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Abstract. Particulate free amino acids (FAAs) are essential components of organonitrogen that have critical
climate impacts, and they are usually considered stable end-products from protein degradation. In this work,
we investigated the decay of glycine (GC) as a model FAA under the photolysis of different particulate nitrate
salts using an in situ Micro-Raman system. Upon cycling the relative humidity (RH) between 3 % and 80 % RH,
ammonium nitrate (AN) and GC mixed particles did not exhibit any phase change, whereas sodium nitrate
(SN) and GC mixed particles crystallized at 60 % and deliquesced at 82 % RH. Under light illumination at
80 % RH, AN+GC particles showed almost no spectral changes, while rapid decays of glycine and nitrate were
observed in SN+GC particles. The interactions between nitrate and glycine in AN+GC particles suppressed
crystallization but also hindered nitrate photolysis and glycine decay. On the other hand, glycine may form a
complex with Na+ in deliquescent SN+GC particles and allow unbonded nitrate to undergo photolysis and
trigger glycine decay, though nitrate photolysis was greatly hindered upon particle crystallization. Our work
provides insights into how FAAs may interact with different nitrate salts under irradiation and lead to distinct
decay rates, which facilitates their atmospheric lifetime estimation.

1 Introduction

Free amino acids (FAAs) are essential components of
atmospheric particles with wide sources, including direct
bio-emissions, degradation of proteinaceous materials, and
biomass burning (Ren et al., 2018; Matos et al., 2016;
Zhu et al., 2021; X. Li et al., 2022; F. Liu et al., 2017).
The concentrations of FAAs in terrestrial and marine near-
surface atmospheres generally range from a few to several
hundred nanograms per cubic meter (Helin et al., 2017;
Matos et al., 2016). FAAs play important roles in the
climate-related properties of atmospheric particles, such
as hygroscopicity and cloud condensation nuclei (CCN)
activity (Chan et al., 2005; Kristensson et al., 2010; Marsh
et al., 2017) and atmospheric nitrogen cycling (Mopper
and Zika, 1987). Besides, FAAs support biological activity
in the aerosol particles (Helin et al., 2017) and impact

human health after inhalation (Hu et al., 2020). While
the importance of atmospheric FAAs was well recognized,
previous atmospheric studies mainly focused on the regional
and seasonal variations in the abundance of particulate FAAs
(Ren et al., 2018; Helin et al., 2017; Song et al., 2017).
FAAs were suggested as the stable end-products of the
degradation of protein (X. Li et al., 2022). However, a few
studies have reported the reactions of atmospheric FAAs and
carbonyl compounds to form light-absorbing compounds via
oligomerization under dark conditions (De Haan et al., 2011;
Haan et al., 2009). The photochemical evolution of FAAs
remains less explored.

Nitrate is ubiquitous in atmospheric particles (Chan
and Yao, 2008), and it can generate various oxidants,
including OH radicals, via photolysis (Gen et al., 2022;
Scharko et al., 2014; Benedict et al., 2017). Oxidants
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from particulate nitrate photolysis could oxidize gaseous
precursors to secondary inorganic and organic aerosols (Gen
et al., 2022; Gen et al., 2019; Zhang et al., 2021, 2022)
and change the morphology of the particles (Liang et al.,
2021). Correlation analysis of field measurements suggests
that particulate FAAs and nitrate could be from the same
sources (Xu et al., 2019; Gao et al., 2021), and there
were also laboratory studies on the hygroscopicity of FAA–
nitrate mixed particles (Ashraf et al., 2021; Wang et al.,
2018). While external oxidants such as gaseous ozone and
OH radicals need to diffuse across the interfacial layers,
nitrate photolysis generates oxidants inside the particles
(Liang et al., 2021). Particulate nitrate photolysis may afford
effective FAA oxidation. However, it is unclear how FAAs
would chemically evolve under nitrate photolysis, though it
is well known that OH radicals can react with FAAs in water
treatment research (Berger et al., 1999; Acero et al., 2000).
Recently, Wen et al. (2022) demonstrated that aqueous OH
oxidation could be a significant sink of atmospheric FAAs.
Nevertheless, while these results were helpful for diluted
aqueous systems, the reactions in the particle phase could
be different due to the elevated concentrations that facilitate
molecular interactions. Specifically, glycine (GC), which is
the most abundant FAA in atmospheric particles with a mole
ratio of GC to total FAAs= 0.17–0.49 (X. Li et al., 2022;
Ren et al., 2018; Song et al., 2017; Zhang and Anastasio,
2003; Zhu et al., 2020), could bind with atmospheric-relevant
inorganics such as sulfate and nitrate (Ashraf et al., 2021).
The phase state of the particles can also play an essential role
in nitrate photolysis (Liang et al., 2021; Gen et al., 2022).

In this paper, we first performed relative humidity (RH)
cycling to characterize the phase transition behavior of mixed
particles of ammonium nitrate (AN) and glycine, as well
as sodium nitrate (SN) and glycine. Then, we examined
the photochemistry of glycine triggered by the photolysis
of AN and SN at different RH levels. The phase transition
behaviors of AN+GC and SN+GC mixed particles and the
kinetics of glycine decay under ultraviolet (UV) illumination
are significantly different.

2 Experiment

2.1 Photochemical aging of droplets

Mixed solutions (1 wt %) of AN (> 99 %; Sigma-Aldrich)
or SN (> 99 %; Acros Organics) and glycine (biological
analysis level; ChemCruz™) were prepared in deionized
water (Milli-Q). We used a mole ratio of 1 : 1 for glycine and
nitrate in all our experiments. Mixed solutions were atomized
using a piezoelectric particle generator (model 201; Uni-
Photon Systems, Inc.) coupled with a quartz tip (MicroFab
Technologies Inc.; orifice diameter of 80 µm). Droplets were
deposited on a hydrophobic fluorocarbon substrate (model
5793; YSI Incorporated) and placed in an aerosol flow cell
(Liang et al., 2021, 2022b). The flow cell has two windows

for in situ Raman analysis (top) and UV illumination
(bottom). The schematic of the experimental setup is shown
in Fig. S1 in the Supplement. The RH inside the flow cell was
controlled by mixed dry and wet synthetic air (Linde plc) and
monitored by a digital RH sensor (HC2-C05; ROTRONIC
AG, Switzerland). The deposited droplets were photolyzed
for 8 h, using a 300 nm light-emitting diode (LED) lamp
(M300L4; Thorlabs, Inc.). The photon flux received by
deposited particles in the flow cell was determined to be
1.2× 1015 photons per centimeter squared per second by
2-nitrobenzaldehyde (2NB; > 99.0 %; Acros Organics). A
detailed description can be found in our previous work
(Liang et al., 2021). The effective incident light flux used
in our study was comparable to that received by nitrate in the
atmosphere on a typical clean day.

2.2 In situ Raman and microscopic characterization

A Raman spectrometer (EnSpectr R532; Enhanced Spec-
trometry, Inc.) with a 20–30 mW 532 nm laser and
holographic diffraction grating with 1800 grooves per
millimeter was used to characterize the particle in situ
during the phase transition behavior measurement and
photoreactions of the particles. The Raman spectrometer
was coupled with an optical microscope (CX41; Olympus
LS) to acquire Raman spectra at 100–4000 cm−1 at a
resolution of 4 cm−1. A 50× objective lens with a numerical
aperture of 0.35 (SLMPLN 50X; Olympus LS) was used to
guide the laser onto the particles. For the phase transition
measurements, we evaporated and then humidified the
particles by decreasing and increasing the RH gradually.
Images of the particles were captured, and the Raman spectra
were recorded after equilibrium was reached. The size of the
equilibrated droplets at 80 % RH was 41± 15 µm. The in
situ Raman analysis focused on single particles of ∼ 40 µm,
while approximately 1300 particles were used for offline
analysis (will be discussed later). Particle composition during
photoreactions was monitored using Raman measurement
every hour for 8 h. The integration time for each spectrum
was 5 s. Glycine absorbs light at below 260 nm, but it can
form light-absorbing mesoclusters in droplets and trigger
photosensitization to degrade itself at 532 nm, which is
our Raman excitation wavelength (Ishizuka et al., 2023).
However, this mechanism played a minor role in our system,
as no glycine decay in GC droplets without nitrate at
80 % RH was found.

2.3 Offline chemical analysis of particle extracts

Particle-loaded substrates were extracted using 1 mL Milli-Q
water after photoreactions. The water extract was analyzed
by ion chromatography (IC). The IC protocol was the
same as in our previous work (Liang et al., 2022c). After
equilibrating at 80 % RH, the initial particle pH was
measured by pH indicator paper combined with RGB-based
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colorimetric analyses using a model of G−B (G minus B)
vs. pH2, according to Craig et al. (2018). The particles
were considered to be at equilibrium when the size became
unchanged (± 2 %) for 30 min. The nitrate and glycine
concentrations were obtained according to Eq. (1), where
a is the scaling factor determined by calibration, and A

refers to the integrated area of the corresponding peak using
Gaussian fitting (Igor Pro 8). The wavenumber ranges used
for integration were 850–950 cm−1 for glycine and 980–
1100 cm−1 for nitrate, respectively.

[X]particle = a× (A(X)/A(OH)3400 cm−1 ), (1)

where X is nitrate or glycine, and A(OH)3400 cm−1 refers to
the main peak of water.

2.4 Estimation of nitrate photolysis rate constant and
percentage glycine decay

The maximum RH reached in the flow cell was 96 %,
which yields a solute concentration in particles higher
than 1 M. Thus, kinetic data of diluted systems (0.01, 0.1,
and 0.5 M) were obtained from aqueous solutions. The
schematic of the custom-made aqueous reactor is shown
in Fig. S2. Synthetic air was introduced to the aqueous
reactor at 0.1 Lmin−1. The AN+GC and SN+GC solutions
(0.01, 0.1, or 0.5 M) were added to the aqueous reactor and
illuminated by 300 nm LED through a quartz window at the
top of the reactor. The photon flux received by the solution
was 0.7× 1015 photons per centimeter squared per second
by 2NB, which is ∼ 60 % of the flux found for deposited
particles in the flow cell. We sampled the aliquots from the
aqueous solution after 13.3 h of irradiation. After sampling,
the glycine concentration was immediately determined
using the precolumn derivatization high-performance liquid
chromatography (HPLC) method described by Matsumoto
et al. (2021). The nitrate concentration was determined by IC.

The apparent nitrate photolysis rate constant J (s−1)
was estimated as Eq. (2). J depends on the light intensity,
quantum yield, and absorption cross section of nitrate
(George et al., 2015).

d[NO−3 ]
dt

=−J ×[NO−3 ] (2)

This is a low estimate of J , since glycine oxidation
likely generates secondary nitrate (Berger et al., 1999).
We estimated the percentage of GC decay to indicate the
effectiveness of the decay under different conditions, based
on [GC] measured before and after irradiation (after 8 h for
deposited particles and 13.3 h for solutions). The percentage
of GC decay in crystalline SN+GC particles was estimated
directly by the GC peak area as the water peak was not
available.

2.5 Estimation of water-to-glycine mole ratio

Though still under debate, the water-to-glycine mole
ratio was reported to play a crucial role in affecting
the configuration of glycine (Aikens and Gordon, 2006;
Tortonda et al., 1996). Here, we estimate the water-to-glycine
mole ratio in AN+GC and SN+GC particles and discuss
the potential form of glycine, which may play a role in
photochemistry.

GF=
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Vdry
=

(mw+mdry)/ρwet
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=

(
1+
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)
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(
1+

Mw
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)
×
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GF=
Vwet

Vdry
=

(dwet)3

(ddry)3 (4)

GF is the volumetric growth factor (i.e., the volume ratio
of a wet droplet to dry particles at a specific RH), and V ,
m, ρ, n, M , and d represent the volume, mass, density,
mole number, molar mass, and diameter of the particles,
respectively. The subscripts dry, wet, and w denote dry
particles (i.e., solutes), wet particles, and water, respectively.
Note that the estimation of GF using Eq. (4) assumes
spherical particles on the hydrophobic substrate, and ddry was
estimated by averaging two measured diameters from
orthogonal directions. For an initially non-spherical particle
to form a droplet upon RH increase, the estimation of GF
by Eq. (4) would be a slight overestimation (Matsumura
and Hayashi, 2007). Then, the water-to-glycine mole ratio
(WGR) can be obtained by the following:

WGR= 2×
nw

ndry
= 2×

[
(dwet)3

(ddry)3 ×
ρwet

ρdry
− 1

]
×
Mdry

Mw
. (5)

The mean molar mass of glycine and the nitrate salts was
used as Mdry. ρdry of SN+GC particles was available in
the literature (Suresh et al., 2010), while ρdry of AN+GC
particles and ρwet of both particles were estimated based
on the simple volume additivity rule (Eq. 6) (Ha and Chan,
1999; Tang, 1997). ρGC, ρAN, and ρSN were the densities of
pure aqueous solutions at the total solute mass fraction X of
the mixed solution obtained from the literature (Venkatesu
et al., 2007) and the Extended Aerosol Inorganics Model (E-
AIM) prediction (Clegg et al., 1998).

1
ρwet
=
XGC

ρGC
+

(
XAN

ρAN
or
XSN

ρSN

)
(6)
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3 Results and discussion

3.1 Phase transition behavior of nitrate–glycine mixed
particles

We first examined the phase transition behavior of
the nitrate–glycine mixed particles without UV illumi-
nation. Figure 1 shows the images and Raman spectra
of AN+GC and SN+GC particles undergoing an
evaporation–humidification cycle. The black line in Fig. 1b
shows the Raman spectra of an AN+GC mixed droplet at
85 % RH. The v(NO−3 ) peaks are at ∼ 730 and ∼ 1040 cm−1

(Ling and Chan, 2007). The C–C stretching and C–N
stretching peaks are located at ∼ 890 cm−1 (Socrates, 2004).
In 1300–1450 cm−1, there are overlapping peaks from C–
H vibration in different chemical environments. Peaks at
2970 and 3020 cm−1 show the antisymmetric and symmetric
stretching of CH2, respectively. The two broad peaks at 3250
and 3450 cm−1 are from the stretching of OH, indicating the
presence of liquid water (Furić et al., 1992). The v(NH+4 )
also contributed to the peak at 3250 cm−1.

Upon RH decrease from 85 % to 3 %, the AN+GC
particle shrank, but remained spherical, suggesting that the
particle gradually lost water and became a dry amorphous
solid (Fig. 1a). Crystallization did not occur, since there
was no sudden decrease in the full width at half maximum
(FWHM) of the nitrate and glycine peaks (Liang et al.,
2021; Surovtsev et al., 2012; Liang et al., 2022a). Besides,
the 3450 cm−1 peak diminished, suggesting that the particle
lost water without phase transition, which is consistent with
the literature (Wang et al., 2022). Although some studies
reported an absence of efflorescence RH (ERH) in pure AN
(Zuend et al., 2011; Lightstone et al., 2000), the ERH of pure
GC was 61.7 % (Wang et al., 2022). Adding crystallizable
organics such as succinic acid to AN would also promote
its crystallization (Lightstone et al., 2000). The absence of a
phase transition in the AN+GC particles can be attributed to
the chaotropic nature of AN, which results in the “salting-in”
effect of glycine and the gradual evaporation of water (Ashraf
et al., 2021) without crystallization. As an amino acid, GC
has a proton-donating carboxyl (COOH) group and a proton-
accepting amino (NH2) group. The latter can form hydrogen
bonding with nitrate to suppress crystallization (Wang et al.,
2022). This was supported by the FWHM increases in the
GC and nitrate peaks as RH decreased (Fig. S3), due to
intensified molecular interaction. The particles are likely
dehydrated at 3 % RH due to the absence of OH peaks from
3200 to 3500 cm−1. As RH increased, the particle took up
water again and grew. There was no spectral change, other
than the increase in the O–H peak at 3450 cm−1 (Guo et al.,
2010).

For the SN+GC particle, the particle size decreased
as RH decreased from 84 % to 60 % (Fig. 1c). The black
line in Fig. 1d shows the Raman spectrum of an SN+GC
mixed droplet at 84 % RH, which is almost identical to that

Figure 1. Images and Raman spectra of the mixed (a, b) AN+GC
particles and (c, d) SN+GC particles during an evaporation–
humidification cycle. The arrows in panels (a) and (c) show the
changes in the relative humidity.

of an AN+GC mixed droplet at 85 % RH. Interestingly,
different from AN+GC particles, a phase transition from
a droplet to a crystalline solid was observed at 54 % RH.
The Raman spectra show a redshift of the nitrate peak
from 730 to 710 cm−1 and a blueshift in the 1046 cm−1

peak to 1051 cm−1, which is attributable to the formation
of glycine–sodium nitrate crystal (GSN; Fig. S4; Gujarati
et al., 2015). Two new peaks are attributed to the −NH+3
rocking mode at 1100 cm−1 after crystallization, which is
likely due to the more restricted vibration in the crystalline
lattice than in the aqueous droplet (Jentzsch et al., 2013).
The FWHM of the CH2 peaks at 1300 and 3020 cm−1

also decreased after crystallization. As RH further decreased
to 3 %, no noticeable change in appearance was observed.
The SN+GC crystal returned to a droplet at 82 % RH after
humidification.
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3.2 Photochemistry of glycine with different nitrate salts

The different phase transition behaviors observed in
AN+GC and SN+GC particles reflect the role of
molecular interaction in determining the physicochemical
properties of the particles. To examine if such interactions
could play a role in the chemical reactivity of the particles,
we exposed the AN+GC and SN+GC particles to UV
irradiation at 80 % RH.

The Raman spectral characteristics of AN+GC particles
only show slight changes from 0 to 8 h of irradiation
(Fig. 2a). Offline IC analysis also shows that no new
product formed (Fig. S5). However, the spectra of SN+GC
particles show apparent changes upon light irradiation.
Overall, glycine peaks, including C–N/C–C (890 cm−1) and
CH2 (1325, 1425, 2970, and 3020 cm−1; Kumar et al.,
2005), decreased, but peaks at 920 (C–C) and 1350 cm−1

(C–O) attributable to acetate and formate, respectively,
emerged (Figs. S5 and S6; Zhang et al., 2021). The rising
peaks at 1350 and 2925 cm−1 correspond to amide and
ammonia and/or amine (Philipsen et al., 2013; Socrates,
2004). Besides, nitrite was also found in the particle extracts
using IC. Nitrate photolysis directly generates HNO2/NO−2
(Gen et al., 2022), and the reaction between the two other
nitrate photolysis products, NO2 and OH−, would also form
nitrite (Pei et al., 2023).

3.3 Nitrate photochemistry of AN+GC and SN+GC
particles

The efficiencies of nitrate photolysis in the two mixed
systems were different. The fitted apparent nitrate photolysis
rate constant of SN+GC particles at 80 % RH was
9× 10−6 s−1 (R2

= 0.95), which is 4.5-fold higher than
that of AN+GC particles (Fig. S7). The nitrate photolysis
rate constant in SN+GC particles was comparable to
SN particles without glycine (1.2× 10−5 s−1), which
indicates that glycine has a minor suppression effect on SN
photolysis. The faster nitrate photolysis in SN+GC particles
likely contributed to the faster glycine decay, and the
different molecular interactions may explain the discrepancy
in nitrate photolysis rate constant between SN+GC and
AN+GC particles.

For instance, amino acid nitrate can form through (water-
mediated) hydrogen bonding between nitrate from AN and
the protonated amino group of glycine (Fig. 3a; Wang et al.,
2022; Ashraf et al., 2021). As a result, the amino acids
and nitrate ions in the droplet are bounded in an extensive
three-dimensional, hydrogen-bonded matrix (Wang et al.,
2022) in which nitrate photolysis could be hindered (Vimalan
et al., 2010). We envision that such interactions exist in
our AN+GC system. On the other hand, the COO− of
glycine can bind with SN via Na+ directly to form a
bidentate complex (Fig. 3a; Moision and Armentrout, 2002;
Aziz et al., 2008; Selvarani et al., 2022), thus leaving

Figure 2. Raman spectral evolution of (a) AN+GC and
(b) SN+GC particles after 0, 4, and 8 h irradiation. The insets are
expanded regions of the SN+GC particle spectra in the ranges of
[800,1000], [1200,1500], and [2800, 3150] (units in cm−1). The
red annotations denote the peaks from products. The spectra were
normalized by the substrate peak at around 1400 cm−1.

nitrate unbonded. The nitrate peak in SN+GC particles
split into two (Fig. 3b). One has the same Raman shift
as nitrate in AN+GC, which is likely bonded nitrate,
while the other peak at 1046 cm−1 was attributable to
unbonded aqueous nitrate (Liang et al., 2022a), which can
undergo photolysis to form a wealth of oxidants that lead
to glycine decay (Fig. 3a). The single symmetric nitrate
peak, small J , and minor glycine decay of AN+GC
particles suggested a negligible fraction of unbonded nitrate.
However, we also note that the exact molecular configuration
in concentrated particles can be much more complicated
than the illustrative example shown in Fig. 3a. Detailed
investigations of quantum chemistry and molecular dynamic
simulation with appropriate parameterization for non-ideal
solutions are required.

One would expect that these effects are more evident at
lower RH (but before crystallization), with higher solute
concentrations and fewer water molecules. Figure 4a shows
the percentage of GC decay after irradiation as a function of
the initial solute concentrations. At 0.01 M, the percentage
of GC decay is approximately 5 % in both AN+GC
and SN+GC solutions (Fig. 4a). However, as the initial
solute concentration increased from 0.01 M to ∼ 7.6 M, the
percentage of GC decay in SN+GC particles increased
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Figure 3. (a) A plausible schematic of the photochemical processes and molecular interactions in AN+GC and SN+GC particles. Dashed
red lines indicate the binding. The binding between AN+GC may be mediated by water (Ashraf et al., 2021). (b) The Raman peak of the
nitrate of AN+GC and SN+GC particles at 80 % RH before illumination. The spectra were normalized by the substrate peaks.

Figure 4. (a) The percentage decay of GC as a function of the initial concentration of GC in AN+GC and SN+GC equimolar mixtures.
The shaded regions represent the standard deviations. (b) The correlation between the nitrate photolysis rate constant (J ) and the percentage
of GC decay. (c) The percentage of GC decay in AN+GC and SN+GC particles at 80 % and 50 % RH.

by more than 1 order of magnitude to 70 %, while that of
the AN+GC particles remained small. The apparent nitrate
photolysis rate constant J shows a good correlation with the
percentage of GC decay (R2

= 0.99; Fig. 4b), which suggests
that nitrate photolysis is the key driver for the glycine decay.

The different reactivity of glycine between SN+GC
and AN+GC particles may also contribute to the distinct
photochemistry. For instance, glycine can be ionized
into different forms according to the local conditions,
including cationic, zwitterionic, and anionic polymers of
different reactivities (Aikens and Gordon, 2006). The
term zwitterionic denotes the charge-separated form of
amino acids in aqueous solutions and in crystalline states
(e.g., NH+3 –CH2–COO−). Several possible zwitterionic
conformers of glycine have been proposed with the addition
of one to three water molecules (Krauklis et al., 2020). The
rate of anionic glycine reacting with OH radicals is 2 orders
of magnitude higher than that of zwitterionic glycine (Berger
et al., 1999; Buxton et al., 1988), while that of zwitterionic
glycine is several times higher than cationic glycine. These
differences were due to the increased energy barriers for
oxidation upon protonation (Wen et al., 2022). However,
the protonation constants of glycine in concentrated solution

were difficult to define. Qualitatively, a possibly lower degree
of glycine protonation in SN+GC particles than AN+GC
particles might enhance the reactivity of glycine.

We also note that the initial water-to-glycine mole ratios
were higher for AN+GC particles (6) than SN+GC
particles (2), and sodium has a higher hydration number (6;
Medoš et al., 2019) than ammonium (4; Guo et al., 2020).
Therefore, the availability of free water in AN+GC particles
is likely higher than in SN+GC particles. This could affect
the configuration of glycine dimers or trimers, such as the
possible complexation of charge interactions between the
anionic carboxylate and the cationic−NH+3 groups. These
factors could also modulate the photoreactivity of glycine.

Though no phase transition occurred at RH below 60 %,
the percentage of GC decay in AN+GC particles was
very small (Fig. 4c). On the other hand, SN+GC particles
crystallized at 50 %, and the percentage of GC decay after
8 h irradiation became < 5 %, which is much smaller than
that at 80 % RH (Fig. 4c). Such a reduction in glycine decay
was likely due to the ineffective photolysis of nitrate in
the crystalline lattices (Asher et al., 2011). The crystalline
lattices greatly constrain the diffusion of nitrate photolysis
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products and facilitate their recombination to form nitrate,
resulting in a very low photolysis quantum yield.

4 Atmospheric implications

This work showed the distinct decay characteristics of
glycine as a model FAA in AN and SN particles under
the light. AN+GC particles did not crystalize at RH as
low as 3 %, while SN+GC did at 50 %–60 % RH. On
the other hand, glycine in AN+GC particles exhibited
a much slower decay than in SN+GC particles under
UV irradiation. A plausible explanation was the water-
mediated bonding between nitrate and GC in AN+GC
particles that suppressed crystallization but also hindered
nitrate photolysis from generating oxidants and reduced
the reactivity of glycine. In contrast, some unbonded
nitrate existed in deliquescent SN+GC particles to undergo
photolysis and triggered glycine decay effectively, though
it was significantly hindered once the particle crystallized.
Besides glycine, alanine (Ala) was another major FAA in
atmospheric particles (mole ratio of Ala to total FAAs is
0.07–0.17; Matos et al., 2016; Zhu et al., 2020; Zhang and
Anastasio, 2003). After 8 h irradiation, we also found evident
Ala decay in deliquescent SN+Ala particles but not in
AN+Ala ones (Fig. S8).

It is widely reported that nitrate dominantly exists as SN in
the coarse-mode aged sea salt particles and AN in the fine-
mode particles (Zhuang et al., 1999a, b). Concentrations of
FAAs in the coarse mode were ∼ 10 times higher than that
in the fine mode (Helin et al., 2017), which implies that the
FAAs plausibly co-existed with SN in atmospheric particles
and were subjected to oxidation triggered by effective SN
photolysis.

Similar to what we found in SN+GC particles, it has
been reported that particulate nitrate photolysis rate constants
(i.e., 10−5 s−1) can be 2 orders of magnitude higher than
nitrate photolysis in cloud and fog water (i.e., 10−7 s−1),
which is likely due to the reduced surface cage (Gen et al.,
2022). H2O2 photolysis (J=∼ 2× 10−6 s−1) was considered
to be the primary OH source in aqueous cloud water (Bianco
et al., 2015), and the aqueous-phase reactions with OH were
reported as an important sink of the cloud FAAs (Wen
et al., 2022). However, the small liquid water content in
aerosol particles limits the partitioning of H2O2 into the
particle phase. Taking particulate [H2O2] and [NO−3 ] as
0.1 ngµg−1 and 0.2 µgµg−1 (per PM2.5 mass; Xuan et al.,
2020; Cheng et al., 2016; Y. Li et al., 2022), respectively,
the OH generation from particulate nitrate photolysis could
be 4 orders of magnitude higher than from H2O2 photolysis.
Other oxidants from nitrate photolysis, such as nitrite and
HONO, can also react with FAAs to promote their decay
via N nitration (Kitada et al., 2020). As shown in Fig. 3a,
the complexation of glycine with the cation could be crucial
for allowing free nitrate for photolysis. Other atmospheric

cations, such as potassium, magnesium and calcium, can also
form complexes with the carboxylic group of amino acids
(Case et al., 2020; Lester et al., 2010; Tang and Skibsted,
2016). The pH of global ambient aerosol can span from 0–
6 (Weber et al., 2016; M. Liu et al., 2017), which means
that amino acids can exist in both cationic (0< pH < 2)
and zwitterionic (2< pH < 10) forms (Locke and McIver,
1983; Stroud et al., 1983). Previous studies have reported that
complexation is enhanced for cationic amino acids due to the
protonation (Moision and Armentrout, 2002).

Overall, this paper sheds light on the potential role of
particulate nitrate photolysis in the sink of the atmospheric
FAAs, which impacts the cycling of atmospheric organic
nitrogen. The reaction rate constants between FAAs and
different oxidants from nitrate photolysis can further
help quantify the contribution of nitrate photolysis in
FAA degradation and improve the prediction of the
atmospheric lifetime of FAAs. The reactivity analysis in
concentrated systems is complex, and our experimental
results can provide valuable data to parameterize the complex
thermodynamics in future studies. Systematic studies of the
detailed molecular mechanism and the factors influencing
nitrate photochemistry and FAA decay, such as molecular
configuration, alkalinity, and solvation are recommended.
Quantum chemical and molecular dynamic simulations
with appropriate parameters would be useful tools for this
purpose.
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