeffi-
cient of 0.93, and the species almost showed a normal curve.
Finally, the bootstrap (BS), displacement (DISP), and boot-
strapping with displacement (BS-DISP) diagnostic analyses
were also used to evaluate the rationality of the apportioned
factor profiles and contributions. BS is used to detect and
estimate the disproportionate effects of a small set of obser-
vations on the solution and also, to a lesser extent, the effects
of rotational ambiguity. The value of the f peak strength was

ensured to be 0.5 to eliminate the rotation ambiguity. The
mapping for each factor in this study was more than 80 %
from the BS run, indicating the six-factor solution was ap-
propriate.

2.4 Source apportionment by backward trajectory
calculation and CWT analysis

The Hybrid Single-Particle Lagrangian Integrated Trajectory
(HYSPLIT) model was developed by the National Oceanic
and Atmospheric Administration (NOAA) and the Australian
Bureau of Meteorology to simulate and analyze the move-
ment, deposition, and diffusion of airflow. The reanalysis
data with a spatial resolution of 1◦ and a temporal resolution
of 6 h (00:00, 06:00, 12:00, and 18:00 UTC) were obtained
from the Global Data Assimilation System (GDAS) (https:
//rda.ucar.edu/datasets/, last access: 7 April 2023). To locate
the potential source areas for the corresponding components,
we used the HYSPLIT model to analyze the backward trajec-
tory of airflow from March 2018 to February 2019. The 48 h
backward trajectories terminated at a height of 100 m above
ground level were calculated at the starting point (32.07◦ N,
118.78◦ E). Due to the high uncertainty of a single backward
trajectory, we drew multiple trajectories and performed clus-
ter analysis. The cluster analysis was a multivariate statistical
technique using the angle distance algorithm, which could
quantify the relationship among the pollution concentrations
in each source area (Shu et al., 2017).

The concentration-weighted trajectory (CWT) analysis
was further used to determine the relative contribution of
different areas. The CWT analysis was conducted by the
TrajStat software, which was a GIS (geographic informa-
tion system) application that enabled the user to visualize
and analyze the spatial and meteorological data with mul-
tiple data formats (Feng et al., 2021). In this study, the mete-
orological data used for the HYSPLIT model and the CWT
method remained the same. The CWT method divided the
research area into small equal grids, set a standard value for
the research object, and defined the trajectory exceeding the
standard value as the pollution trajectory. According to the
criteria of the Chinese National Ambient Air Quality Stan-
dards (NAAQS), the standard value of the PM2.5 concentra-
tions was 75 µg m−3 in this study. The spatial resolution was
0.5×0.5 (Y. K. Liu et al., 2018). The CWT method reflected
the pollution degree of different trajectories by calculating
the weight concentration of the airflow trajectory in potential
source areas:

Cij =
1

M∑
i=1
τij l

M∑
l=1

Clτij l, (8)

whereCij is the average weight concentration of grid ij ,Cl is
the pollutant concentration based on trajectory l that passes
through grid ij , and τij is the residence time of trajectory
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l in grid ij . Similarly, to reduce the uncertainty caused by
the smaller nij , the CWT value is multiplied by the weight
function as well (Wong et al., 2022):

Wij =


1.00

(
80< nij

)
0.72

(
20< nij ≤ 80

)
0.42

(
10< nij ≤ 20

)
0.05

(
nij ≤ 100

) , (9)

where nij is the number of trajectories that pass through the
ij th cell. Wij is an empirical weight function to reduce the
undue influence of small nij on the CWT values (Fan et al.,
2020). In this study, the CWT value of each identified source
derived from the PMF model was calculated.

2.5 Health risk assessment

The human health risk from heavy metals in PM2.5 may oc-
cur through exposure to ambient air (Zhang et al., 2019).
Based on the PMF analysis, we selected six toxic elements
(Cr, As, Ni, Mn, V, and Pb) for the exposure risk assessment.
Cr, Ni, and As have both carcinogenic and non-carcinogenic
effects; Mn and V mainly have non-carcinogenic effects;
and Pb mainly produces a carcinogenic effect (Jiang et al.,
2018). The non-carcinogenic and carcinogenic risks from the
toxic species of PM2.5 were evaluated by the hazard quotient
(HQ) and lifetime carcinogenic risk (LCR), respectively. The
US EPA human health risk assessment models were used to
conduct carcinogenic and non-carcinogenic risk assessments
(Khan et al., 2016):

ECinh =
GA×ET×EF×ED

AT
, (10)

HQ=
ECinh

RfCi × 1000 µgmg−1 , (11)

LCR= IUR×ECinh, (12)

where ECinh is the average daily exposure concentration
of toxic elements inhaled through respiration. GA is the
concentration of toxic elements in each source composi-
tion. ET is the exposure time, 24 h d−1; EF is the expo-
sure frequency, 365 d yr−1; ED is the exposure duration,
30 years; and AT is the average exposure time, calculated
by 30 yr× 365 d yr−1

× 24 h d−1 for non-carcinogens and
70 yr× 365 d yr−1

× 24 h d−1 for carcinogens. RfCi is the in-
halation reference concentration (mg m−3). IUR is the in-
halation unit risk ((µg m−3)−1). A HQ greater than 1 in-
dicated a non-carcinogenic risk to human health. For car-
cinogenic risk, LCR< 10−6 means no cancer risk, LCR
between 10−6 and 10−4 is acceptable or tolerable, and
LCR> 10−4 is intolerable. The exposure parameters are
shown in Table 1 (Jiang et al., 2018; Khan et al., 2016).

Table 1. Exposure parameters of toxic elements through inhalation
route in health risk assessments.

Toxic RfCi IUR
elements (µg m−3)−1 (mg m−3)

Cr 1.0× 10−4 1.2× 10−2

As 1.5× 10−5 4.3× 10−3

Ni 1.4× 10−5 2.4× 10−4

Mn 5.0× 10−5 –
V 1.0× 10−4 –
Pb – 1.2× 10−5

3 Results and discussions

3.1 Chemical components, meteorological parameters,
and diurnal variations

Table 2 shows the seasonal average of chemical compo-
nents and meteorological parameters from March 2018 to
February 2019. In this study, March to May 2018 is de-
fined as spring, June to August 2018 is defined as sum-
mer, September to November 2018 is defined as fall, and
December 2018 to February 2019 is defined as winter. The
daily average concentration of PM2.5 ranged from 6.7 to
234.0 µg m−3, with an annual average of 68.7 µg m−3. The
order of average concentrations of PM2.5 in each season
was winter (113.9 µg m−3)> spring (99.1 µg m−3)> autumn
(38.9 µg m−3)> summer (23.7 µg m−3). Seasonal variations
in PM2.5 were closely related to emission and meteoro-
logical conditions. In spring, the wind speed (WS) was
higher (3.5 m s−1) than in other seasons. Pearson correla-
tion showed that PM2.5 concentrations were significantly
(p < 0.0) correlated to WS (r =−0.36) in spring. In sum-
mer, high boundary layer height (BLH) (520.4 m) signifi-
cantly reduced PM2.5 concentrations. In autumn and win-
ter, PM2.5 showed significant correlations between temper-
ature (r =−0.53), relative humidity (r = 0.62), and BLH
(r =−0.43). Biomass burning and industrial emissions are
important sources of aerosols in the urban atmosphere and
contribute 7 %–27 % to PM2.5 mass in applicable cities (Tao
et al., 2017; Andreae, 2019). Coal consumption and popula-
tion density have a significantly positive effect on PM2.5 con-
centration (Zhou et al., 2018; Chow et al., 2022). The highest
level of PM2.5 in winter was due to coal consumption, lower
temperatures (4.9 ◦C), higher humidity (79.6 %), and lower
BLH (419.7 m) than in summer.

The seasonal variation in anthropogenic emissions also
considerably affected PM2.5 concentrations. The order
of the major components in PM2.5 was NO−3 (20 %–
31 %)>SO2−

4 (16 %–27 %)>NH+4 (11 %–19 %)>mineral
dust (8 %–14 %)>OM (6 %–1 %)>EC (2 %–4 %)> trace
metals (2 %–3 %)>Cl− (1 %–3 %). Sulfate, nitrate, and am-
monium (SNA) accounted for 60 % of the total PM2.5 and
were closely related to the secondary transformation of
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Table 2. Seasonal average concentration of components of PM2.5 (in µg m−3 and % in brackets) and meteorological parameters. T , RH,
WS, and BLH represent air temperature, relative humidity, wind speed, and boundary layer height, respectively.

Components and Spring Summer Autumn Winter
meteorological
parameters

PM2.5 99.1± 29.5 23.7± 12.2 38.9± 20.6 113.9± 43.6
SO2−

4 20.5± 5.9 (20.7) 5.2± 2.1 (21.9) 7.3± 4.8 (18.8) 31.5± 8.7 (27.7)
NO−3 16.9± 11.4 (17.1) 5.3± 1.2 (22.4) 9.8± 3.3 (25.2) 27.2± 17.5 (23.9)
NH+4 15.1± 6.1 (15.2) 3.2± 1.7 (13.5) 7.1± 2.1 (18.3) 11.5± 4.6 (10.1)
OM 11.7± 6.1 (11.8) 1.6± 0.7 (6.8) 4.1± 1.1 (10.5) 11.0± 5.8 (9.7)
EC 2.3± 0.8 (2.3) 0.8± 0.3 (3.4) 1.6± 1.2 (4.1) 3.6± 1.5 (3.2)
Mineral dust 13.2± 4.5 (13.3) 2.3± 0.8 (9.7) 2.7± 1.0 (6.9) 8.7± 2.7 (7.6)
Trace metals 2.7± 1.5 (2.7) 0.5± 0.1 (2.1) 0.5± 0.2 (1.3) 1.6± 0.9 (1.4)
Cl− 2.7± 0.9 (2.7) 1.6± 0.6 (6.8) 0.8± 0.2 (2.1) 1.7± 0.4 (1.5)
T (◦C) 18.8± 4.3 27.6± 5.4 19.4± 4.9 4.9± 2.2
RH (%) 86.5± 12.9 58.2± 6.3 73.1± 8.5 79.6± 10.4
WS (m s−1) 3.5± 0.6 2.9± 0.5 2.7± 0.5 2.1± 0.3
BLH (m) 469.7± 40.9 520.4± 58.9 443.6± 32.4 419.7± 23.5

gaseous precursors. The concentration ratio of NO−3 to SO2−
4

(NO−3 /SO2−
4 ) was used to differentiate the relative impor-

tance of nitrogen (generally related to vehicle emissions) and
sulfur (normally related to stationary sources) in the atmo-
sphere (Liu et al., 2019). Over the past few years, the mass
ratio of NO−3 /SO2−

4 was 2.13 in Ningbo, 1.89 in Hangzhou,
and 1.21 in Beijing (Huang et al., 2017; Li et al., 2018). In
this study, the average ratios of NO−3 /SO2−

4 were 1.81 in
spring, 1.20 in summer, 2.34 in autumn, and 1.59 in winter,
indicating the enhanced secondary transformation of gaseous
pollutants (e.g., SO2, NOx , volatile organic compounds –
VOCs) during heavily polluted periods (Liu et al., 2019;
Z. R. Liu et al., 2018). The oxidation rates of SO2 and NO2
need to be further investigated. Carbonaceous aerosols (OM
and EC) accounted for 12 % and 14 % of PM2.5 in spring and
winter, respectively. The large increase in the number of coal
fires used for residential heating in winter may increase the
abundance of carbon-containing emissions, including OC,
EC, and VOCs (Islam et al., 2020). Compared with 2015,
the concentrations of OM and EC decreased from 22.9 % to
12.8 % (Chen et al., 2017). This may be related to policies to
control coal combustion and motor vehicle emissions, con-
sidering similar meteorological conditions in the two periods
(Tao et al., 2017; Jeong et al., 2019).

Figure 1 shows the diurnal variation in chemical compo-
nents in PM2.5. The seasonal differences were mainly re-
flected in the variation in the timing of peak values. In spring
(Fig. 1a), the highest and lowest PM2.5 concentrations were
143.6 µg m−3 at 07:00 UTC and 94.8 µg m−3 at 14:00 UTC,
respectively. The concentration of SNA had obvious diurnal
variations. From 06:00 to 18:00 UTC, the average concen-
tration of NO−3 increased from 17.6 to 21.8 µg m−3, while
the average concentration of SO2−

4 decreased from 23.2 to

15.9 µg m−3. In summer (Fig. 1b), the highest and lowest
PM2.5 concentrations were 23.5 µg m−3 at 09:00 UTC and
14.2 µg m−3 at 14:00 UTC, respectively. The maximum con-
centration difference in SNA between day and night was
less than 10 µg m−3, indicating the study area was in a rela-
tively stable background field (Chen et al., 2018). In autumn
(Fig. 1c), the highest and lowest PM2.5 concentrations were
77.1 µg m−3 at 08:00 UTC and 47.8 µg m−3 at 16:00 UTC,
respectively. The concentration of SNA increased at night
and decreased during the day. The maximum concentration
difference was more than 20 µg m−3. In winter (Fig. 1d),
from 18:00 to 23:00 UTC, the concentration of SNA in-
creased from 74.5 to 108.7 µg m−3, with increasing rates
of 8.5 µg m−3 h−1. The height of the atmospheric boundary
layer decreased early in the winter afternoons (Chen et al.,
2018). The values of PM2.5 in winter were higher at night
due to the coal combustion and biomass burning (BB) for
residential heating (Zou et al., 2017). In summary, compared
with the spring and winter, PM2.5 presented similar and rel-
atively flat diurnal patterns in both autumn and summer. Al-
though the seasonal variations in mass concentrations and
aerosol compositions were substantially different, the con-
centrations of aerosol species showed similar diurnal varia-
tion patterns during all the sampling days, with higher values
in the nighttime and early morning, suggesting that the fac-
tors driving the diurnal variations were similar.

3.2 Variation in PM2.5 chemical compositions at
different pollution levels

Figure 2 presents the PM2.5 concentrations and components
at different pollution levels. In this study, it was defined
as the clean day (C) when the daily average PM2.5 con-
centrations were less than 35 µg m−3, the moderate pollu-
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Figure 1. Average diurnal variation in the concentrations of major chemical components of PM2.5 for each season.

Figure 2. Chemical compositions of PM2.5 and mass ratio of OC/EC at different pollution levels of the total samples per season. C, MP,
and HP represent the clean day, moderately polluted day, and heavily polluted day, respectively. “%” represents the proportion of the filter
sample quantity at each pollution level out of the total samples.

tion day (MP) when PM2.5 concentrations were more than
35 µg m−3 and less than 150 µg m−3, and the heavy pollu-
tion day (HP) when PM2.5 concentrations were more than or
equal to 150 µg m−3. As shown in Fig. 2a, the annual average
concentration of the water-soluble inorganic ions (WSIIs)
was 41.9 µg m−3, and they accounted for 61.8 % of PM2.5.
WSIIs were largely responsible for the variability in PM2.5.
The ratios of SNA in spring and winter were similar, with
ratios of 65.0 % for clean days, 75.0 % for moderate pol-
lution days, and 83.9 % for heavy pollution days. With the
degradation of air quality, the contribution of NO−3 notice-
ably increased from 27.5 % to 47.8 % in spring and from

28.9 % to 44.7 % in autumn. To understand the oxidation
rates of SO2 and NO2, the sulfur oxidation rate and nitro-
gen oxidation rate (defined as SOR=SO2−

4 /(SO2−
4 +SO2)

and NOR=NO−3 /(NO−3 +NO2)) were calculated. The crit-
ical value of both SOR and NOR in the atmosphere is 0.1
(Win et al., 2020). The order of the seasonal average NOR
was winter (0.21)> spring (0.18)> autumn (0.17)> summer
(0.15), while the order of the seasonal average SOR was win-
ter (0.51)> spring (0.43)> autumn (0.42)> summer (0.36).
PM2.5 pollution in winter is associated with high RH and
rapid production of particulate sulfate from the oxidation of
SO2 emitted by coal combustion (J. F. Wang et al., 2020).
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From summer to winter, the NOR and SOR values increased
by 40.0 % and 41.6 %, respectively. SOR and NOR showed a
strong positive correlation with relative humidity, with a cor-
relation coefficient of 0.53 and 0.61, respectively. The con-
tribution of coal combustion varied between 30 % and 57 %
of PM2.5 in winter (Zhang et al., 2017). Under the conditions
of high coal combustion emissions and high RH, the rapid
oxidation of SO2 occurred to produce sulfate. The sensitivity
of PM2.5 to surface temperature, wind speed, and boundary
layer height is negative, while the sensitivity to relative hu-
midity is positive (Chen et al., 2018; Sulaymon et al., 2021).
In summer, the correlation coefficients of PM2.5 with RH, T ,
WS, and BLH were 0.42, −0.47, −0.15, and −0.23, respec-
tively. In winter, the correlation coefficients of PM2.5 concen-
tration with RH, T , WS, and BLH were 0.74, −0.57, −0.31,
and −0.32, respectively. High RH (79.6 %), low temperature
(4.9 ◦C), low WS (2.1 m s−1), and low BLH (419.7 m) pro-
vided favorable conditions for the accumulation of PM2.5.

Coal combustion, biomass burning, and motor vehicle
emissions all led to a remarkable increase in carbonaceous
aerosols (Chow et al., 2022). As shown in Fig. 2b, carbona-
ceous species also had a significantly enhanced contribution
in the colder season compared to the warmer season. The
seasonal differences might be related to the effects of me-
teorological conditions and source emissions. Pearson cor-
relation showed that the relationships between OM and EC
and meteorological parameters (T , RH, WS, and BLH) were
not significant (Table 2). To explore the possible pollution
sources, it is feasible to study the mass ratio of OC/EC un-
der different pollution levels. OC comprises thousands of or-
ganic compounds. EC is stable and mainly derived from pri-
mary sources of combustion products (Zhang et al., 2017;
Wu et al., 2020). The OC/EC mass ratio of motor vehicle
emissions (1.1) is lower than that of coal combustion (2.7)
and biomass burning (9.0) (Xu et al., 2021). In this study,
the OC/EC ratios continuously decreased as air pollution got
worse, and the values ranged from 6.1 (C) and 4.1 (MP) to
3.9 (HP) in spring, from 6.2 (C) to 4.8 (MP) in autumn, and
from 4.3 (C) and 2.7 (MP) to 1.3 (HP) in winter. The an-
nual average ratio of OC/EC decreased by 56.1 % from clean
days to heavy pollution days. If the OC/EC values were in
the range of 2.5–5.0, vehicle exhaust emissions were consid-
ered the main source of OC and EC in aerosols, whereas if
the OC/EC values were in the range of 5.0–10.5, coal com-
bustion was considered the main source of OC and EC in
aerosols (Gao et al., 2018; Y. K. Liu et al., 2018). Distinct
differences in the evolution of the OC/EC ratio on polluted
days imply that mobile sources are likely more important.
Both the increase in motor vehicle emissions and the for-
mation of meteorological conditions conducive to pollutant
accumulation contribute to the decrease in the OC/EC ratio.

3.3 Source identification and apportionment

3.3.1 Elemental profile and source apportionment from
the PMF model

To further quantitatively determine the source apportionment
of PM2.5, the EPA PMF5.0 model was adopted. The number
of factors in the PMF model corresponded to the number of
sources of PM2.5 in this study. When the number of factors
was set to six, the fitting degree of the model calculation re-
sults was the highest. Figure 3 presents the factor profiles
and relative contributions of six factors to each species (% of
species total), including secondary inorganic aerosol source
(SIS), coal combustion (CC), industry source (IS), vehicle
emission (VE), fugitive dust (FD), and other sources (OSs).
The meaning of the percentage sign is the proportion of each
chemical component in each source of PM2.5. As shown in
Fig. 3a, the compositions of SIS were more clear than other
sources. NO−3 and SO2−

4 are mainly from the oxidation of
NOx and SO2, while NH+4 probably comes from the conver-
sion processes between ammonia and sulfuric and nitric acid
(Win et al., 2020). Factor 1 was identified as the SIS with
distinctly high loads of NH+4 (66.9 %), NO−3 (61.9 %), SO2−

4
(63.8 %), and Cl− (55.3 %). Factor 2 (Fig. 3b) was associ-
ated with a high proportion of Pb (38.2 %) and Se (45.1 %)
and a moderate proportion of As (14.3 %), SO2−

4 (20.5 %),
and Cl− (22.2 %). Pb and As are important identifying el-
ements of coal combustion and are used as tracers (Xie et
al., 2020). SO2−

4 is formed by the photochemical oxidation
of sulfur-containing precursors (SO2 and H2S) released by
coal combustion (Zong et al., 2016). Given the source profile,
Factor 2 was related to coal combustion emissions. Factor 3
(Fig. 3c) was characterized by the association of heavy metal
pollutants such as As (42.8 %), Pb (33.8 %), Cr (61.1 %), Zn
(58.9 %), Cu (59.4 %), Fe (38.3 %), and Mn (40.1 %). As,
Pb, Cr, Fe, and Mn are related to metal smelting and pro-
cessing (Fang et al., 2021). However, the percentage of OC
was only 11.3 %, while rates of Zn (58.9 %) and Cu (59.4 %)
were higher in Factor 3 (Fig. 3c). Cu, Zn, and OC are used
as tracers of a mixed source of traffic and industrial, and OC
is the major pollutant in the vehicle exhaust (S. B. Wang et
al., 2020). Compared to motor vehicle emissions, Factor 3
should be significantly influenced by industrial activities. Cu
and Zn were mainly from industrial process sources. As dis-
cussed above, Factor 3 was attributed to IS. Factor 4 (Fig. 3d)
was characterized by the association of vehicle emissions,
with the high proportions of Ni (54.7 %), V (80.5 %), OC
(55.4 %), EC (79.8 %), and NO−3 (20.3 %). VOCs and NOx
released from vehicles were the precursors of the secondary
organic compounds and nitrate in PM2.5 and were important
catalysts for increased atmospheric oxidation (Guevara et al.,
2021). OC and EC are mainly from the vehicle exhaust, and
Ni and V are usually tracers of heavy oil combustion (Wu et
al., 2020; Veld et al., 2021). Factor 4 contained a high propor-
tion of OC, EC, and NO−3 , which could be considered vehi-
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Figure 3. Factor profile in each source for PM2.5 during the whole year. The histograms are the mass concentration of each species to every
species (µg m−3), and the red dots are the relative contributions of each source to every species (%).

cle emissions, while Factor 4 contained Ni and V, which were
also influenced by shipping emissions (Gao et al., 2018; Veld
et al., 2021). As shown in Fig. 3e, Factor 5 had relatively high
proportions of Fe (31.1 %), Ti (78.2 %), K+ (55.8 %), Ca2+

(60.5 %), and Mg2+ (48.3 %). Ti, Fe, and Mg are both com-
mon crustal elements that can represent the source of mineral
dust. K+ and Ca2+ are considered to be significant tracers
of biomass burning, which have obvious seasonal variations
(Tong et al., 2020; Silva et al., 2022). Factor 5 was classified
as the fugitive dust and biomass burning, including road dust,
industrial dust, and soil dust. Factor 6 (Fig. 3f) was uniden-
tified and could be affected by coal combustion, industrial
processes, and biomass burning. In the absence of a clear
designation of the source, Factor 6 was attributed to an er-
roneous contribution from a different source.

Figures 4 and 5 show the comparisons of our PMF re-
sults with the previous findings. In the YRD region, SIS
contributed about 42.5 % to PM2.5 in Nanjing in this study,
which was higher than that reported by S. W. Li et al. (2020),
while the contribution of CC was lower. However, other
sources of PM2.5 in different cities were more complicated.
In the BTH, IS was a crucial source and contributed about
30 % in Tianjin and Shijiazhuang (Huang et al., 2017). In
contrast, IS in Nanjing contributed only 17.3% of PM2.5 pol-
lution. Recent emission control policies in the YRD have
had positive effects on reducing industrial pollution. In the
PRD, vehicle emissions, secondary nitrate, coal burning, and
industrial emissions showed obvious local emission charac-
teristics. An extra 30 % PM2.5 concentration was closely re-

lated to local emissions in the downtown and industrial ar-
eas (Huang et al., 2014; T. T. Li et al., 2020; Chow et al.,
2022). In this study, VE contributed only 10.7 % in Nan-
jing. It is worth noting that the PMF model assumes that
source profiles do not change significantly over time and that
species do not undergo chemical reactions (Paatero and Tap-
per, 1994). The human activities in seasonal variations in this
study made the actual pollution incompatible with the ideal
assumption. For example, emissions from coal combustion
increased the contribution of CC in winter significantly (Xu
et al., 2021). In addition, the sources of air masses in each
season also created uncertainties. All of these required de-
tailed discussions of regional transport conditions in each
season.

3.3.2 Source identification by backward air mass
trajectory analysis

The regional transport of air pollutants exerts a profound im-
pact on local air quality (Shu et al., 2017). Figure 6 shows the
quantified contributions of PM2.5 with 48 h backward trajec-
tories. In spring (Fig. 6a), nearly half of the air masses (clus-
ter a3) stemmed from northern Jiangxi, passed over Anhui
Province before arriving at the sampling sites, and had the
highest PM2.5 average value (127.2 µg m−3). CC from clus-
ter a3 had the highest contribution, with mass and percentage
contributions being 41.0 µg m−3 and 32.3 %, respectively.
In addition, FD contributed relatively highly in clusters a2
and a3, with proportions of 18.2 % and 10.3 %, respectively.
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Figure 4. Comparisons of source apportionment for PM2.5 among different cities.

Figure 5. Average annual contribution of the sources identified for
PM2.5 in Nanjing in 2018.

Increased contribution from fugitive dust was related to in-
dustrial and construction activities (Xu et al., 2016). Cluster
a2 originated in Liaoning, and cluster a3 was from northern
Jiangxi. There were many industrial cities located in Liaon-
ing, and the largest coal-fired thermal power plant in Jiangxi
was located in the northern city of Jiujiang (Xu et al., 2016;
Wang et al., 2019). Long-range transport of dust from these
areas would have a significant impact on the formation of se-
vere particle pollution in the YRD. In summer (Fig. 6b), the
most obvious characteristic of regional transport was signifi-
cantly influenced by the ocean. Clusters b2 and b3 were rela-
tively clean, with low concentrations of PM2.5 (28.2 µg m−3

for b2 and 32.4 µg m−3 for b3). These clusters passed over
the ocean areas and accounted for more than half of all tra-
jectories. The magnitude of total CC, IS, and VE exhibited a
descending order from clusters b1 to b3. The dilution effects
of clean ocean air masses played a vital role in particulate
pollution. In autumn (Fig. 6c), there were the highest con-
centrations of PM2.5 in cluster c1, with an average value of
84.6 µg m−3. CC (23.1 %) and IS (27.6 %) contributed rel-
atively highly in cluster c1, indicating that regional trans-
port from industrial regions might play an important role. For

SIS, the proportion of NH+4 in these air masses was signifi-
cantly higher in autumn than in other seasons (Table 2). The
increase in the proportion of NH+4 indicated that air pollu-
tion masses were heavily affected by nearby agricultural ac-
tivities. In winter (Fig. 6d), clusters d1 (108.3 µg m−3) and
d3 (122.6 µg m−3) originated from Shandong Province and
the BTH, accounting for more than three-quarters of the air
masses. These air masses, which moved at high altitudes
with a slow speed, could have carried abundant air pollu-
tants. Cluster d2 (153.9 µg m−3) was short-distance transport
and derived from Jiangsu Province. The contribution of SIS
exhibited an increasing order from clusters d1 (22.9 %) to
d3 (43.4 %) to d2 (55.5 %), corresponding to the transition
from the long-range transport of air masses to the short-range
transport of air masses.

Figure 7 shows the spatial distribution of the contribution
from each source of PM2.5 by the CWT method and high-
lights the potential geographic origins. For SIS (Fig. 7a),
the high levels (10–15 µg m−3) of this source mainly origi-
nated from local emissions in Jiangsu and regional transport
from Shandong Province. For CC (Fig. 7b), the high emis-
sions (10–11 µg m−3) were distributed in the YRD and cen-
tral China. The weighted concentration values of CC were
lower than those of the SIS. High concentrations near the
center area are associated with local sources, while those far
away from the center area are indicative of regional transport
(Shu et al., 2017). The secondary aerosol source was prob-
ably from the accumulation of precursors emitted by local
emissions. For IS and VE (Fig. 7c and d), there were no high
potential areas for these sources. The moderate weighted
concentration values of IS (8–10 µg m−3) were potentially
located in the north of Jiangsu, Anhui, and Jiangxi, which
are the most important industrial base in China. The oceanic
air masses are influenced by tropical cyclones with high tem-
perature and strong wind (Li et al., 2018; Chow et al., 2022).
Based on the backward trajectory calculation, most of the
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Figure 6. Source contributions to PM2.5 grouped by air masses associated with different 48 h backward trajectory clusters. The pie charts
show the average source contribution for corresponding clusters. The abbreviation a.g.l. signifies above ground level.

long-range transport of PM2.5 passed through the Yellow Sea
and the East Sea. High wind speed had a great effect on mit-
igating PM2.5 pollution.

3.4 Non-carcinogenic and carcinogenic health risks of
toxic metal elements in each source of PM2.5

Figure 8 shows the HQ values of non-carcinogenic risk and
the LCR values of carcinogenic risk in PM2.5 and their to-
tal health risk in each source. For non-carcinogenic risk
(Fig. 8a), the order of the average HQ values was Mn
(0.47)>Ni (0.32)>As (0.14)>Cr (0.04)>V (0.02). The
HQ values of toxic elements were all less than 1, which in-
dicated that there was no significant non-carcinogenic risk.
However, the summation of five HQ values was higher than
one, indicating that the combined exposure to the pollutant
class still had adverse effects. The carcinogenic risk (Fig. 8b)

posed by Ni (2.3×10−7) and Pb (6.8×10−8) was lower than
1×10−6 and could be acceptable. The carcinogenic risk level
of Cr (1.0× 10−7) and As (1.8× 10−5) was within the toler-
ance or acceptable level (1× 10−6–1× 10−4) (Zheng et al.,
2019). Figure 8c and d show the integrated assessment of the
source apportionment in toxic elements. IS accounted for the
largest proportion of the non-carcinogenic and carcinogenic
risk, with the HQ of 0.83 and LCR of 5.8× 10−6, respec-
tively. Although the PMF results indicated that SIS had the
highest contribution to PM2.5 (Fig. 5), the health risk results
showed that the health risks of toxic elements from IS and
CC were much higher than those from SIS. Previous studies
showed that coal combustion sources in Beijing, Shanxi, and
Jinan were responsible for higher respiratory exposure and
health risks, while the fugitive dust source in Liaoning con-
tained higher levels of Pb, As, and Co (Zeng et al., 2019).
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Figure 7. Potential source regions for individual sources of PM2.5 identified by the CWT method from March 2018 to February 2019.

Figure 8. Non-carcinogenic (a) and carcinogenic (b) risks of toxic
elements. Non-carcinogenic (c) and carcinogenic (d) risks of the
sources identified for PM2.5 in Nanjing. HQ, LCR, SIS, CC, IS,
VM, FD, and OSs represent hazard quotient, lifetime carcinogenic
risk, secondary inorganic aerosol source, coal combustion, industry
source, vehicle emission, fugitive dust, and other sources, respec-
tively.

As, Cr, and Ni in PM2.5 were within the acceptable level for
both children and adults in Nanjing, but there was a poten-
tial carcinogenic risk posed by Pb via ingestion to children
and adults (Hu et al., 2012). It was related to the differences
in PM2.5 pollution characteristics and source contributions
in different cities. The ingestion exposure may result in the
potential health risk from IS, CC, and VE. Based on the im-
plementation of energy conservation and emission reduction

policies, the main source of pollution in Nanjing is SIS at
present, and the health risk has been alleviated. However,
we should pay more attention to the health burden of vehi-
cle emissions, coal combustion, and industrial processes.

4 Conclusions

Identifying and quantitatively assessing the contributions and
health risks of pollution sources have played an important
role in formulating policies to control particle pollution.
We have derived a high-quality PM2.5 composition dataset,
based on monitoring chemical components from March 2018
to February 2019 in Nanjing. The PMF and backward trajec-
tory results were adopted to investigate the chemical charac-
teristics and regional transports of each source. The health
risk assessment was used to explore non-carcinogenic and
carcinogenic risks of toxic elements.

The results showed that PM2.5 concentrations ranged from
6.7 to 234.0 µg m−3, with an annual average of 68.7 µg m−3.
Water-soluble ions contributed the most to PM2.5. From
summer to winter, the NO−3 /SO2−

4 ratio increased from 1.2
to 1.59. The OC/EC ratio decreased by 56.1 % from clean
days to heavy pollution days. The average OC/EC ratio on
heavy pollution days was 1.3. Both the increase in motor ve-
hicle emissions and the formation of meteorological condi-
tions conducive to pollutant accumulation contribute to the
decrease in the OC/EC ratio. Based on the PMF model, the
source variations and health risks were assessed. The con-
tribution of identified sources – including SIS (42.5 %), CC
(22.4 %), IS (17.3 %), VE (10.7 %), FD (5.8 %), and other
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sources (1.3 %) – had different spatial distributions and sea-
sonal variations. The CWT analysis indicated that high emis-
sions (10–11 µg m−3) of SIS and CC were distributed in the
YRD and central China in winter. Moderate emissions (8–
9 µg m−3) of IS and VE were potentially located in the north
of Jiangsu, Anhui, and Jiangxi. The carcinogenic and non-
carcinogenic risks of toxic elements (Cr, As, Ni, Mn, V, and
Pb) mainly came from IS, VE, and CC, which were within
the tolerance or acceptable level. Based on the implementa-
tion of energy conservation and emission reduction policies,
the main source of pollution in Nanjing is SIS at present, and
the health risk has been alleviated. However, we should pay
more attention to the health burden of vehicle emissions, coal
combustion, and industrial processes.

This study provided new insight for PM2.5 research be-
tween the source apportionment and health risk. The re-
sults presented characteristics of chemical components, pin-
pointed secondary transformation processes leading to the
high PM2.5 concentrations, revealed spatial variations in
source contribution, and provided new references for megac-
ities to conduct health risk analysis on air pollution control
measures.
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