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Abstract. Fine particulate matter (PM2.5) pollution is still one of China’s most important environmental issues,
especially in northern cities during wintertime. In this study, intensive real-time measurement campaigns were
conducted in Xi’an, Shijiazhuang, and Beijing to investigate the chemical characteristics and source contribu-
tions of PM2.5 and explore the formation of heavy pollution for policy implications. The chemical compositions
of PM2.5 in the three cities were all dominated by organic aerosol (OA) and nitrate (NO−3 ). Results of source ap-
portionment analyzed by a hybrid environmental receptor model (HERM) showed that the secondary formation
source contributed more to PM2.5 compared to other primary sources. Biomass burning was the dominant pri-
mary source in the three pilot cities. The contribution of coal combustion to PM2.5 is non-negligible in Xi’an and
Shijiazhuang but is no longer an important contributor in the capital city of Beijing due to the execution of a strict
coal-banning policy. The potential formation mechanisms of secondary aerosol in the three cities were further
explored by establishing the correlations between the secondary formation sources and aerosol liquid water con-
tent (ALWC) and Ox (O3+NO2), respectively. The results showed that photochemical oxidation and aqueous-
phase reaction were two important pathways of secondary aerosol formation. According to source variations,
air pollution events that occurred in campaigns were classified into three types: biomass-combustion-dominated,
secondary-formation-source-dominated, and a combination of primary and secondary sources. Additionally, this
study compares the changes in chemical composition and source contributions of PM2.5 in past decades. The
results suggest that the clean-energy replacements for rural households should be urgently encouraged to reduce
the primary source emissions in northern China, and collaborative control on ozone and particulate matter needs
to be continuously promoted to weaken the atmosphere oxidation capacity for the sake of reducing secondary
aerosol formation.
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1 Introduction

Fine particulate matter (PM2.5, aerodynamic diameter≤
2.5 µm) is of large concern because of its adverse effects on
both the natural environment (Kuniyal and Guleria, 2019;
Kuo et al., 2013) and human health (Pöschl, 2005; Shen et
al., 2021; Zeng and He, 2019). With the soaring economic
growth and urbanization in China, PM2.5 pollution has been
a very serious environmental issue in recent decades (Chan
and Yao, 2008; He et al., 2002; Pui et al., 2014; Zhang et
al., 2013). The most impressive case is that an extremely
severe haze pollution episode occurred in eastern and cen-
tral China in January 2013, with a peak PM2.5 concentra-
tion value of over 500 µgm−3. This month had been reported
as the haziest month in the past 60 years in Beijing, China
(Wang et al., 2014; Huang et al., 2014). Thereafter, aiming to
improve air quality, the Chinese central government issued
the Air Pollution Prevention and Control Action Plan (AP-
CAP) in September 2013 (http://www.gov.cn/zwgk/2013-09/
12/content_2486773.htm, last access: 12 September 2013;
in Chinese) and the Three-year Action Plan to Fight
Air Pollution (TAPFAP) in June 2018 (http://www.gov.cn/
zhengce/content/2018-07/03/content_5303158.htm, last ac-
cess: 3 July 2018; in Chinese). With the implementation
of strict pollution controls, air quality in northern China
has improved significantly over the past decade (Wang et
al., 2020a, 2017; Li et al., 2020). Previous studies show that
PM2.5 concentration decreased notably in the past 2 decades,
and the composition of organic aerosol (OA), black carbon
(BC), and sulfate (SO2−

4 ) decreased as well, while ammo-
nium (NH+4 ) slightly increased, and nitrate (NO−3 ) increased
obviously. In terms of PM2.5 sources, the contribution of
secondary sources increased obviously, while the contribu-
tion of industrial emissions and coal combustion decreased
due to elimination of industries and enterprises with high
pollutant emissions, promotion of desulfurization in indus-
trial facilities, replacement of clean energy, and optimiza-
tion of industrial and energy structures (Lu et al., 2021; Ma
et al., 2022; Tao et al., 2017; Y. Wang et al., 2019). How-
ever, there is still a significant gap between the PM2.5 con-
centration in northern China and its latest recommendations
on air quality guidelines (5 µgm−3) by the World Health Or-
ganization (https://apps.who.int/iris/bitstream/handle/10665/
345329/9789240034228-eng.pdf, last access: 26 November
2018; p. 78). In addition, severe PM2.5 pollution still fre-
quently occurred in northern China during wintertime (Guo
et al., 2021; J. Li et al., 2017; X. Li et al., 2021). To figure
out the causes behind the pollution and further improve air
quality in northern China, it is essential to use online high-
time-resolution source apportionment technology to under-
stand the chemical composition and source contribution of
PM2.5 in those pollution events.

Recently, more research on measurements of PM2.5 and
its source apportionments were conducted using online high-
time-resolution technologies (Y. Li et al., 2017; F. Wang

et al., 2021; Elser et al., 2016). Compared to traditional
offline filter-based approaches, online methods character-
ize the short-time variation in PM2.5. This allows the rapid
changes in and evolutions of chemical components to be dis-
tinguished and is particularly beneficial for the purpose of
gaining knowledge about the formations of heavy air pollu-
tion (Liu et al., 2016; Ouyang et al., 2019; Zheng et al., 2016;
Elser et al., 2016). For instance, Lv et al. (2021) employed a
positive matrix factorization (PMF) model with high-time-
resolution online PM2.5 data to accurately quantify and dis-
tinguish the source distributions in Beijing during two haze
episodes in January 2019. Liu et al. (2019) recognized the
main drivers of haze events that occurred in Beijing in winter
of 2016 according to high-time-resolution source apportion-
ment of PM2.5 with multiple models. Furthermore, M. Wang
et al. (2021) found that vehicle emissions contributed most
to PM2.5 during pollution episodes in downtown Lanzhou
based on high-resolution online data source apportionment.
Currently, to fully understand and solve heavy-pollution
events in winter that trouble local governments in northern
cities of China (Z. Wang et al., 2022; Xu et al., 2022; Zhou
et al., 2022), more advanced online measurement and source
apportionment are better choices (Tao et al., 2015). It should
be pointed out that previous research has mainly focused on
individual cities, and those results have some limitations in
guiding the improvement of air quality in the entire northern
region of China. Therefore, it is necessary to conduct com-
parative research among multiple cities.

Considering the differences in geographical location, pop-
ulation, economy, industry and energy structure, air qual-
ity, and depth of air pollution control measures among dif-
ferent cities, three cities in northern China (Beijing, Shiji-
azhuang, and Xi’an) were chosen as pilot research subjects.
The cities of Beijing and Shijiazhuang are located in the
North China Plain, which is one of the most polluted re-
gions in China (Chan and Yao, 2008). Beijing is the capital
of China, and its air quality has significantly improved un-
der the implementation of the strictest clean-air policy since
2013 (J. Li et al., 2021; Pang et al., 2021; Vu et al., 2019;
Zhang et al., 2020). However, the city is still plagued by pol-
lution events in wintertime (Wang et al., 2020b; X. Yang et
al., 2022; Zhou et al., 2022). Shijiazhuang has been recog-
nized as one of the cities with the most serious air pollution
worldwide (B. Liu et al., 2018; R.-J. Huang et al., 2019). Its
air quality had also improved under the implementation of
the Clean Air Plan, whereas its annual PM2.5 concentration
was still unable to meet China’s National Ambient Air Qual-
ity Standards (NAAQS-II) of 35 µgm−3 until 2021 (Fig. S1
in the Supplement). Xi’an is located in the Fenwei Plain,
which is a region that has suffered from heavy pollution and
was designated as a key region for the TAPFAP in 2018 (Cao
and Cui, 2021). Compared with Beijing and Shijiazhuang,
high-intensity air pollution controls in Xi’an started late due
to a lack of financial support. And the annual PM2.5 con-
centration in Xi’an could not meet the NAAQS-II until 2021
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as well (Fig. S1). Meanwhile, it is still unclear whether the
actual causes of the pollution are topography, meteorologi-
cal conditions, or local emissions (Chen et al., 2021; Tian
et al., 2022; Wang et al., 2015; Z. Wang et al., 2022). In
this study, we conducted intensive real-time observation of
PM2.5 chemical components in Xi’an, Shijiazhuang, and Bei-
jing during wintertime. The objectives were (1) to determine
the characteristics of PM2.5 and its chemical components in
the three typical northern Chinese cities during wintertime,
(2) to quantify the source contribution and explore the poten-
tial formation mechanism of secondary aerosols, (3) to ex-
plore the unique causes of heavy-pollution events in different
cities, and (4) to provide suggestions for the establishment
of efficient policies for continuous air quality improvement.
This study provides scientific guidance for developing policy
on air quality improvement for northern Chinese cities.

2 Methods

2.1 Sampling sites and periods

In this study, intensive online measurements of PM2.5 were
conducted in the three pilot cities of Xi’an, Shijiazhuang,
and Beijing during wintertime (Fig. 1). The sampling sites
in Xi’an and Beijing are located at two Chinese Academy of
Sciences (CAS) stations. The one in Xi’an is the Guanzhong
Plain Ecological Environment Change and Comprehensive
Treatment National Observation and Research Station, In-
stitute of Earth Environment (IEE) (34.24◦ N, 108.87◦ E),
and the one in Beijing is the Tower Branch of the Institute
of Atmospheric Physics (IAP) (39.98◦ N, 116.39◦ E). Both
sites are surrounded by commercial and residential buildings
without intense industrial emissions nearby. Previous studies
indicated that these two sites were influenced by biomass and
coal burning for heating and cooking during wintertime as
well as usual local traffic emissions (Tian et al., 2021; Xu et
al., 2021). The sampling site in Shijiazhuang is situated in the
courtyard of Hebei Sailhero Environmental Protection High-
tech Co., Ltd. (38.04◦ N, 114.65◦ E), which is surrounded by
pharmaceutical and machine-building industries and close to
the streets. The intensive campaigns were continuously con-
ducted for ∼ 1 month in each city (i.e., 12 December 2020
to 7 January 2021 in Xi’an, 20 December 2021 to 24 January
2022 in Shijiazhuang, and 17 January to 20 February 2021 in
Beijing).

2.2 Online measurements of PM2.5 chemical
components

2.2.1 Organic aerosol and inorganic ions

Concentrations of OA, NO−3 , SO2−
4 , ammonium (NH+4 ),

and chloride (Cl−) in PM2.5 at a 15 min time resolution
were monitored by a quadrupole aerosol chemical speciation
monitor (Q-ACSM; Aerodyne Research Inc., Billerica, MA,
USA) equipped with a PM2.5 lens. The detailed operational

principles and calibration method of the Q-ACSM are de-
scribed elsewhere (Ng et al., 2011; Hu et al., 2017). First, the
sampled ambient airstream passed through a PM10 impactor
inlet and a Nafion® dryer (MD-700-24F-3, Perma Pure, Inc.,
Lakewood, NJ, USA) with a flow rate of 5 L min−1 before
entering the Q-ACSM chamber. Then, the pre-treatment par-
ticles passed through a 100 µm critical orifice at 0.1 L min−1

and were focused into a narrow beam by an aerodynamic
intermediate-pressure lens. The focused particle beam was
flash-vaporized by a capture vaporizer (CV) at∼ 600 ◦C. The
vaporized compounds were then ionized by an electron im-
pactor (EI) ionization source at 70 eV and subsequently ana-
lyzed by the quadrupole mass spectrometer.

The calibration system consists of an atomizer (Model
9302, TSI Inc., Shoreview, MN, USA), a differential mo-
bility analyzer (DMA; TSI model 3080, TSI Inc.), and a
condensation particle counter (CPC; TSI model 3772, TSI
Inc.), and ammonium nitrate (NH4NO3) and ammonium sul-
fate ((NH4)2SO4) aerosols were used for calibration. The raw
data of the Q-ACSM were analyzed by the ACSM local tool
(V1.5.3.5, Aerodyne Research Inc., Billerica, Massachusetts,
USA) compiled with Igor Pro 6.37 (WaveMetrics, Lake Os-
wego, OR, USA). The response factors (RFs) for NO−3 in
Xi’an, Shijiazhuang, and Beijing were set at 2.03× 10−11,
5.9× 10−11, and 2.20× 10−11, respectively, and the relative
ionization efficiencies (RIEs) for NH+4 and SO2−

4 were set at
8.06 and 0.83 in Xi’an, 5.82 and 0.30 in Shijiazhuang, and
6.31 and 0.38 in Beijing, respectively. Other RIEs for NO−3 ,
OA, and Cl− were set at default values of 1.4, 1.1, and 1.3,
respectively (Ng et al., 2011). In addition, the collection ef-
ficiency (CE) value of the Q-ACSM equipped with a PM2.5
lens was recommended as 1 based on laboratory simulation
experiments by Xu et al. (2017). Finally, the chemical com-
ponents monitored by the Q-ACSM were corrected by the
results of offline filter sampling experiments during the same
periods (Fig. S2).

2.2.2 Black carbon

BC concentration in PM2.5 was obtained by an Aethalometer
(Model AE33, Magee Scientific Inc., Berkeley, CA, USA)
with a 1 min time resolution. The AE33 monitors the light
attenuation of seven wavelengths (λ= 370, 470, 525, 590,
660, 880, and 940 nm), and the light attenuation at λ=
880 nm was used to calculate BC concentration (Q. Wang et
al., 2019; Drinovec et al., 2015). Briefly, the ambient air was
first sampled on a filter tape inside the instrument through
a PM2.5 cyclone (SCC-1.829, BGI Inc., USA) at a flow rate
of 5 L min−1. The entering particles were divided into two
sample spots on the filter through two channels with dif-
ferent flows. Then the light attenuation transmitted through
two parallel spots was detected. For high-quality monitor-
ing accuracy, the sampled particles were desiccated with
a Nafion® dryer (MD-700-24F-3, Perma Pure, Inc., Lake-
wood, NJ, USA) before entering the AE33. Furthermore, a
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Figure 1. Chemical composition and source apportionment results of PM2.5 in the three pilot cities of northern China during the sampling
period.

real-time loading effect compensation algorithm based on
two spot measurements was used to eliminate the nonlinear
loading effects of the Aethalometer. A detailed description
of the Model AE33 principle can be found in Drinovec et
al. (2015).

2.2.3 Elements

A total of 23 elements, including Si, K, Ca, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn, Ga, As, Se, Ag, Cd, Sn, Ba, Au, Hg, Th, Pb, and
Pd in PM2.5, were analyzed by an Xact625 ambient-metal
monitor (Cooper Environmental Services, Tigard, Oregon,
USA) with a 1 h time resolution. Si, K, Ca, Cr, Mn, Fe, Ni,
Cu, Zn, As, Se, Ba, and Pb were selected for further analy-
sis in Xi’an and Beijing, while other elements were excluded
due to most of their concentration being below the method’s
detection limit. In Shijiazhuang, S, Cl, and Ti were analyzed
by replacement of Ga, Ag, and Au, respectively. Finally, Si,
K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Ba, and Pb were
selected for further analysis. The description and detection
principles of Xact625 were introduced by Furger et al. (2020)
and Rai et al. (2020). In brief, the ambient airstream was first
sampled on a Teflon filter tape inside the instrument through
a PM2.5 cyclone inlet at a constant flow rate of 16.7 L min−1,

and then the sample was automatically analyzed by nonde-
structive energy-dispersive X-ray fluorescence (XRF) to de-
termine the mass of the species. For quality control and as-
surance, the Xact625 performed automatic internal quality
control by testing the Pd rod every hour to ensure the sta-
bility of the instrument. Energy calibration was performed
daily from 00:00 to 00:15 and a range calibration from 00:15
to 00:30 local standard time (LST) to monitor any possible
shift in and instability of the XRF (Liu et al., 2019). During
our sampling periods, the concentration of Pd varied within
3 standard deviations (Fig. S3), illustrating the reliable and
stable performance of the Xact625.

2.2.4 Complementary data

Online hourly concentrations of PM2.5 and gas pollutants
(i.e., NOx , NO2, CO, SO2, and O3) were acquired from the
national air quality monitoring station (https://air.cnemc.cn:
18007/, last access: 17 August 2023). Meteorological param-
eters, including wind speed (WS), wind direction (WD), rela-
tive humidity (RH), and temperature (T ), were obtained from
the national meteorological station (http://data.cma.cn/, last
access: 30 September 2022). Detailed information on com-
plementary data is listed in Table S1 in the Supplement.
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2.3 Data analysis

2.3.1 PM2.5 mass reconstruction

A chemical closure was utilized to assess whether chemi-
cal compositions can be representative of PM2.5. The sum
of OA, NO−3 , SO2−

4 , NH+4 , Cl−, BC, mineral dust (MD), and
trace elements (TEs) was considered to be the reconstructed
PM2.5, where MD and TEs were calculated as follows (Chow
et al., 2015):

[MD] = 2.20×[Al] + 2.49×[Si] + 1.63×[Ca]

+ 2.42×[Fe] + 1.94×[Ti] (1)

[TE] = [K] + [Cr] + [Mn] + [Ni] + [Cu] + [Zn]

+ [As] + [Se] + [Ba] + [Pb] , (2)

where the square brackets represent the chemical species
concentration; [Al] and [Ti] were calculated by the concen-
tration of Ca ([Al] = 4.3×[Ca] and [Ti] = 0.25×[Ca]) (Wei
et al., 1991). Good correlations between online and recon-
structed PM2.5 mass (slope= 0.87–1.10, R2

= 0.82–0.93) in
the three pilot cities (Fig. S4) indicated that our measure-
ments could detect major components of PM2.5. The PM2.5
concentration used in the following discussion refers to the
reconstructed PM2.5 concentration.

2.3.2 Hybrid environment receptor model

Source apportionment of PM2.5 was analyzed with a bilinear
model referred to as a hybrid environment receptor model
(HERM). HERM was developed by the IEE, CAS, and the
University of Nevada, Las Vegas (Chen and Cao, 2018). Like
other receptor models, the speciation of pollutants at a recep-
tor site can be separated into emission sources and the chem-
ical compositions of the sources. To solve the mass balance
of PM2.5, the bilinear HERM in matrix notation is defined as
follows:

Cmn =
∑I

i=1
FmiGin+Qmn , (3)

where Cmn is the measured concentration of chemical
species m during time n; Fmi is the source profile, which
is the fractional quantity of species m in source i emissions;
Gin represents the contribution of source i during time n;
and Qmn is the model residual for species m concentration
measured during time n. Based on an iterative conjugate gra-
dient algorithm, the HERM solves Gin and unknown Fmi by
minimizing the Qmn, which is defined as follows:

Qmn =

∑M

m=1

∑N

n=1

(
Cmn−

∑I
i=1FmiGin

)2

σ 2
Cmn
+
∑I
i=1

(
σ 2
Fmi
G2
in+ δmiσ

2
Cmn

) , (4)

where M , N , and I are the number of samples, chemical
species, and sources, respectively; σFmi represents the error
in the variability in the constrained factor profile. δmi was

set to 0 or 1 depending on whether the ith factor profile is
constrained or unconstrained, respectively.

The HERM input data included the concentration and un-
certainty data of chemical species. A total of 19 chemical
species in Xi’an and Shijiazhuang and 20 chemical species
in Beijing were selected for source apportionment, respec-
tively. Details of selected chemical species and their uncer-
tainty calculation are described in Sect. S1 in the Supple-
ment. A range of 2- to 10-factor solutions were investigated
by HERM with completely unconstrained factor profiles to
search for optimal solutions. The detailed diagnostics can be
seen in Sect. S2. A six-factor solution for Xi’an and Shiji-
azhuang and an eight-factor solution for Beijing were found
to be the optimal solutions based on multiple criteria, includ-
ing (1) variations inQ/Qexp, which can be used to choose the
optimal number of resolved factors; (2) physical meaningful-
ness of distinct factor profiles and explained variation (EV)
values of variables; (3) good correlations between source
contribution and external and internal tracers; and (4) agree-
ment between the measured and modeled PM2.5 mass. More
detailed information on the final selected factor profiles and
contributions is presented in Sect. 3.2.

2.3.3 Aerosol liquid water content

Aerosol liquid water content (ALWC) was calculated by the
ISORROPIA II thermodynamic equilibrium model (http://
isorropia.eas.gatech.edu/, last access: 17 August 2023) based
on data of PM2.5 chemical species (including NO−3 , SO2−

4 ,
NH+4 , and Cl−) and meteorological parameters, including
relative humidity (RH) and temperature (T ); more model in-
formation can be found in Fountoukis and Nenes (2007). It
should be noted that the ISORROPIA II model does not con-
sider the contribution of the organic aerosols, as inorganic
aerosols are the most hygroscopic species and the most dom-
inant contributor to ALWC (Huang et al., 2020).

3 Results and discussion

3.1 Characteristics of PM2.5 and its chemical
components

Figure 1 illustrates the mass composition of PM2.5 in the
three pilot cities during the sampling periods, and their con-
centration levels are summarized in Table S4. The average
PM2.5 concentrations in Xi’an, Beijing, and Shijiazhuang
were 77± 47, 64± 57, and 60± 39 µgm−3, respectively. It
is noted that the average PM2.5 concentrations in Xi’an, Bei-
jing, and Shijiazhuang did not meet the second level of the
NAAQS, indicating that it is necessary to establish more par-
ticular and efficient pollution reduction measures. As shown
in Fig. 1, the chemical compositions of PM2.5 were sim-
ilar in Beijing and Shijiazhuang (Fig. 1b and c) and were
mainly composed of OA (26.9 %–34.2 %), followed by NO−3
(23.6 %–26.5 %), SO2−

4 (11.8 %–15.0 %), NH+4 (11.8 %–
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14.8 %), MD (7.4 %–10.1 %), BC (2.9 %–6.5 %), and Cl−

(1.1 %–4.8 %). However, in Xi’an, MD contributed compar-
atively more to PM2.5 (17.3 %), while SO2−

4 had a smaller
contribution (6.8 %). This could be explained by more con-
struction activity and MD transport from the Loess Plateau to
Xi’an (Long et al., 2016; Yan et al., 2015). Meanwhile, the
lowest sulfur oxidation ratio (SOR) was observed in Xi’an
(0.18±0.08; see Table S5), indicating weak efficiency of the
second generation of SO2−

4 . The sum of SO2−
4 , NO−3 , and

NH+4 accounted for 39.0 %–53.0 % of PM2.5 in the three pilot
cities, highlighting the importance of the secondary inorganic
components in northern China. In addition, the fractions of
BC, Cl−, and TE in PM2.5 were lower in Beijing than those
in the other two cities, which can be explained by the stricter
local control policies on solid fuel combustion and tightening
of industrial emission standards in and near the capital city
of China (J. Li et al., 2021; Pang et al., 2021).

To better understand the impact of the chemical com-
ponents, the mass fraction of each component was plotted
as a function of the PM2.5 mass concentration (Fig. 2a–c).
The two dominant components of PM2.5 were OA (25.7 %–
38.0 %) and MD (19.9 %–37.1 %), while the PM2.5 concen-
trations were below 40 µgm−3. The fraction of OA in PM2.5
was the highest in Shijiazhuang and Beijing, while MD con-
tributed most to PM2.5 in Xi’an. This is potentially related
to more emissions and higher backgrounds of local dust.
With increases in the PM2.5 mass concentration, the frac-
tions of chemical components in Xi’an and Shijiazhuang
changed notably. The fractions of OA and NO−3 increased
the most and reached peaks of 40.1 % and 28.7 %, respec-
tively, when the PM2.5 concentration reached ∼ 196 µgm−3

in Xi’an. In contrast, NO−3 and SO2−
4 were two dominant

drivers of increasing PM2.5 concentrations in Shijiazhuang,
showing peak contributions of 32.5 % and 18.7 %, respec-
tively, when the PM2.5 concentration was over 100 µgm−3.
Compared to Xi’an and Shijiazhuang, Beijing had relatively
stable fractions of each chemical component, with increasing
PM2.5 concentrations. Particularly, the fractions of OA and
NO−3 contributed dominantly, with averages of 33.3± 3.0 %
and 25.3±2.5 %, respectively, when the PM2.5 > 40 µgm−3.

3.2 Source apportionment of PM2.5

Six potential sources, including biomass burning, fugitive
dust, industrial emissions, coal combustion, vehicle emis-
sions, and secondary formation sources, were resolved by
the HERM analysis. In Beijing, secondary formation sources
were further divided into secondary nitrate plus OA and sec-
ondary sulfate plus OA. Fireworks as a special pollution
source were separated due to the Chinese Spring Festival
(from New Year’s Eve to 3 January on the lunar calendar).
Figures S6–S8 present the source profiles and contributions
in Xi’an, Shijiazhuang, and Beijing, respectively. Biomass
burning features high EV for the two tracers Cl− (33 %–
58 %) and K (30 %–44 %) in the three cities (Ni et al., 2017;

Zhao et al., 2021). The fugitive dust is characterized by high
EV values for Si (60 %–90 %) and Ca (34 %–54 %), which
are the dominant chemical species in the fugitive dust pro-
files in northern China (Shen et al., 2016; Zhao et al., 2006).
The fractions of industrial emissions vary among the cities,
showing high EV for Ni (55 % and 87 %) and Cr (25 % and
70 %) in Xi’an and Shijiazhuang and high EV for Cr (26 %),
Mn (40 %), and Pb (27 %) in Beijing. Ni is possibly emit-
ted from the semiconductor industry (Simka et al., 2005).
Cr, Mn, and Pb could originate from steel manufacturing
and incinerator fly ash (Duan and Tan, 2013; Ledoux et
al., 2017). Coal combustion is characterized by high EV val-
ues for As (38 %–75 %), Se (40 %–50 %), and Pb (31 %–
57 %). These elements are enriched in coals, which are re-
liable indicators of coal combustion (Tian et al., 2013; Xu
et al., 2012). The non-exhaust vehicle emissions could be
identified by the elements Ba, Cu, Ca, Fe, and Mn. Cu and
Ba can be released from brake and tire wear of vehicles
(Adachi and Tainosho, 2004; Thorpe and Harrison, 2008).
Moreover, Fe and Mn could be emitted from the combus-
tion of lubricating oil and fuel additives (Ålander et al., 2005;
Lewis et al., 2003). Relatively high EV values for Ba (68 %),
Cu (36 %), and Ca (35 %) are seen in Xi’an; significantly
high EV values of Mn (68 %), Fe (65 %), Cu (53 %), and
Ba (80 %) are characterized in Shijiazhuang; and relatively
high EV values of Fe (34 %) and Cu (39 %) are featured
in Beijing. Moreover, moderate EV values for BC (18 %–
27 %) and OA (13 %–22 %) are commonly regarded as con-
tributions of vehicle engine exhaust, while the temporal vari-
ations in the source concentration are well correlated with
gaseous NOx or NO2 in the three cities (R2

= 0.45–0.78),
which is a good tracer of traffic-related emissions (Huang et
al., 2017; L. Li et al., 2017). The secondary sources resolved
by HERM are different among the three cities. In Xi’an and
Shijiazhuang, this factor is characterized by high EV values
for SO2−

4 (62 %–75 %), NO−3 (55 %–53 %), and NH+4 (60 %–
56 %) and a medium EV value for OA (23 %–29 %), which
showed good correlations with SO2−

4 (R2
= 0.85–0.90) and

NO−3 (R2
= 0.85–0.92) (Dai et al., 2020; Tian et al., 2022). In

addition, the OA concentration of this factor was calculated
by the EV value of OA, which was close to the secondary
OA (SOA) concentration estimated by the BC-trace method
(see Sect. S3 and Table S6). This means that SOA was mixed
in this factor; therefore, this factor was identified as a sec-
ondary formation source. In Beijing, two secondary sources
were resolved. The first one was characterized by a high EV
value for NO−3 (58 %) and NH+4 (42 %) and medium values
for OA (21 %); another one was characterized by a high EV
value for SO2−

4 (58 %) and medium values for OA (16 %)
and NH+4 (30 %). The OA concentration in those two fac-
tors was also comparable to that estimated by the BC-trace
method (see Sect. S3). So those two sources were identified
as secondary nitrate plus OA and secondary sulfate plus OA,
respectively. The combination of secondary nitrate plus OA
and secondary sulfate plus OA is equivalent to the secondary
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Figure 2. Mass fractions of chemical components (a–c) and source contribution (d–f) with reconstructed PM2.5 concentration in Xi’an,
Shijiazhuang, and Beijing.

formation sources for the next discussion. Additionally, the
source of firework emissions is characterized by high EV val-
ues of Ba (83 %), Cu (45 %), and K (38 %), which are recog-
nized as common indicators of fireworks (Rai et al., 2020;
Tian et al., 2014).

The modeled PM2.5 mass was well correlated with the
reconstructed PM2.5 mass (R2

= 0.99, slope= 0.90–1.01;
Fig. S10) in the three pilot cities, indicating that the estab-
lished models are reasonable. As shown in Fig. 1d and e, the
contributions of primary sources (i.e., the sum of biomass
burning, fugitive dust, industrial emissions, coal combustion,
and vehicle emissions) in PM2.5 were significantly higher
than those of the secondary formation sources in Xi’an and
Shijiazhuang, indicating that the PM2.5 in these two cities
is mainly influenced by the primary source emissions dur-
ing wintertime. Particularly, biomass burning and coal com-
bustion were two dominant contributors to PM2.5, with con-
tributions of 24.6 % and 15.1 %, respectively, in Xi’an and
24.4 % and 16.0 %, respectively, in Shijiazhuang. These sug-
gest that controls of solid fuel combustion are critical to re-
ducing PM2.5 pollution in these cities. In contrast, the con-
tribution of secondary formation sources to PM2.5 in Beijing
was highly dominant (> 50 %), potentially attributed to the
strict control of primary emissions under the execution of a
series of pollution control policies (Lv et al., 2016; Pang et
al., 2021) and more regional transportation of secondary pol-
lutants (Liu et al., 2019; Wang and Zhao, 2018). Among the
primary sources, the contributions of biomass burning and
vehicle emissions were only 18.4 % and 11.3 %, respectively,
further reflecting the benefits of reductions in all primary
emissions. Due to the Chinese Spring Festival, the contribu-
tion of fireworks (7.9 %) to PM2.5 ranked second in primary
sources (Fig. S11), which indicates that more refined con-

trol schemes need to be encouraged to deal with such special
events in the future. It should be noted that the contribution
of fugitive dust was lower than the fraction of mineral dust in
the three pilot cities (Fig. 1). This is because fugitive dust de-
fined here mainly refers to road and construction dust emis-
sions, while mineral dust represents material assumed to be
oxides of mineral elements such as Al, Si, Ca, Ti, and Fe
(Chow et al., 2015). These mineral elements in PM2.5 come
from more emission sectors, including industry, the Earth’s
crust, transportation, construction, and combustion (J. Liu et
al., 2018; Lu et al., 2014; Pant and Harrison, 2013; Shen et
al., 2016).

Figure 2d–f show variations in source contribution with
increases in PM2.5 mass concentrations in the three pilot
cities. The two most dominant sources were secondary for-
mation sources (32.1 %) and fugitive dust (31.4 %) in Xi’an,
coal combustion (24.9 %) and vehicle emissions (21.3 %)
in Shijiazhuang, and secondary formation sources (24.3 %)
and fugitive dust (23.8 %) in Beijing when the PM2.5 mass
concentration was < 40 µgm−3. In Xi’an, when the PM2.5
mass concentrations exceeded 180 µgm−3, the contribution
of biomass burning rose the most and reached a peak of
38.4 %, demonstrating that biomass burning plays an impor-
tant role in the worsening of air quality in Xi’an. In contrast,
the contributions of secondary formation sources increased
the most in comparison to other sources in Shijiazhuang and
Beijing, indicating that the PM2.5 pollution was mainly dom-
inated by secondary aerosol formation during the wintertime.
And the peak contributions of secondary nitrate and sulfate
were 66.5 % and 74.7 %, while the PM2.5 mass concentra-
tion increased to 113 and 223 µgm−3 in Shijiazhuang and
Beijing, respectively.
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3.3 Formation of secondary aerosols

Using the high-time-resolution data, we further explored
the possible formation mechanisms of secondary formation
sources. The concentration of secondary formation sources is
standardized by dividing background-corrected CO (1CO)
to weaken the impact of planetary boundary layer height
(PBLH) (DeCarlo et al., 2010). In this study, 1CO is de-
fined as the 1.25th percentiles of CO concentration during
the campaign, which are 0.17, 0.15, and 0.16 ppm in Xi’an,
Shijiazhuang, and Beijing, respectively. Ox (NO2+O3) is
an indicator of the photochemical oxidation degree (Wood
et al., 2010). The function between the secondary formation
source /1CO ratio and Ox during the daytime (i.e., 08:00–
17:00 LST) (Fig. S12) was plotted to explain the effect of
photochemical oxidation in the three pilot cities. As shown
in Fig. 3, good linear correlations of the secondary formation
source /1CO ratio and Ox (R2

= 0.83–0.99) suggest that
photochemical oxidations play an important role in the for-
mation of secondary aerosol during the daytime. Compared
to the low-level Ox , formation of secondary aerosol was sig-
nificantly enhanced at high Ox levels (> 50 ppb) in Xi’an and
Beijing, characterized by larger slopes of 17.2 and 38.9, re-
spectively (Fig. 3a and c). Furthermore, the highest atmo-
spheric oxidation capacity was found in Beijing, inferred by
the highest fraction of O3 to Ox . This is consistent with the
highest contribution of secondary formation sources to PM2.5
in Beijing during the daytime (Fig. S13a–c).

The aqueous-phase reaction is another important pathway
for secondary aerosol formation in the atmosphere (Wang et
al., 2018; Xue et al., 2014). ALWC is considered an indicator
of an aqueous-phase reaction (Ervens et al., 2011). As shown
in Fig. S14, the aqueous-phase reaction occurred during both
daytime and nighttime and was characterized by good corre-
lations between the secondary formation source /1CO ratio
and ALWC (R2

= 0.81–0.98). The correlations of the sec-
ondary formation source /1CO ratio and ALWC during all
sampling periods were re-established in the three pilot cities
to assess the implications of aqueous-phase chemistry for
secondary aerosol production. As shown in Fig. 4, the sec-
ondary formation source /1CO ratio showed a significant
linear correlation with ALWC (R2

= 0.92–0.99) when RH<
80 %, indicating an obvious effect of the aqueous-phase re-
action on the secondary aerosol formation during the sam-
pling periods. However, when RH> 80 %, the secondary for-
mation source /1CO ratio showed no notable increase with
ALWC in Shijiazhuang (Fig. 4b), whereas it showed a tiny
increase with ALWC in Beijing (Fig. 4c). The higher ALWC
at RH> 80 % probably inhibits secondary aerosol formation
due to the decrease in aerosol acidity (X. Huang et al., 2019;
Meng et al., 2014). Khan et al. (2008) found that NO3 rad-
icals can be rapidly generated from the reaction between
NO2 and O3 with unsaturated organic species during night-
time. The value of O3×NO2 can thus represent its produc-
tion reaction rate or be used as a proxy for the NO3 radical.

The highest NO3 radical production rate was found in Bei-
jing, followed by Xi’an and Shijiazhuang, when RH< 80 %.
This could be used to explain the highest contribution of sec-
ondary formation sources to PM2.5 in Beijing during the day-
time and nighttime (Fig. S13). Moreover, the results showed
that both photochemical oxidation and aqueous-phase reac-
tion play more important roles in Beijing, where the primary
sources have been better controlled. This reflects that pol-
lution control policies need to focus on the suppression of
secondary formations.

3.4 Elaborations of different episodes

During the sampling periods, the concentration of PM2.5
and its chemical components accumulated within a short pe-
riod in a few cases (Fig. S15a–c). We define such a rapid
rise in PM2.5 mass concentration as a pollution episode. As
shown in Table 1, meteorological conditions, the concentra-
tion levels of gaseous pollutants, chemical compositions, and
source contributions of PM2.5 during pollution episodes in
the three pilot cities are summarized. The episodes were ac-
companied by low wind speed (< 2 m s−1), leading to weak
dispersions of fresh emissions and accumulated pollutants
(Z. Chen et al., 2020). OA and NO−3 were the two dom-
inant chemical components in PM2.5 during all pollution
episodes, with fractions of 26 %–40 % and 23 %–32 %, re-
spectively. Their high abundances could be explained by the
significant reduction in SO2 emissions because of the prohi-
bition of burning bulk coals and enforcement of the “Coal-
to-Natural Gas” policy in recent years (Meng et al., 2022).
In this study, eight pollution episodes (denoted as EP1–EP8)
were classified into three types: the first type was dominated
by biomass burning (30 %–40 %) (EP1, EP4, and EP8); the
second type was dominated by secondary formation sources
(61 %–70 %) (EP5, EP6, and EP7); and the two remaining
pollution episodes were mutually contributed by both pri-
mary and secondary sources (EP2 and EP3), in which sec-
ondary formation sources (34 %–39 %) and biomass burning
(23 %–24 %) were the two dominant contributors to PM2.5.

To gain insights into the process of pollution episodes,
three typical pollution events were chosen for detailed dis-
cussion (i.e., EP2 in Xi’an, EP4 in Shijiazhuang, and EP7
in Beijing) based on the validity and integrity of the data
and the representativeness of the selected pollution events.
The two-stage evolution was distinguished for EP4 as an ex-
ample of the first type of episode (Fig. S16). In Stage 1,
the PM2.5 mass concentrations rapidly increased from 7 to
82 µgm−3 under stable weather conditions, inferred by low
wind speed (1.8± 0.8 m s−1; Fig. S16b), in which the con-
centrations (fractions) of biomass burning increased from
0.6 µgm−3 (7 %) to 36.7 µgm−3 (55 %) due to heating ac-
tivity during nighttime. Meanwhile, the chemical composi-
tion was relatively stable and dominated by OA (31± 5 %)
and NO−3 (21± 5 %). In Stage 2, the PM2.5 mass con-
centration continuously increased to 105 µgm−3 in a few
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Figure 3. Correlations of the secondary formation source /1CO ratio and Ox in (a) Xi’an, (b) Shijiazhuang, and (c) Beijing. Each point
and its error bar represent the mean and standard deviation in each bin (1Ox = 5 ppb).

Figure 4. Correlation of the secondary formation source /1CO ratio and ALWC during sampling periods in (a) Xi’an, (b) Shijiazhuang,
and (c) Beijing, respectively. The points and error bars represent the mean values and standard deviation values of the secondary formation
source /1CO ratio and ALWC in each bin. In Xi’an, each bin is 5 µgm−3 (1ALWC= 5 µgm−3). In Shijiazhuang, each bin is 5 µgm−3

(1ALWC= 5 µgm−3) when ALWC ranged from 0 to 75 µgm−3 but 25 µgm−3 (1ALWC= 25 µgm−3) when ALWC ranged from 75 to
200 µgm−3 due to limitations in data. In Beijing, each bin is 5 µgm−3 (1ALWC= 5 µgm−3) when ALWC ranged from 0 to 50 µgm−3 but
100 µgm−3 (1ALWC= 100 µgm−3) when ALWC ranged from 50 to 900 µgm−3 due to limitations in data.

hours, and the concentration (contribution) of secondary for-
mation sources rapidly increased from 2.3 µgm−3 (4 %) to
54.4 µgm−3 (52 %) (Fig. S16g and h). This is due to the
aqueous-phase-reaction effect inferred by the rapid increase
in ALWC (from 16 to 78 µgm−3; Fig. S16c) and RH (from
51 % to 79 %; Fig. S16a).

In contrast, a three-stage evolution was distinguished
for the second type of episode, using EP7 as an example
(Fig. S17). In Stage 1, the PM2.5 concentration gradually
increased from 11 to 30 µgm−3, as did NO2 (from 15 to
59 µgm−3; Fig. S17d), due to the boosts of the predomi-
nant contributions of vehicle emissions and biomass burning

(Fig. S17g and h). In the meantime, the contribution of coal
combustion also slowly increased along with SO2 (Fig. S17d
and h). In Stage 2, under the lowest average wind speed in
the study period (0.7±0.4 m s−1; Fig. S17b), the PM2.5 mass
concentrations moderately increased from 30 to 91 µgm−3

with relatively stable chemical composition and source con-
tribution (Fig. S17f and h). Compared to Stage 1, the frac-
tions of NO−3 increased mostly from 9±3 % to 23±3 %; this
is probably influenced by photochemical oxidation, inferred
by relatively high Ox and NO2 concentration (Fig. S17c
and d). In Stage 3, the PM2.5 mass concentration rapidly
rose to 142 µgm−3 and then remained stable. Furthermore,
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Table 1. Meteorological conditions, gas pollutants, chemical composition, and source contribution of PM2.5 during pollution episodes in
Xi’an, Shijiazhuang, and Beijing.

Parameters Xi’an Shijiazhuang Beijing

EP1 EP2 EP3 EP4 EP5 EP6 EP7 EP8

T (◦) 4.9± 2.6 1.5± 3.5 0.4± 3.4 −0.2± 3.3 −2.7± 3.3 0.3± 3.2 −1.6± 3.3 5.1± 3.6
RH (%) 52± 10 45± 10 61± 15 40± 13 75± 11 57± 19 45± 24 36± 10
WS (m s−1) 0.5± 0.2 0.7± 0.3 1.4± 0.6 1.9± 0.8 1.4± 0.7 1.0± 0.6 1.1± 0.6 1.0± 0.6
Dominant WDa WSW, WNW WSW NNW NNW NNW NNE NNW, NNE NNE, ENE

CO (mg m−3) 1.39± 0.40 1.15± 0.56 1.47± 0.62 0.60± 0.30 0.43± 0.33 1.04± 0.56 0.81± 0.32 1.00± 0.55
SO2 (µgm−3) 15± 3 15± 5 9± 4 8± 4 3± 1 6± 5 4± 3 6± 4
NO2 (µgm−3) 74± 22 63± 32 63± 14 47± 21 27± 11 54± 22 46± 17 42± 21
Ox (ppm) 47± 8 42± 10 36± 7 32± 6 27± 3 36± 6 33± 4 43± 9
ALWC (µgm−3) 15± 11 8± 8 42± 37 12± 11 59± 448 28± 47 23± 8 11± 13

Dominant OA (38 %) OA (34 %) NO−3 (27 %) OA (30 %) NO−3 (32 %) OA (32 %) OA (32 %) OA (40 %)
chemical NO−3 (24 %) NO−3 (24 %) OA (26 %) NO−3 (23 %) OA (26 %) NO−3 (26 %) NO−3 (26 %) NO−3 (23 %)
composition

Dominant BB (30 %) SF (34 %) SF (39 %) BB (40 %) SF (70 %) SF (62 %) SF (61 %) BB (38 %)
source SF (25 %) BB (24 %) BB (23 %) CC (16 %) BB (16 %) BB (13 %) BB (14 %) SF (27 %)
contributionb CC (17 %) VE (16 %) CC (16 %) VE (16 %) VE (15 %)

a WSW: west-southwest; WNW: west-northwest; NNW: north-northwest; NNE: north-northeast; ENE: east-northeast. b BB: biomass burning; SF: secondary formation source; CC: coal
combustion; VE: vehicle emissions.

the greatest increase in source concentration (contribution)
was secondary formation sources, from 18.9 µgm−3 (48 %)
to 120.6 µgm−3 (80 %). This might be due to the occurrence
of an aqueous-phase reaction, which was indicated by the el-
evation of RH and ALWC (Fig. S17a and c).

Figure S16 illustrates the third type of episode, in which
a four-stage evolution was resolved, using EP2 as an exam-
ple. In Stage 1, the PM2.5 mass concentration (14±3 µgm−3)
was relatively low and was dominated by the contributions
of secondary formation sources (43±17 %) and fugitive dust
(24± 8 %), as well as MD (28± 7 %) and OA (26± 7 %). In
Stage 2, the PM2.5 mass concentrations promptly increased
from 21 to 82 µgm−3 with the two dominant chemical com-
ponents of OA (21.7 µgm−3) and NO−3 (17.1 µgm−3). The
PM2.5 increases can also be attributed to the rise in sec-
ondary formation sources (25.3 µgm−3) and biomass burn-
ing (14.4 µgm−3). The enhancement of secondary aerosol
was probably generated through the aqueous-phase reaction
evidenced by the increase in ALWC and NO2 (Fig. S18c
and d). In Stage 3, PM2.5 mass continuously increased to
139 µgm−3 with a dominant increase in primary source
emissions, including biomass burning (29.0 µgm−3), vehicle
emissions (21.5 µg m−3), and coal combustion (16.5 µg m−3),
along with the increases in SO2 and NO2 as well (Fig. S18d).
The three primary sources contributed> 60 % of the total re-
solved sources. Meanwhile, the secondary formation sources
also increased slowly through aqueous-phase reaction, in-
ferred by the increase in ALWC (Fig. S18c). In the final
stage, Stage 4, the PM2.5 mass concentration remained rel-
atively stable, with an average of 142± 11 µgm−3, domi-
nated by secondary formation sources (34±6 %) and biomass

burning (28± 6 %) as well as chemical components of OA
(36± 4 %) and NO−3 (25± 1 %).

In summary, the pollution events that occurred in Xi’an
were mainly derived by stronger emissions of primary
sources under adverse meteorological conditions, even
though the aqueous-phase reaction also contributed to sec-
ondary aerosol formation. In contrast, pollution events that
occurred in Shijiazhuang and Beijing were mainly influ-
enced by the formation of secondary aerosols through both
aqueous-phase reaction and photochemical oxidation. More-
over, aqueous-phase reaction plays a more important role
than photochemical oxidation. Hence, to further improve the
air quality in the north of China, primary source emissions
should be prioritized for control in the northwestern region,
with a focus on biomass burning and coal combustion. In the
North China Plain, priority should be given to the reduction
in emissions of the precursors from secondary sources, with
a focus on NOx and volatile organic compounds (VOCs).

3.5 Policy implications

In past decades, the air quality in China improved notably
under the implementation of air pollution control policies, in-
cluding the APCAP and TAPFAP. The PM2.5 mass in Xi’an,
Shijiazhuang, and Beijing was the lowest during the cam-
paigns compared with those in the last few decades (Ta-
ble S7). The variations in the chemical composition and the
source contribution of PM2.5 in the three pilot cities are dis-
played in Fig. 5. As shown, the dominant chemical com-
ponents of PM2.5 changed from OA and SO2−

4 to OA and
NO−3 (Fig. 5a–c). This could be attributed to the reduction
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Figure 5. Summary of PM2.5 and its composition (a, b, c) and source contribution (d, e, f) in Xi’an, Shijiazhuang, and Beijing in winter in
past decades, where ∗ represents the results of this study. The data and references used for this figure are listed in Tables S7 and S8.

in coal consumption due to clean-energy replacement and
the increase in vehicle ownership, which led to a decrease
in SO2 and an increase in NO2 (Wang et al., 2013). Since the
atmospheric oxidation reaction (i.e., aqueous-phase reaction
and photochemical oxidation) of the precursors ( i.e., NO2,
VOCs) is the primary source for the OA and NO−3 in the at-
mosphere (Feng et al., 2018; Li et al., 2022; Tao et al., 2016;
S. Yang et al., 2022; Ziemann and Atkinson, 2012), and it is
impossible to avoid, the precursors of OA and NO−3 should
be reduced from the combustion and transportation sectors
(Fermo et al., 2021; Liu et al., 2022; Y. Wang et al., 2021;
Zhang et al., 2019). In addition, the fraction of NH+4 in PM2.5
increased at an alarming rate. Coincidentally, this follows
a similar trend to NH3. Studies have reported that controls
of NH+4 are more effective than those of NOx in the reduc-
tion in PM2.5 mass concentrations (Gu et al., 2021; Zheng et
al., 2022). Therefore, collaborative control measures for the
emissions of precursors, including NOx , VOCs, and NH3, are
necessary.

As shown in Table S8 and Fig. 5d–f, coal combustion de-
creased remarkably due to the coal-related policies imple-
mented, including the strength of emissions standards for
coal-fired power plants, the change in energy source from
coal to natural gas in some industries, and the ban on coal
burning in the main urban areas (Shen, 2016; Yang and Teng,
2018). A similar trend was also found in the results of PM2.5
source apportionment in Beijing released by the Beijing Mu-
nicipal Ecology and Environment Bureau (Fig. S19). Mean-
while, the contribution of industrial emissions and vehicle

emissions decreased slightly because of the improvement
of industrial emission standards (He et al., 2020; Wang et
al., 2020a) and traffic-related policy implementation such as
strengthening of vehicle emission standards, improvement
of fuel quality, and elimination of high-emission vehicles.
This resulted in a reduction in precursor gases and PM2.5
from vehicles (Feng et al., 2021; Fontaras et al., 2012; Jin
et al., 2012). However, the emissions of biomass burning did
not show a significant reduction in recent years, and its con-
tribution increased from 9 % in 2014 to 25 % in 2020 (Xi’an),
from 3 % in 2015 to 24 % in 2022 (Shijiazhuang), and from
6 % in 2013 to 18 % in 2021 (Beijing) (Fig. 5d–f). This is
likely because biomass burning is an open source, which
makes it more difficult to control compared to other primary
sources. Biomass used for residential heating in rural areas
is still common (Ren, 2021; Tian et al., 2022; D. Yang et
al., 2022; Zhang et al., 2017). Hence, the clean-energy revo-
lution should be promoted urgently, especially in northwest-
ern China. Moreover, the contributions of secondary forma-
tion sources increased, which is potentially explained by the
high reduction rate of primary emissions and the improve-
ment of atmospheric oxidation capacity (S. Chen et al., 2020;
Feng et al., 2020). Therefore, more control measures should
focus on weakening the atmospheric oxidation capacity, such
as reduction in O3 formation, to reduce the formation of sec-
ondary pollutants, which are now identified as the most crit-
ical drivers of pollution. Considering those factors, it is also
important to promote the mitigation of both PM2.5 and O3.
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4 Conclusion

Intensive real-time measurement campaigns related to PM2.5
chemical components were conducted in Xi’an, Shiji-
azhuang, and Beijing during the wintertime. Chemical com-
positions of PM2.5 in the three cities were all dominated by
OA (26.9 %–34.2 %) and NO−3 (23.6 %–26.5 %). Six sources
of PM2.5 in Xi’an and Shijiazhuang were resolved by HERM,
and their contributions were similar. In descending order,
they were secondary formation sources (32.2 %–37.6 %),
biomass burning (24.4 %–24.6 %), coal combustion (15.1 %–
16.0 %), vehicle emissions (12.2 %–12.5 %), industrial emis-
sions (5.5 %–7.7 %), and fugitive dust (4.4 %–7.8 %). How-
ever, the secondary nitrate (29.0 %) and the secondary sulfate
(23.0 %) were separately resolved and were relatively more
important in Beijing. In addition, the contribution of fire-
works (7.9 %) to PM2.5 was found during the Chinese Spring
Festival.

The possible formation mechanism of secondary forma-
tion sources in the three pilot cities was explored. The re-
sults showed that secondary aerosols were generated by both
photochemical oxidation and aqueous-phase reaction. Mean-
while, the formation rate of secondary aerosols in Beijing
was higher than that in Xi’an and Shijiazhuang. Furthermore,
the eight pollution episodes within the sampling periods were
categorized into three types and characterized. The domi-
nant chemical compositions of PM2.5 were OA (26 %–40 %)
and NO−3 (23 %–32 %) during all pollution episodes. Fur-
thermore, secondary formation sources and biomass burning
were two major drivers of the pollution.

The dominant chemical components of PM2.5 in the pilot
cities changed from OA and SO2−

4 to OA and NO−3 under
the implementation of a clean-air plan in the past decades.
This indicates that a reduction in precursors, including NO2
and VOCs, should be a key task in the future. In addition,
the contribution of biomass burning increased, especially in
Xi’an. This indicates that clean energy for heating activity
in rural areas in northwestern China is still insufficient. Fur-
thermore, to weaken the atmospheric oxidation capacity for
reducing the contribution of secondary formation sources, it
is necessary to promote the collaborative control on ozone
and particulate matter.
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