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Abstract. The unique geographical location of the Tibetan Plateau (TP) plays an important role in regulating
global climate change, but the impacts of the chemical components and atmospheric processing on the size dis-
tribution and mixing state of individual particles are rarely explored in the south-eastern margin of the TP, which
is a transport channel for pollutants from Southeast Asia to the TP during the pre-monsoon season. Thus a single-
particle aerosol mass spectrometer (SPAMS) was deployed to investigate how the local emissions of chemical
composition interact with the transporting particles and assess the mixing state of different particle types and
secondary formation in this study. The TP particles were classified into six distinct types, mainly including the
largest fraction of the potassium-rich (K-rich) type in the total particles (30.9 %), followed by the biomass burn-
ing (BB) type (18.7 %). Most particle types were mainly transported from the sampling site’s surroundings and
along the Sino-Myanmar border, but the air mass trajectories from north-eastern India and Myanmar show a
greater impact on the number fraction of the BB (31.7 %) and dust (18.2 %) types, respectively. Then, the two
episodes with high particle concentrations showed that the differences in the meteorological conditions in the
same trajectory clusters could cause significant changes in chemical components, especially the dust and aged
elemental carbon (aged EC) types, which changed by a total of 93.6 % and 72.0 %, respectively. Ammonium
and dust particles distribute at a relatively larger size (∼ 600 nm), but the size peak of other types is present
at ∼ 440 nm. Compared with the abundant sulfate (97HSO−4 ), the low nitrate (62NO−3 ) internally mixed in TP
particles is mainly due to the fact that nitrate is more volatilized during the transport process. The formation
mechanism of secondary speciation demonstrates that the formation capacity of atmospheric oxidation is pre-
sumably affected by the convective transmission and the regional transport in the TP. However, the relative
humidity (RH) could significantly promote the formation of secondary species, especially 97HSO−4 and 18NH+4 .
This study provides new insights into the particle composition and size, mixing state, and ageing mechanism in
high time resolution over the TP region.
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1 Introduction

Atmospheric aerosols have complex components and sources
and can be coated with inorganic or organic materials during
transport and atmospheric processing (Crippa et al., 2013),
and then its sizes, chemical compositions, mixing states, and
optical properties would change greatly, leading to its in-
fluence in the atmosphere being more uncertain (Jacobson,
2002; Zaveri et al., 2010; Matsui, 2016; Budisulistiorini et
al., 2017; Ma et al., 2012). Currently, the influences of the
complex chemical components on aerosol size and mixing
state show large regional differences due to the variations
in the pollution sources, atmospheric formation mechanism,
and meteorological conditions, which have been widely stud-
ied in an urban area at a low altitude (Pratt et al., 2011; Q. Liu
et al., 2020; Xu et al., 2017; Wang et al., 2022). However,
Q. Liu et al. (2020) have found that the migration or forma-
tion of low-volatility components (such as nitrate and organic
matter) could effectively be reduced due to evaporation dur-
ing the upward transportation process, which further alters
the chemical compositions and the particle sizes. The trans-
portation of the aerosols to a relatively cleaner environment
prevails over the formation of secondary chemicals at a high
altitude (D. T. Liu et al., 2020). Therefore, a comprehensive
investigation of the detailed characteristics of aerosol forma-
tion and mixing states is required to understand their envi-
ronmental effects at low and high altitudes.

As a typical high-altitude region, the Tibetan Plateau (TP)
has the highest and largest mountain area in the world, which
is the most sensitive and obvious indicator of climate change
on the entire Asian continent (Liu et al., 2017; Chen and
Bordoni, 2014; Immerzeel et al., 2010). Numerous studies
have shown that the melting and retreat of glaciers in the
TP region have been accelerating in recent decades, largely
attributed to anthropogenic emissions, such as greenhouse
gases and aerosols (Luo et al., 2020; Hua et al., 2019). At-
mospheric aerosols can also act as cloud condensation nuclei
to impact the local hydrological cycles and monsoon patterns
by changing the microphysical properties and life span of
clouds (Qian et al., 2011; Gettelman et al., 2013; Kumar et
al., 2017). The southern part of the TP is always affected
by the transport of more polluted air from South Asia along
the mountain valleys, especially during the pre-monsoon (i.e.
March–May) with the south-west-prevailing wind (Chan et
al., 2017; Zhao et al., 2017; Han et al., 2020). Most stud-
ies have focused on the optical characteristics within the TP;
however, only little research has been conducted on aerosol
components.

Present research on aerosol components over the TP
mostly focuses on exploring the influence of light-absorbing
carbon aerosols and dust particles on climate change by opti-
cal or offline sampling methods (e.g. Q. Y. Wang et al., 2019;
Liu et al., 2021). There is a lack of studies on the chem-
ical composition, mixing states, and formation mechanism
of aerosols in the south-eastern margin and even the entire

TP, especially using high-time-resolution measurements. Al-
though time-integrated sampling with filter collection fol-
lowed by laboratory analyses has been widely adopted for the
chemical characterization of aerosols (C. L. Li et al., 2022;
Shen et al., 2015; Zhang et al., 2013), the drawbacks of
the traditional approach need to be given attention, includ-
ing the low time resolution, high detection limit, and time-
and labour-intensive procedures. Therefore, more advanced
aerosol measurement equipment with high time resolution
has been developed; for example the aerosol chemical specia-
tion monitor (ACSM) and aerosol mass spectrometer (AMS)
(Ng et al., 2011; Canagaratna et al., 2007) mainly obtained
the online data of non-refractory submicron aerosol (includ-
ing the mass concentration of sulfate, nitrate, ammonium,
chloride, and organic matter and the mass spectrum of or-
ganic matter). This is beneficial for recognizing the dynamic
processes of source emissions of organic matter in the at-
mosphere (Du et al., 2015; X. Zhang et al., 2019). Mean-
while, aerosol time-of-flight mass spectrometry (ATOFMS)
(Dall’Osto et al., 2014) and single-particle aerosol mass
spectrometry (SPAMS) (Zhang et al., 2020) are popular for
characterizing individual atmospheric particles. These de-
vices can determine the chemical composition and size dis-
tribution of the particles in detail and further analyse the dy-
namic processes of chemical ageing, mixing state, and trans-
port of the particles. (Liang et al., 2022; L. Li et al., 2022a;
G. H. Zhang et al., 2019). To the best of our knowledge, the
advanced measurement device has not yet been applied for
the studies conducted in the TP, leading to a lack of in-depth
research on PM2.5 pollution in the TP, especially in the south-
eastern margin, which hinders our understanding of the dis-
tribution characteristics and formation mechanism of aerosol
components in high-altitude regions.

The south-eastern margin of the TP is an important transi-
tional zone between the high-altitude TP and the low-altitude
Yungui Plateau (Q. Y. Wang et al., 2019; Zhao et al., 2017)
and is an ideal place for investigating the impacts of pollu-
tant transport and formation in the high-altitude zone. In this
study, continuous field observations of individual particles
(SPAMS) were made in the south-eastern margin of the TP
during the pre-monsoon period to (i) investigate the changes
in chemical characteristics between transport and local fine
particles during the pre-monsoon, (ii) determine the size dis-
tributions and mixing states of different particle types, and
(iii) assess the contributions of photooxidation and aqueous
reaction to the formation of the secondary species. These re-
sults can expand our understanding of the chemical compo-
nents, size distribution, mixing state, and ageing pathways of
aerosols in the high-altitude areas over the TP and surround-
ing areas.
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2 Methodology

2.1 Sampling site

Intensive 1-month field observations were made on the
rooftop (∼ 10 m above ground level) of the Lijiang Obser-
vatory, Chinese Academy of Sciences (3260 m above sea
level; 26◦41′24′′ N, 100◦10′48′′ E), Gaomeigu County, Yun-
nan Province, China, during the pre-monsoon period (from
14 April to 13 May 2018). The nearest residential area is the
village of Gaomeigu (3–5 km away), with a small population
of 113 residents in 27 households. Villagers earn a living by
farming (e.g. potato and autumn rape), and biomass is the
major domestic fuel (Li et al., 2016). The sampling site is
surrounded by rural and mountainous areas and has no ob-
vious industry or traffic emissions. During the total observa-
tion period, the average temperature (T ) and relative humid-
ity (RH) were 8.4± 3.1 ◦C and 69± 21 %, respectively. The
wind speed (WS) was 2.2± 1.2 m s−1, with the prevailing
wind in the north and north-east (Fig. S1 in the Supplement).

2.2 Online instrument

A detailed operational principle and the calibrations of the
single-particle aerosol mass spectrometer (SPAMS; Hexin
Analytical Instrument Co., Ltd., Guangzhou, China) have
been described elsewhere (Li et al., 2011). Briefly, individ-
ual particles are drawn into the SPAMS through a critical
orifice. The particles are focused and accelerated, then aero-
dynamically sized by two continuous diode Nd:YAG laser
beams (532 nm), and subsequently desorbed and ionized by a
pulsed laser (266 nm) triggered exactly based on the velocity
of the specific particle. The generation of positive and neg-
ative molecular fragments is recorded with the correspond-
ing size of individual particles. In summary, a velocity, a
detection time, and an ion mass spectrum are recorded for
each ionized particle, while there is no mass spectrum for
non-ionized particles. The velocity could be converted to dva
based on a calibration using polystyrene latex (PSL) spheres
(Thermo Scientific Corp., Palo Alto, USA) with predefined
sizes. The average ambient pressure is 690 hPa (in a range
of 685–694 hPa) during the measurements and calibration. A
hollow silicone dryer was installed in front of the inlet. This
reduces the uncertainty in particle collection efficiency due
to the changes in humidity in sampled airs. Particles mea-
sured by the SPAMS mostly have a vacuum aerodynamic di-
ameter (dva) of 0.2–2.0 µm. This SPAMS-specific size distri-
bution is semi-quantitatively evaluated by the relative con-
centration and contribution of each particle type, mainly due
to its large dependence on the particle detection efficiency
(Allen et al., 2000; Yang et al., 2017). The characteristics
of the SPAMS-specific size distribution are statistical results,
while the comparison of the relative distribution and number
fraction of different particle types in each size bin is signifi-
cant.

Meteorological parameters, including the tempera-
ture (◦C), RH (%), WS (m s−1), and wind direction
(WD), were continuously measured using an automatic
weather station (Model MAWS201, Vaisala HydroMet,
Helsinki, Finland) at a 5 min resolution, and the planetary
boundary layer (PBL) was acquired from the website
https://doi.org/10.5065/D6M043C6 (National Centers for
Environmental Prediction et al., 2000) at a 1 h resolution.
Gaseous concentrations (ppbv) were obtained using a
multiple gas analyser (Thermo Scientific Corp.), including
ozone (O3; Model 49i) and nitrogen oxides (NOx ; Model
42i) at a 5 min resolution. The SPAMS and gas analysers
were co-located in the same position, and the weather station
was uncovered outside ∼ 5 m from the sampling house.
Time series of SPAMS particles, gaseous concentrations
(NO, NOx , O3, and CO), and meteorological parameters
(PBL, temperature, RH, WD, and WS) are shown in Fig. S2.

2.3 Individual particle classification

During the observation period, a total of 461 876 ambient
particles with a size (dva) of 0.2–2.0 µm were collected, in-
cluding 55 583 in Episode 1 (E1; from 18 April at 08:00 local
time (LT) to 19 April at 08:00 LT) and 62 110 in Episode 2
(E2; from 26 April at 17:00 LT to 28 April at 02:00 LT).
The analysed particles are classified into 1557 groups us-
ing an adaptive resonance theory neural network (ART-2a)
with a vigilance factor of 0.8, a learning rate of 0.05, and
20 iterations (Song and Hopke, 1999). Finally, eight major
particle cluster types (i.e. potassium-rich (K-rich), biomass
burning (BB), organic carbon (OC), ammonium, aged ele-
mental carbon (aged EC), dust, sodium (Na)–potassium (K)–
sulfate (S)–nitrate (N)-containing (NaK-SN), and iron (Fe)–
lead (Pb)-containing (metal)) with distinct chemical patterns
were manually combined, representing ∼ 99.7 % of the pop-
ulation of the detected particles. The remaining particles are
grouped as “other”. The characteristics of the positive and
negative mass spectra of each particle type are shown in
Fig. S3. A detailed description of classification criteria for
individual particles and the characteristic ion fragments for
each particle type can be found in Sect. S1. The criteria used
for searching some of the secondary species in the SPAMS
datasets are summarized in Table S2 in the Supplement.

2.4 Trajectory-related analysis

To determine the influence of regional transport on dif-
ferent particles at the south-eastern margin of the TP, the
trajectory cluster analysis was carried out using the 72 h
backward air mass trajectories at arrival heights of 500 m
above ground level. The trajectories were calculated with
the Hybrid Single-Particle Lagrangian Integrated Trajectory
model (Draxler and Hess, 1998), and the meteorological
data were obtained from the Global Data Assimilation Sys-
tem (GDAS; ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1,

https://doi.org/10.5194/acp-23-9597-2023 Atmos. Chem. Phys., 23, 9597–9612, 2023

https://doi.org/10.5065/D6M043C6
ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1


9600 L. Li et al.: The formation processes of single particles in the south-eastern Tibetan Plateau

last access: 6 April 2022). The cluster analysis employs a
Euclidean-oriented distance definition to differentiate and
cluster the major spatial features of the inputting trajecto-
ries. Details of the trajectory-clustering method can be found
in Sirois and Bottenheim (1995). To investigate the effects
of transport on the chemical characteristics of the individ-
ual particles, trajectories with particle number concentrations
higher than the 75th percentile are considered to be pollution
(Liu et al., 2021).

3 Results and discussion

3.1 Characteristics of particle composition

Table 1 summarizes the number concentrations, relative per-
centages, and characteristic ions of each particle type. The
most dominant particle type in Gaomeigu during the pre-
monsoon is K-rich, accounting for an average of 30.9 % of
the total resolved particles, followed by BB (18.7 %), OC
(12.8 %), ammonium (11.9 %), aged EC (10.9 %), and dust
(10.7 %). Their characteristics of mass spectrum and possi-
ble sources are described in Sect. S1 in detail. Similar to the
results of some studies in urban areas, the K-rich or carbon-
containing types are the dominant particle types (15 %–50 %)
(Xu et al., 2018; H. L. Wang et al., 2019; L. Li et al., 2022).
Based on a combination of previous studies and the charac-
teristics of the mass spectrum (Fig. S3a) in this study, the
K-rich particles are contributed by biomass burning and traf-
fic emissions, as evidenced by these extensive works usu-
ally identifying abundant 39K+ signals for biomass burning
(Pratt et al., 2011; Chen et al., 2017), while the presence of
phosphate (m/z 79PO−3 ) indicates vehicle exhaust (Yang et
al., 2017). The results of the correlation between seven vari-
ables (Fig. S4) show that the K-rich type is strongly corre-
lated with the ammonium (r = 0.84) and aged-EC (r = 0.90)
types and is well correlated with the OC (r = 0.70) and BB
(r = 0.68) types, further demonstrating that the K-rich parti-
cle type is from traffic emissions and biomass burning and is
affected by secondary formation during atmospheric ageing
in the south-eastern TP. It is worth noting that little research
has captured the high proportion of ammonium particles as
shown in this study (Shen et al., 2017; Xu et al., 2018), which
is ascribed to the conversion of the ammonia (NH3) precursor
emitted from large-scale agricultural activities and mountain
forests (Engling et al., 2011; Li et al., 2013). It is necessary to
point out that 60 % of ammonium particles contain signals of
amine fragment (m/z 58, C2H5NH= CH+2 ), implying their
similar formation pathway (Zhang et al., 2012). Moreover,
the amine-containing particles represented 12.5 % of the total
ambient particles, which is significantly higher than in some
urban areas at low altitudes (around 2 %) (Cahill et al., 2012;
Zhang et al., 2015; Li et al., 2017) but is comparable to ob-
served sites with high RH or during fog and cloud events at
a high altitude (> 9 %) (Roth et al., 2016; Lin et al., 2019).
This suggests that the formation of amines under high-RH

and high-fog conditions might exist in the Gaomeigu area
(with an altitude of 3260 m); for example, the high relative
fraction of amine-containing particles corresponds to a high
RH (Fig. S5), and the existence of amine sources governs the
ammonium formation (Bi et al., 2016; Rehbein et al., 2011).
The relatively larger fraction of dust particles is related to the
short occurrences of dust events in spring (Fig. S6), leading
to a wide contribution ranging between 10 % and 70 % in the
period of 19:00 LT on 16 April to 10:00 LT on 17 April.

Figure 1 shows the diurnal variations in each particle type.
The K-rich, BB, and OC particles decrease after midnight
until 06:00 LT, possibly explained by the curtailment of lo-
cal traffic and biomass burning activities at nighttime even
though both the PBL height and WS decrease (Fig. S7).
Then, their concentrations rapidly increase in the morning
(around 07:00 LT) due to more pollutants from biomass burn-
ing and traffic emissions in the upwind region. The increases
in PBL height and WS also lead to the transport of air pol-
lutants from the surrounding regions to the sampling site
(Liu et al., 2021). At 11:00 LT, the particle concentrations
sharply decrease until 16:00–17:00 LT, caused by the pollu-
tant dispersion with continuing increases in the PBL height
and WS. Increasing trends are observed after 17:00 LT due to
the pollutant accumulation with the reduction in PBL height
and WS. In contrast, the ammonium, aged-EC, and dust par-
ticles show a unimodal pattern of the daily diurnal varia-
tion (Fig. 1d–f). From 00:00 to 06:00 LT, minor fluctuations
in particle concentrations of ammonium, aged-EC, and dust
particles are observed. After that, their levels continuously
elevate until ∼ 11:00 LT due to the regional transport, traf-
fic emissions, and fugitive dust (refer to Sect. S2). While the
PBL height and WS increase continuously, the ammonium,
aged-EC, and dust types decline from 12:00 to 17:00 LT. The
subsequent increases in these three types after 17:00 LT are
attributed to the reduction in PBL height as a result of the
accumulation of pollutants in the near-surface atmosphere.

Based on the transport pathways, four air mass clusters
are identified to investigate the effect of regional transport
on the major particle types (i.e. K-rich, BB, OC, ammonium,
aged EC, and dust) (Fig. 2). Clusters 1, 3, and 4 originated
from north-eastern Myanmar, accounting for 59.8 %, 33.2 %,
and 4.6 % of the total trajectories, respectively. Cluster 1 had
an average percentage of 32.7 %, 18.5 %, 12.0 %, 12.5 %,
11.1 %, and 8.9 %, respectively, for the K-rich, BB, OC, am-
monium, aged-EC, and dust particles (Table S1). Clusters 3
and 4 have comparable contributions of OC (15.5 % and
12.5 %, respectively) and increased BB (19.3 % and 26.8 %,
respectively) as well as decreased K-rich (26.8 % and 25.2 %,
respectively), ammonium (10.4 % and 7.7 %, respectively),
and aged-EC (7.7 % and 6.3 %, respectively) particles com-
pared to those of Cluster 1, but with a high contribution of
dust (16.6 %), which suggests that Clusters 3 and 4 are signif-
icantly correlated with dust and biomass burning pollution.
However, Cluster 1 is more influenced by compound pollu-
tion, mainly including secondary formation, biomass burn-

Atmos. Chem. Phys., 23, 9597–9612, 2023 https://doi.org/10.5194/acp-23-9597-2023



L. Li et al.: The formation processes of single particles in the south-eastern Tibetan Plateau 9601

Table 1. The number concentrations, average percentages, and characteristic ions of nine types of particles during the entire campaign and
the average percentages of the six major particle types during two episodes.

Type Number Fraction in Episode 1 Episode 2 Tracer ions
count total (%) (%) (%)

K-rich 151 040 30.9 29.0 39.3 39K+, 26CN−, 42CNO−, 46NO−2 , 62NO−3 , 97HSO−4

BB 91 322 18.7 11.5 14.2 39K+, levoglucosan (45CHO−2 , 59C2H3O−2 , 71C3H3O−2 , 73C3HO−3 ),
26CN−, 35,37Cl−, 42CNO−, 46NO−2 , 62NO−3 , 97HSO−4

OC 62 446 12.8 8.1 10.0 27C2H+3 , 37C3H+, 38C3H+2 , 39K+/C3H+3 , 43C2H3O+, 51C4H+3 ,
26CN−, 42CNO−, 46NO−2 , 62NO−3 , 97HSO−4

Ammonium 58 317 11.9 17.5 13.5 12C+, 18NH+4 , 39K+, 58C2H5NHCH+2 , 97HSO−4 , 195H(HSO4)−2

Aged EC 53 337 10.9 10.0 17.2 C±n (n= 1–5), 39K+, 97HSO−4

Dust 52 533 10.7 20.3 1.3 40Ca+, 56CaO+, 16O−, 17OH−, 76SiO−3 , 79PO−3

NaK-SN 13 726 2.8 NA NA 23Na+,39K+, 62NO−3 , 97HSO−4

Metal 4672 1.0 NA NA 51V+, 56Fe+, 64,66,68Zn+, 206,207,208Pb+

Others 1580 0.3 NA NA No obvious characteristic peaks

NA: not available.

Figure 1. Diurnal box-and-whisker plots of the number concentration of the main particle types (at an hourly resolution): (a) potassium
(K)-rich, (b) biomass burning (BB), (c) organic carbon (OC), (d) ammonium, (e) aged elemental carbon (EC), and (f) dust. The lower,
middle, and upper lines of the boxes denote the 25th, 50th, and 75th percentiles. The lower and upper whiskers represent the 10th and 90th
percentiles, respectively. Average values are shown by white dots.

ing, and traffic emissions. The diurnal variations in the BB
and OC fractions are similar and rapidly elevate at 07:00 LT
(Fig. S8) due to the increased contribution of biomass burn-
ing and traffic emissions from Cluster 1 and ammonium
and aged-EC particles (peak at 07:00 LT) caused by the ef-
fect of Clusters 1 and 3 together. A stable diurnal variation
in the K-rich fraction is mainly due to its large proportion
and diverse sources. The similar diurnal trends of Clusters 3
and 4 are both associated with dust contributions, which de-

crease at 04:00 LT and increase at noon. The increased night-
time particles could be attributed to the pollutant accumula-
tion with decreased PBL height. Cluster 2 originates from
north-eastern India and passes over Bangladesh. This clus-
ter accounts for only 2.4 % of the total trajectories, of which
∼ 30.8 % and ∼ 35.9 % are mainly associated with the K-
rich and BB particles, respectively. Although Clusters 2 and
4 are composed of a small fraction of total trajectories (2.4 %
and 4.6 %, respectively), BB and dust particles are identi-
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fied as the major pollutants, suggesting significant influences
from India and north-eastern Myanmar during the campaign.

A more in-depth investigation of the characteristics of the
main particle types in the south-eastern Tibet Plateau was
conducted during two episodes when the number concentra-
tion of particles was high (E1: from 08:00 LT on 18 April
to 08:00 LT on 19 April 2018; E2: 17:00 LT on 26 April
to 02:00 LT on 28 April 2018) (Fig. S6). Even though the
two episodes are caused by Cluster 1, the chemical compo-
nents show significant differences (Table 1). During E1, the
average fractions of the K-rich, BB, OC, ammonium, aged-
EC, and dust particles are 29.0 %, 11.5 %, 8.1 %, 17.5 %,
10.0 %, and 20.3 %, respectively, different from 39.3 %,
14.2 %, 10.0 %, 13.5 %, 17.2 %, and 1.3 %, respectively, dur-
ing E2. It can be seen that the major changed factor of the
dust particles is 93.6 % lower during E2 than E1, and that
of the opposite aged-EC particles is 72.0 % higher than E1.
Meanwhile, K-rich, BB, and OC particles also increase by
35.5 %, 23.5 %, and 23.4 %, respectively, during E1 com-
pared to E2. For the air mass clusters (Fig. S9), E1 and
E2 exhibit minor differences, mostly originating from north-
ern Myanmar and the Sino-Burmese border, but not identi-
cal regions. The dust particles that are much lower during
E2 than E1 could be explained by higher WS (on average
2.7± 1.0 m s−1 versus 0.4± 0.5 m s−1) (Fig. S9) and PBL
height (771±717 m versus 560±549 m) (Fig. S10). The dust
particles are mainly formed by re-suspension in the local ar-
eas. In addition, quickly thrown-up dust belongs to the cate-
gory of more coarse particles, which are out of the detection
range of the SPAMS. However, because the larger dust par-
ticles deposited more easily under low-WS and stagnant-air
conditions during E1, more suspended dust particles of small
size fall within the detection range of the SPAMS. Moreover,
the increased PBL height and WS could speed up the trans-
portation of pollutants from multiple sources (e.g. traffic and
biomass burning emissions) to the observation site, leading to
elevation of the fraction of aged-EC, K-rich, BB, and OC par-
ticles during E2. The decreased ammonium fraction during
E2 is potentially explained by the reductions in the secondary
pollutant formation with declines in RH (from 73.9±23.9 %
to 53.1± 14.9 %), in comparison to those during E1.

3.2 Characteristics of the SPAMS-specific size
distribution and mixing state

The SPAMS-specific size distributions of all particle types
are shown in Fig. 3. According to the characteristics of the
average mass spectra (refer to Sect. S1 and Fig. S3), the K-
rich, BB, OC, and aged-EC particles originated from sim-
ilar sources of solid-fuel combustion or vehicle emissions.
Their SPAMS-specific size is thus distributed within a small
scale (∼ 440 nm) (Fig. S11a). However, the relative percent-
age of each particle type is distinct, with different size ranges,
possibly due to the unique atmospheric processing. For ex-
ample, as shown in Fig. 3a, the proportions of the K-rich

and BB types increase along with an increase in particle
size from 200 to 420 nm, and then they decrease. The OC
and aged-EC types are mainly distributed in relatively small
sizes, and their proportions gradually decrease when the size
ranges become larger. The ammonium and dust types are
mainly distributed in large sizes of ∼ 600 nm (Fig. S11a).
The proportion of ammonium particles gradually increases
with an increase in particle size and peaks at 740 nm; the rel-
atively large SPAMS-specific size distribution is ascribed to
the intense atmospheric ageing during regional transport (re-
fer to Sect. S1). The proportion of dust particles gradually
increases with a size> 560 nm and peaks at 1.48 µm. This is
consistent with the fact that dust is a coarse particle, gener-
ally associated with fugitive dust.

Compared with the SPAMS-specific size distribution of
the total particles, the peak values of the six main particle
types show minor differences (< 80 nm) during the two dif-
ferent episodes (Fig. 11b, c). However, the percentage of the
six particle types is distributed in wider size ranges during E2
than during E1, possibly due to the more intense atmospheric
ageing. Similarly, during the two episodes (Fig. 3b, c), the
relatively high fractions of the K-rich and BB particles are
more affected by the primary emissions when their peak val-
ues of the SPAMS-specific size distribution concentrate at
< 300 nm, and size distributions > 300 nm are more related
to the ageing process (L. Li et al., 2022a; Bi et al., 2011).
Relatively greater fluctuation for the large-sized fractions
(> 1.1 µm) could be explained by the low particle concen-
tration (a number less than 20). It should be pointed out that
further application of this method would require a co-located
particle-sizing instrument to scale the size-resolved particle
detection efficiency. Both particle composition and size de-
pendence are the predominant impacting factors in the parti-
cle detection efficiency of the SPAMS (Wenzel et al., 2003;
Yang et al., 2017; Healy et al., 2013).

To investigate the mixing state of the secondary species in
the six main particle types, the number fractions of six sec-
ondary markers (97HSO−4 , 195H(HSO4)−2 , 62NO−3 , 18NH+4 ,
58C2H5NHCH+2 , and 89HC2O−4 ) are calculated (Fig. 4). The
presence of amine (m/z 58C2H5NHCH+2 ) and sulfuric acid
(m/z 195H(HSO4)−2 ) signals is possibly indicative of the wa-
ter uptake (Chen et al., 2019) and acidic properties of the par-
ticles (Rehbein et al., 2011), respectively. The mixing states
are obtained by the ratio of the number concentration of the
selected ions in each particle type.

The most abundant 97HSO−4 and 18NH+4 fractions are
seen in ammonium (99 % and 94 %, respectively) and aged-
EC (92 % and 31 %, respectively) particles, whereas a very
low fraction of 62NO−3 is found (2 % and 7 %, respec-
tively). These values indicate that ammonium sulfate is the
predominant form rather than ammonium nitrate. (Zhang
et al., 2013). The high contribution of 97HSO−4 in EC-
containing particles also suggests a significant influence of
anthropogenically emitted sulfate precursors (e.g. SO2) on
the ageing of EC-containing particles at high altitudes (Peng
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Figure 2. Maps of the mean HYSPLIT back-trajectory clusters (72 h) at a height of 500 m during the whole field observation. The embedded
pie chart represents the relative fraction of each particle type in the four clusters.

Figure 3. SPAMS-specific size distributions of the relative number fraction (%) of the total particles for nine groups during (a) the total
sampling campaign and the two episodes (b) E1 and (c) E2.

et al., 2016; J. K. Zhang et al., 2017). Meanwhile, relatively
high number fractions of 195H(HSO4)−2 and 58C2H5NHCH+2
are also observed in ammonium (63 % and 60 %) and aged-
EC (4 % and 19 %) particles. These abundant mixtures po-
tentially represent the high hygroscopicity of ammonium and
aged-EC particles and their ability to neutralize the acidic
particles of ammonium particles (Sorooshian et al., 2007).
Then, a moderate fraction of 97HSO−4 and 18NH+4 is seen
in the K-rich (65 %, 7 %) and OC (56 %, 4 %) particles. In
contrast, a higher 62NO−3 fraction contributes to the K-rich
(38 %) and OC (68 %) particles, mainly affected by vehicle
emissions and biomass burning (refer to Sect. S1). A rela-
tively low fraction of 97HSO−4 contributes to BB (18 %) and
OC (6 %) particles, and the moderate 62NO−3 fraction mixes
in BB (45 %) particles but only accounts for 3 % of dust par-
ticles. Combined with the results of the minor 18NH+4 frac-
tion (< 1 %) in BB and dust particles, this suggests a rela-
tively low degree of ageing. In addition, oxalate (89HC2O−4 ),
a representative component of secondary organic formation,
is mainly mixed with BB (13 %) and K-rich (12 %) parti-
cles. This is because the substantial precursors of oxalic acid,

including acetate (59C2H3O−2 ), methylglyoxal (71C3H3O−2 ),
and glyoxylate (73C2HO−3 ), are emitted from biomass burn-
ing, and then oxalate heterogeneously forms in BB-related
particles (G. H. Zhang et al., 2019; Zauscher et al., 2013).
A relatively low fraction (< 5 %) of oxalate-containing par-
ticles in OC, ammonium, aged-EC, and dust particles is po-
tentially limited by the contributions of precursor oxalic acid.

Compared to the mixing state of individual particles in
urban or suburban areas that are located close to emission
sources (Chen et al., 2016; Dall’Osto and Harrison, 2012;
J. K. Zhang et al., 2017; L. Li et al., 2022a), the high fractions
of sulfate and ammonium in high-altitude areas demonstrate
a high degree of ageing of the individual particles, whereas
the low fraction of nitrate with high volatility indicates its
loss during transportation processing.

The number fractions of six markers in the four trajecto-
ries were used to further investigate the impacts of regional
transport. As shown in Fig. 5a and c, the dominant mixing ion
types in each particle (except for dust) are similar among the
four clusters. For Cluster 1, the number fractions of 97HSO−4
and 89HC2O−4 have larger values in five particle types (ex-
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Figure 4. Number fractions of secondary markers associated with
the six particle types (K-rich, BB, OC, ammonium, aged EC, dust)
during the whole observation. Secondary species include sulfate
(97HSO−4 ), sulfuric acid (195H(HSO4)−2 ), nitrate (62NO−3 ), ammo-
nium (18NH+4 ), amine (58C2H5NHCH+2 ), and oxalate (89HC2O−4 )
ions.

cept for the dust type) than those in other trajectories. Similar
to Cluster 1, Clusters 3 and 4 are impacted by regional trans-
port from north-eastern Myanmar, and the fractions of the six
markers are also similar in the OC, ammonium, and aged-EC
types. However, 97HSO−4 in Clusters 3 and 4 is reduced in the
K-rich, BB, and dust types, while 62NO−3 is increased in the
K-rich type and decreased in the dust type, compared with
Cluster 1. As discussed in Sect. 3.1, these results demonstrate
that the ageing degree of Clusters 3 and 4 might be lower than
that of Cluster 1. For Cluster 2, the fraction of 97HSO−4 is ob-
viously decreased in the K-rich, BB, and aged-EC types but
slightly increased in the dust type (Fig. 5f). However the frac-
tion of 62NO−3 is increased in the K-rich, OC, and dust parti-
cles in Clusters 2 compared with Clusters 1, 3, and 4. These
variations in Cluster 2 are more likely due to the influences
of biomass burning activities from surrounding the sampling
site rather than regional transport. Furthermore, Cluster 2 is
associated with regional transport from north-eastern India
from the afternoon to nighttime (from 15:00 LT on 11 May
to 07:00 LT on 12 May), which is favourable to the nitrate
formation of N2O5 by heterogeneous hydrolysis (Wang et
al., 2017; Ding et al., 2021). However, these cases are infre-
quent, as only 2 % of trajectories are associated with Clus-
ter 2.

During E1, 97HSO−4 fractions greater than 50 % are mixed
in the K-rich (81 %), OC (62 %), ammonium (100 %), and
aged-EC (98 %) particles (Fig. S12) as well as the low-BB
(37 %) and dust (4 %) particles. Unlike with E1, the num-
ber fraction of 97HSO−4 in dust increases to 34 % during E2,
potentially associated with the enhancement by secondary
formation during regional transport. However, the mixing
states of 195H(HSO4)−2 , 62NO−3 , NH+4 , and oxalate fractions

are similar between the two episodes. The 58C2H5NHCH+2
fractions are significantly higher in E2 than E1 for ammo-
nium (67 % versus 31 %) and aged-EC particles (48 % versus
17 %), due to the relatively higher-hygroscopicity behaviour
(i.e. RHs) (Sorooshian et al., 2007).

3.3 Formation process of the
high-particle-number-concentration episodes

Photochemical oxidation and aqueous-phase reaction are
the key formation pathways of secondary species (Link et
al., 2017; Xue et al., 2014; Jiang et al., 2019). The oxidant
Ox (O3+NO2) concentration and RH usually serve as in-
dicators of the degree of photochemical oxidation (Wood et
al., 2010) and aqueous-phase reaction (Ervens et al., 2011),
respectively, though the current Ox and RH conditions ob-
tained using the in situ measurement are not indicative of the
past conditions experienced by the particle. Thus, the rela-
tive number fractions of 43C2H3O+-, 89HC2O−4 -, 62NO−3 -,
97HSO−4 -, and 18NH+4 -containing particles of the total de-
tected particles were selected to provide a rough estimate of
the secondary-formation mechanism under ambient TP con-
ditions (Liang et al., 2022). The correlations of the num-
ber fraction of each secondary species with the Ox concen-
trations (Ox) during daytime (from 06:00 to 20:00 LT) and
RH during nighttime (from 20:00 to 06:00 LT the next day)
are used to reveal the formation pathways during the two
episodes (L. Li et al., 2022).

As illustrated in Fig. 6, for E1, 43C2H3O+, 89HC2O−4 ,
97HSO−4 , and 18NH+4 show significant negative linear cor-
relations with Ox (p < 0.01), and the correlation strengths
range from moderate to strong (r =−0.51 to −0.81). How-
ever, the 62NO−3 fraction shows an upward trend with an in-
significant correlation (r = 0.33, p > 0.05) with the increase
in Ox concentration. For E2, 43C2H3O+ shows weak cor-
relation with Ox (r = 0.37, p > 0.05) but strong correla-
tions with 89HC2O−4 , 97HSO−4 , and 18NH+4 (r = 0.81–0.92,
p < 0.01). It should be noted that 62NO−3 has a strong neg-
ative correlation (r =−0.85, p < 0.01) with Ox . In general,
the opposite linear relationship between secondary aerosol
and Ox during E1 and E2 might be influenced by (i) the rela-
tively low secondary formations because of the small number
of precursors emitted from anthropogenic activities around
the sampling site (Li et al., 2016); (ii) the higher dilution
rate of the particles formed in the atmosphere with the more
rapid rise in PBL height during E1 than E2 (Fig. S13a); and
(iii) the degrees of contribution of regional transport due to
the low WS (0.5± 0.6 m s−1) during E1 and the high WS
(3.1± 1.0 m s−1) during E2, respectively (Fig. S9). There-
fore, for E1, the increases in the NO−3 fraction could be in-
fluenced by the local nitrate formation, while the declines
in other secondary components should be ascribed to the
reduced contribution of regional transport. For E2, the de-
crease in the NO−3 fraction could be caused by the relatively
higher volatilization loss of nitrate than other components
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Figure 5. Number fractions of secondary markers associated with the six particle types (i.e. K-rich, BB, OC, ammonium, aged EC, and dust)
in four clusters. Secondary species abbreviations as in Fig. 4.

through the regional transport. Additionally, previous work
proves that the formations of organic nitrate species (such
as 27CHN+, 30NO+, 43CHO1N+, and CHOxN+) through
the NO+RO2 pathway dominate 80 % of the total nitrate
production in tropical forested regions during summertime
(Alexander et al., 2009). Aruffo et al. (2022) also found that
low NOx (i.e. < 6 ppbv), compared to 2.3± 0.8 ppbv in this
study, could even promote the particle-phase partitioning of
the lower volatility of organonitrates. These results suggest
that the secondary organic species have different formation
capacities through photooxidation reactions, among which
the rate of HSO−4 formation (slope= 0.017) is the highest.
With increased Ox concentration during E2, the concentra-
tion levels of secondary organic species of C2H3O+ (18 %–
28 %) imperceptibly rise, while the oxalate fraction signifi-
cantly increases by 7 %–20 %.

Considering that the oxalate is abundantly mixed in K-rich
(14 %), BB (15 %), aged-EC (5 %), and dust (6 %) particles
in Cluster 1 (Fig. 5) and considering the increased contri-
butions of the K-rich (39.3 %), BB (14.2 %), and aged-EC
(17.2 %) types during E2 (Table 1), the apparent formation of
oxalate might be due to the enhancement of regional trans-
port. Particularly, this shows that the nearby biomass burning
and combustion activities produce more precursor species of
oxalate (Sullivan et al., 2007; Kundu et al., 2010; G. Zhang
et al., 2017).

Figure 7 illustrates that the number fractions of
43C2H3O+, 89HC2O−4 , 97HSO−4 , and 18NH+4 have moder-

ate to strong positive correlations with RH (r = 0.70–0.81,
p < 0.01 or 0.05) in the nighttime during the two episodes,
except 43C2H3O+ during E2 (p = 0.48) and 89HC2O−4 dur-
ing E1 (p = 0.12). Furthermore, the 62NO−3 fraction has no
obvious changes, with insignificant correlation with RH dur-
ing E1 (p = 0.43), and presents a moderate negative corre-
lation with RH (r = 0.69, p < 0.01) during E2. As shown
in Fig. 7e, the highest aqueous formation rate of HSO−4 is
mainly due to the low volatility and highly hygroscopic prop-
erties of sulfate (G. H. Wang et al., 2022; S. P. Zhang et
al., 2019; Sun et al., 2013). Compared with that during E2
(slope= 0.014), the decreased formation rate of HSO−4 dur-
ing E1 (slope= 0.009) may be because of the decreases in
aerosol acidity with higher RH (> 80 %; Huang et al., 2019;
Meng et al., 2014; Tian et al., 2021). And the increased con-
tributions of regional transport due to the high WS (2.4±
0.8 m s−1) during E2 are compared with the low WS (0.08±
0.08 m s−1) during E1 (Fig. S9). The fair production rates
of NH+4 during E1 (slope= 0.005) and E2 (slope= 0.006)
demonstrate that an aqueous-phase reaction could effectively
promote ammonium formation. Meanwhile, a slightly larger
slope of NH+4 during E2 could also be affected by the in-
creased contributions of regional transport. Compared with
those during E1, the inverse generation rates of two sec-
ondary organic species (i.e. C2H3O+ and HC2O−4 ) during
E2 are possibly caused by the different formation pathways
with a variety of RH levels or distinct regional transports.
For example, C2H3O+ shows a strong correlation with RH
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Figure 6. Correlations between the relative number fractions of the secondary species (a) 43C2H3O+, (b) 89HC2O−4 , (c) 18NH+4 ,
(d) 62NO−3 , and (e) 97HSO−4 and Ox concentration during E1 (blue square) and E2 (red dot).

(r = 0.70, p < 0.05) during E1 (slope= 0.003) but has an
insignificant correlation during E2. This could be explained
by high RHs that could effectively promote secondary or-
ganic formation during E1. In addition, the HC2O−4 fraction
increases slightly (9.7 %–13.1 %) during E1, which is poten-
tially ascribed to more abundant dust-type particles (20.3 %),
which are composed of high calcium (Ca) content (Fig. S14)
and favour the formation of metal oxalate complexes (i.e.
Ca oxalate). At high RHs (93.4± 7.6 %), if oxalate ions
are dissolved in the aqueous phase with the presence of Ca
ions, the Ca oxalate complexes can precipitate because of
their low hygroscopicity and insoluble nature (Furukawa and
Takahashi, 2011). This could offset the oxalate formation in
the aqueous-phase reaction. However, significant linear in-
creases (slope= 0.003) with RH (r = 0.81, p < 0.01) during
E2 demonstrate that the aqueous-phase reaction effectively
promotes the oxalate formation (Cheng et al., 2017; Meng et
al., 2020). No significant correlation between 62NO−3 and RH
is found during E1, potentially attributed to the decreases in
NO2 concentration (3.7± 0.4 ppbv) in the local atmosphere.
Meanwhile, high RHs could promote organonitrate forma-
tion (Fang et al., 2021; Fry et al., 2014). The linearity be-
tween 62NO−3 and RH (r = 0.69, p < 0.01) significantly de-
creases during E2, mostly due to the losses of the volatile
compound through regional transport (Fig. S15).

4 Conclusions

This study presents the chemical composition, size distribu-
tion, mixing state, and secondary formation of individual par-

ticles in the south-eastern margin of the TP, China, during the
pre-monsoon season using a high-resolution SPAMS. The
finding shows that the K-rich (30.9 %) and BB types (18.7 %)
are the two dominant aerosol particles in the remote area,
followed by the OC (12.8 %), ammonium (11.9 %), aged-
EC (10.9 %), and dust (10.7 %) types; the NaK-SN, metal,
and other particle types contributed 0.3 %–2.8 % of the to-
tal ambient particles. By interpreting the mass spectra and
diurnal trends, the major particle types are mainly from traf-
fic emissions, biomass burning, secondary formation, and fly
ash, while the dynamics of the PBL height could also affect
their contributions. The observed change in the number frac-
tion of the particle types was mainly influenced by air mass
(97.61 % of the total trajectories) from north-eastern Myan-
mar and significantly contributed to the K-rich and BB types.
The particle types show distinct size distributions. The two
critical particle types, the K-rich and BB types, appear in a
unimodal pattern; the fractions of OC and aged-EC particles
gradually decrease with the increase in particle size, but the
ammonium and dust types show the opposite trend. Sulfate
is the major secondary species and is highly mixed with the
K-rich, ammonium, and aged-EC types. Nitrate has a rela-
tively low mixing ratio due to its higher volatility than sul-
fate during regional transportation, while the relatively high
fraction of nitrate in the BB and OC types is mainly affected
by the sources of vehicle exhaust and biomass burning as
well as ageing degree. During the entire study campaign, two
episodes with high number concentrations of particles occur
but with significant differences in each particle fraction due
to the different meteorological conditions (RH, WS, etc.).
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Figure 7. Correlations between the relative number fractions of the secondary species (a) 43C2H3O+, (b) 89HC2O−4 , (c) 18NH+4 ,
(d) 62NO−3 , and (e) 97HSO−4 and relative humidity (RH) during E1 (cyan dot) and E2 (orange square).

Meanwhile, the different meteorological conditions also lead
to an inverse linear correlation between the indicators of sec-
ondary formation, including C2H3O+, HC2O−4 , NH+4 , NO−3 ,
and HSO−4 as well as Ox (O3+NO2) during the periods of
Episodes 1 and 2; however, they present a positive linear
correlation with relative humidity (RH), except for NO−3 ,
which shows a negative linear correlation with RH due to
the low precursor concentration and potential organonitrate
formation. These results demonstrate that the capacity of at-
mospheric ageing of photooxidation and aqueous reaction
has complex influencing factors. Although the detailed for-
mation pathways and their percentage contributions to sec-
ondary species are not quantitatively estimated in this study,
our results have important implications for the various possi-
bilities affecting the characteristics of chemical components,
size distribution, mixing states, and formation mechanism
of aerosols in the south-eastern TP. More in-depth investi-
gations concerning the evolution mechanisms of secondary
aerosols are encouraged since the TP is a significant regula-
tor of global climate change.
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