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Abstract. A previous model intercomparison of the Tambora aerosol cloud has highlighted substantial differ-
ences among simulated volcanic aerosol properties in the pre-industrial stratosphere and has led to questions
about the applicability of global aerosol models for large-magnitude explosive eruptions prior to the observa-
tional period. Here, we compare the evolution of the stratospheric aerosol cloud following the well-observed
June 1991 Mt. Pinatubo eruption simulated with six interactive stratospheric aerosol microphysics models to a
range of observational data sets.

Our primary focus is on the uncertainties regarding initial SO, emission following the Pinatubo eruption, as
prescribed in the Historical Eruptions SO, Emission Assessment experiments (HErSEA), in the framework of the
Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). Six global models with interactive
aerosol microphysics took part in this study: ECHAM6-SALSA, EMAC, ECHAMS5-HAM, SOCOL-AERv2,
ULAQ-CCM, and UM-UKCA. Model simulations are performed by varying the SO, injection amount (ranging
between 5 and 10 Tg S) and the altitude of injection (between 18-25 km).

The comparisons show that all models consistently demonstrate faster reduction from the peak in sulfate mass
burden in the tropical stratosphere. Most models also show a stronger transport towards the extratropics in the
Northern Hemisphere, at the expense of the observed tropical confinement, suggesting a much weaker subtropical
barrier in all the models, which results in a shorter e-folding time compared to the observations. Furthermore,
simulations in which more than 5 Tg S in the form of SO, is injected show an initial overestimation of the sulfate
burden in the tropics and, in some models, in the Northern Hemisphere and a large surface area density a few
months after the eruption compared to the values measured in the tropics and the in situ measurements over
Laramie. This draws attention to the importance of including processes such as the ash injection for the removal
of the initial SO, and aerosol lofting through local heating.
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1 Introduction

Large-magnitude volcanic eruptions can emit sulfur diox-
ide (SO3) and other gases directly into the stratosphere. An
abrupt increase in stratospheric SO; creates a long-lived vol-
canic aerosol cloud that scatters incoming solar radiation, ab-
sorbs solar and infrared radiation, and affects the composi-
tion of the stratosphere. Such volcanically induced enhance-
ments of the stratospheric aerosol layer exert strong direct
effects on climate because they influence the Earth radiation
budget and cool the surface via the reduced insolation (Mc-
Cormick et al., 1995; Soden et al., 2002); they also show a
range of indirect effects, due to the volcanic aerosols effects
on stratospheric circulation, dynamics, and chemistry (e.g.,
Robock et al., 2009; Timmreck et al., 2012; Kremser et al.,
2016).

Here we investigate the evolution of the volcanic aerosol
cloud after the Mt. Pinatubo eruption in June 1991 by an-
alyzing coordinated simulations within the HErSEA (His-
torical Eruptions SO, Emission Assessment) experiments,
in the framework of the Interactive Stratospheric Aerosol
Model Intercomparison Project (ISA-MIP; Timmreck et al.,
2018). Mt. Pinatubo is located in the western part of the is-
land of Luzon, Philippines (15.1°N, 120.4° E). After pre-
liminary eruptions from 12 June 1991, the climatic phase
started at 05:30 UTC on 15 June 1991 and lasted for approx-
imately 9h. The volcanic cloud contained gases and parti-
cles of ice, ash, and sulfate and reached a maximum altitude
of 40km (Holasek et al., 1996). Ice and ash burden peaked
at about 80 and 50 Tg, respectively, and early-formed sul-
fate mass was estimated at 4 Tg, based on infrared satellite
data from the Advanced Very High Resolution Radiometer
(AVHRR), the TIROS Operational Vertical Sounder (TOVS),
and High Resolution Infrared Radiation Sounder/2 (HIRS/2)
sensors (Guo et al., 2004a). Initial sulfur dioxide (SO;) mass
estimates from the ultraviolet Total Ozone Mapping Spec-
trometer (TOMS) and infrared TOVS sensors, indicated that
the eruption injected 14-22Tg of SO, (Bluth et al., 1992;
Guo et al., 2004a). Other uncertainties pertain to the verti-
cal extension of the volcanic cloud: SO, mass was injected
between 18-30km (Bluth et al., 1992; Baran et al., 1993)
and concentrated around 25 km, over a rich ash layer peak-
ing around 22km (Guo et al., 2004b). The sulfate aerosol
cloud peaked at 14 Tg in September (Lambert et al., 1993;
Baran and Foot, 1994), with the largest aerosol concentration
between 20 and 25 km of altitude and much lower amounts
between 15 and 20km (Winker and Osborn, 1992a, b; De-
Foor et al., 1992). Recent volcanic SO, emission databases
suggest for Pinatubo an amount and location of SO, emitted
between 15 and 18 Tg of SO», at an altitude of between 19
and 28 km (Independent Volcanic Eruption Source Parameter
Archive Version 1.0, ivespa.co.uk, VolcanEESM: Global vol-
canic sulphur dioxide (SO;) emissions database from 1850 to

Atmos. Chem. Phys., 23, 921-948, 2023

I. Quaglia et al.: Pinatubo aerosol: model intercomparison

present - Version 1.0, Multi-Decadal Sulfur Dioxide Clima-
tology from Satellite Instruments; Aubry et al., 2021; Neely
IIT and Schmidt, 2016; Carn, 2022).

Several modeling studies have evaluated the simulated
global and tropical sulfate loadings compared to observa-
tions, with some studies (Niemeier et al., 2009; Toohey et al.,
2011; Briihl et al., 2015) finding agreement when emitting in
the mid-range of the best-estimate stratospheric SO, load-
ing of 14-22Tg SO, (Guo et al., 2004a). In contrast, a num-
ber of recent studies found agreement only when injecting an
amount of SO, below the lower limit observed of 10 Tg SO,
considering different injection heights and vertical distribu-
tions (Dhomse et al., 2014; Sheng et al., 2015a; Mills et al.,
2016); this difference partly motivates the design of the ISA-
MIP HErSEA intercomparison (see Timmreck et al., 2018).
Approaching the problem from a model intercomparison per-
spective, different past projects have revealed large differ-
ences in the simulation of the aerosol radiative forcing, and
not just for Pinatubo.

A first multi-model intercomparison study of global strato-
spheric interactive aerosol models was set up in the frame of
the Model Intercomparison Project on the climatic response
to Volcanic forcing (VolMIP; Zanchettin et al., 2016). To cre-
ate a common forcing data set for VoIMIP experiments which
considers a volcanic eruption with radiative forcing compara-
ble to that of the 1815 Tambora eruption, a pre-study was set
up (Marshall et al., 2018). This VoIMIP-Tambora ISA exper-
iment establishes a well-defined set of injection parameters
to simulate the Tambora volcanic aerosol cloud interactively
with stratospheric aerosol models. Multi-model analysis of
the simulated volcanic aerosol distribution shows large inter-
model differences (Marshall et al., 2018; Clyne et al., 2021).

Marshall et al. (2018) used Arctic and Antarctic ice
core information about sulfate deposition to constrain the
VoIMIP-Tambora ISA model simulations. The four models
involved in this experiment revealed large discrepancies in
the simulated aerosol burden (50-58 Tg SO4 at the peak), re-
sulting in deposition magnitudes in Antarctica ranging from
19 to 264 kgkm™2. They attributed the differences between
the models, and between models and observations, to differ-
ent sulfate formation and transport through meridional cir-
culation and stratosphere—troposphere exchange and differ-
ent deposition schemes. The contribution to the overall un-
certainty of the sulfate formation processes was then further
investigated in a subsequent study by Clyne et al. (2021),
which focused on the evolution of the global stratospheric
aerosol optical depth. The reasons for the discrepancies be-
tween the models were attributed to differences in particle
size, which influence the scattering efficiency and the life-
time of the stratospheric aerosols and the treatment of hy-
droxyl radical (OH) chemistry, which in turn affects the tim-
ing of sulfate formation.
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The Geoengineering Model Intercomparison Project
Phase 6 (GeoMIP6; Kravitz et al., 2015) also includes ex-
periments with injection of stratospheric sulfate aerosol pre-
cursors (G6Sulfur) in an amount necessary to reduce the net
radiative forcing from the SSP5-8.5 scenario to the SSP2-
4.5 one. Participating models in G6Sulfur directly injected
SO, in the tropical stratosphere with different altitude and
latitude ranges of injection or prescribed the aerosol optical
depth or aerosol distribution derived from previous simula-
tions. The amount of SO, required to achieve the proposed
cooling varies by a factor of 2 between models and results
in a different temporal and latitudinal distribution of aerosols
that affects surface temperature and local precipitation dif-
ferently (Visioni et al., 2021).

In contrast to the aforementioned model intercomparison
studies, the ISA-MIP HErSEA experiments offer a test of the
reliability of these models by allowing a direct comparison
of the simulated volcanic enhancement of the stratospheric
aerosol layer with observation data sets, especially during the
Mt. Pinatubo eruption, for which several satellite and in situ
measurements are available. Hence, HErSEA was developed
to determine which set of volcanic emission source parame-
ters allows models to reproduce the available measurements,
and understand how their different chemical and microphys-
ical schemes, stratospheric dynamics, and radiative transfer
treatment influence these choices. Specifically, HErSEA fo-
cuses on the uncertainty in the initial volcanic emission in
terms of amount and injection altitude of SO, for the re-
cent large-magnitude volcanic eruptions in the last 100 years
(Mt. Agung in 1963, Mt. El Chichén in 1982, Mt. Pinatubo in
1991); multiple interactive stratospheric aerosol simulations
of each of the volcanic aerosol clouds with common upper-,
mid-, and lower-estimate amounts and injection altitudes of
sulfur dioxide were performed. Here we investigate the evo-
lution of the volcanic aerosol cloud after the Mt. Pinatubo
eruption by analyzing Atmospheric Model Intercomparison
Project (AMIP)-type (Gates et al., 1999) simulations within
the HErSEA framework. In particular, we ask whether pre-
vious results in inter-model differences are confirmed in this
new MIP; the presence of multiple injection settings com-
mon between all models will also allow an exploration of the
reason for these differences, based on the models’ abilities
to reproduce observations with different sets of initial condi-
tions of the volcanic emissions.

The experimental design, the main features of the partici-
pating models, and the observational data sets are described
in Sect. 2. Section 3 shows model results of the optical
and microphysical properties of the volcanic aerosol cloud,
which are summarized and discussed in Sect. 4.
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2 Methods and data

2.1 Methods

2.1.1 Experimental protocol

There is a degree of uncertainty over the thickness of the in-
jected SO, cloud, based on available measurements. There-
fore, different modeling centers may have selected differ-
ent simulated injection altitudes for the Pinatubo eruption
in the past. Within Dhomse et al. (2020), UM-UKCA set
the SO, injection altitude at 21-23km based on the alti-
tude of the first detection of the Pinatubo cloud at Mauna
Loa (Antuiia et al., 2002). Further UM-UKCA analysis by
Shallcross (2020) demonstrated improved model correspon-
dence with the July—August 1991 Mauna Loa lidar mea-
surements when running the model with “pre-nudged free-
running” rather than the “approximate QBO free-running”
(QBO: quasi-biennial oscillation) approach used in Dhomse
et al. (2020). Sheng et al. (2015b) performed atmospheric
simulations of the Pinatubo eruption with AER 2-D 300
by varying the emission parameters and found agreement
with several observations by injecting 14 Tg of SO, with
a vertical distribution peaking at 18-21km. Similar emis-
sion parameters (10-12Tg of SO, at 18-20km) were used
in Mills et al. (2016) with CESM1-WACCM. Niemeier et al.
(2009) showed comparable aerosol optical depth and effec-
tive radius with satellite and lidar measurements, simulating
with MAECHAMS-HAM the injection of 17 Tg of SO, at
about 24 km together with 100 Tg of fine ash at about 21 km.
Stenchikov et al. (2021) simulated with WRF-Chem v3.7.1
the same amounts of SO, and ash but centered at 17 km,
showing that the radiative heating of ash can raise the sulfur
cloud by 7km during the first week of the eruption. These
differences motivated the design of the ISA-MIP HErSEA
intercomparison.

The HErSEA Pinatubo experiment design includes five
different emission scenarios considering different amounts
and altitudes of injection of SO,, as summarized in Fig. 1.
The first three emission scenarios describe injections at
medium altitude (between 21-23 km) of an amount of SO,
that varies from the lowest value of 5TgS (Low-22km)
to a medium value of 7TgS (Med-22km) and the highest
value of 10 TgS (High-22km). The medium-injection sce-
nario (7 Tg S in the form of SO;) has three different injection
altitude settings: Med-22 km, as discussed; another shallow
one at lower altitudes (18-20 km, Med-19 km); and one over
a deep altitude range (18-25 km, Med-18-25 km).

The Mt. Pinatubo-like eruption is timed on 15 June 1991.
SO; is injected in models in a single grid cell close to the
Pinatubo location (15°N, 120° E) and at the prescribed al-
titudes, with the precision given by the specific vertical and
horizontal model resolution (Table S1 in the Supplement).
UM-UKCA provided an additional set of simulations, called
meridional-spread injection simulations, and the EMAC sim-
ulation differs from the protocol: this differentiation is high-
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lighted by the addition of a * after the model name. In UM-
UKCA¥*, SO, is injected at Mt. Pinatubo longitude and in a
latitude range between 0° and 15° N (12 model grid boxes),
a common strategy (Dhomse et al., 2014; Mills et al., 2016)
to match the initial southward spread of the aerosol cloud
(Bluth et al., 1992). In EMAC (we will EMAC™* only in the
figures and tables), volcanic SO» injections are entered at one
single point in time as 3D mixing ratio perturbations derived
from satellite data using an inventory for the period 1990
to 2019 (https://doi.org/10.26050/WDCC/SSIRC_3). For the
Pinatubo period also the eruptions of Cerro Hudson (10 Au-
gust 1991), Spurr (27 June 1992), and Lascar (18 April 1993)
are included in EMAC. The amount of SO; injected is 8.5
and 0.65TgS for Pinatubo and Cerro Hudson, respectively,
and top heights of the volcanic plumes are approximately 23
and 18 km.

All models are radiatively coupled to the volcani-
cally enhanced stratospheric aerosol in order to resolve
the composition—radiation—dynamics interactions. Previous
model studies (e.g., Young et al., 1994; Timmreck et al.,
1999; Aquila et al., 2012; Sukhodolov et al., 2018) showed
that inclusion of the interaction between volcanic sulfate
aerosol and radiation is essential for a reliable simulation of
the transport of the volcanic cloud. Radiative heating of ash
and SO is also important for the initial uplift of the volcanic
cloud (Lary et al., 1994; Young et al., 1994; Gerstell et al.,
1995), but the contribution of SO, is smaller than that of ash,
in the first week, or sulfate aerosols, in the subsequent weeks
(Stenchikov et al., 2021). About 80 Tg of ash was injected
during the Pinatubo eruption (Guo et al., 2004b). However,
both ash and SO, radiative effects are not included in all
model simulations as it is outside the scope of the project,
which focuses on the long-term evolution of the Pinatubo
volcanic cloud.

Modeling groups performed transient AMIP-type (Atmo-
spheric Model Intercomparison Project) (Gates et al., 1999)
runs of the Mt. Pinatubo eruption in which sea surface
temperatures and sea ice extent are prescribed as monthly
climatologies from the Met Office Hadley Center Obser-
vational data set (Rayner et al., 2003). Boundary condi-
tions are also prescribed for greenhouse gases and ozone-
depleting substances as recommended for the SPARC CCMI
(Stratosphere—troposphere Processes And their Role in Cli-
mate Chemistry—Climate Model Initiative) hindcast scenario
REFCI1SD (Eyring et al., 2013), in order to match those for
the time period. The evolution of the quasi-biennial oscil-
lation (QBO) must be consistent through the post-eruption
period, as it affects the dispersion of the volcanic plume to
mid-latitudes (Trepte and Hitchman, 1992; Baldwin et al.,
2001; Punge et al., 2009) and consequently the size distri-
bution and lifetime of stratospheric aerosols (Hommel et al.,
2015; Pitari et al., 2016b; Visioni et al., 2017). Accordingly,
models with internally generated QBO re-initialized it in or-
der to be consistent with the actual meteorological condi-
tions or used specified dynamics approaches (e.g., Telford
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Experimental Setup

18
17

Low-22km

Med-22km High-22km Med-19km  Med-18-25km

Figure 1. Graphical representation of injection setting parameters.
The reddish boxes represent an injection of 5, 7, and 10TgS in
the form of SO, centered at 22 km; the blue and light-blue boxes
represent the injection of 7 Tg S in the form of SO, for injection
altitudes centered at 19 km and one deep injection between 18 and
25km.

et al., 2008). All groups submitted a three-member ensemble
for each different injection setting, except for ULAQ-CCM
and EMAC, which submitted only one realization. The gen-
eration of the ensemble for each model is explained in the
respective sections describing the model. Unless otherwise
specified, all results shown refer to the ensemble mean.

Cerro Hudson simulations

To evaluate the role of the Cerro Hudson eruption, we per-
formed two additional simulations with the ULAQ-CCM
model that, while outside the scope of ISA-MIP, helped clar-
ify some issues raised by the initial results. The two simula-
tions add the Cerro Hudson eruption to the Med-22 km exper-
iment with lower and upper estimates of SO injection based
on the Neely III and Schmidt (2016) and MSVOLSO;L4 in-
ventory (Carn, 2022), respectively. The additional eruption
consists of the injection of SO with a uniform vertical dis-
tribution on 10 August 1991 in the grid cell corresponding to
the Cerro Hudson location (45.9° S, 72.9° W). The lower-end
emission, termed Med-22 km + Low-Hud, includes 1.5 Tg
of SO, between 11 and 16 km, and the upper-end emission
Med-22 km + High-Hud includes 4 Tg of SO, at 12—-18 km.

2.1.2 Participating models

The ISA-MIP multi-model ensemble includes simula-
tions from five global aerosol models: ECHAMG6-SALSA,
ECHAMS-HAM, SOCOL-AERv2, ULAQ-CCM, UM-
UKCA. In addition closely related simulations from a sixth
model, EMAC, are considered. The main characteristics of
the participating models are reported in Table 1. ECHAMS-
HAM, SOCOL-AERv2, and EMAC are based on the same
general circulation model (GCM), ECHAMS (Giorgetta
et al., 2006), but with different horizontal and/or vertical
resolutions, while ECHAMG6-SALSA uses the updated
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version ECHAMSG6.3 (Stevens et al., 2013); all have different
chemical and aerosol modules.

ECHAMG6-SALSA

ECHAMOG-SALSA (ECHAMG6.3-HAM2.3-MOZ1.0) is an
interactive aerosol-chemistry—climate model based on the
ECHAMG6.3 general circulation model (Stevens et al., 2013).
A T63L95 resolution was used in ECHAM6-SALSA simu-
lations, which corresponds to an approximately 1.9° x 1.9°
horizontal grid and 95 vertical layers reaching up to 80 km.
The QBO is internally resolved by the model (Laakso et al.,
2022). The GCM is interactively coupled with the HAM-
MOZ aerosol-chemistry model (Schultz et al., 2018), which
is a combination of the Hamburg Aerosol Model (HAM)
and the Model for OZone And Related chemical Tracers
(MOZART) chemistry model. However MOZART was not
used in the simulations for this study, and OH and ozone con-
centrations were prescribed by a monthly mean climatology;
a simplified sulfate chemistry scheme of HAM was used. The
aerosol model HAM calculates the emissions, removal, and
radiative properties of aerosol. It simulates five major global
aerosol compounds: sulfate, organic carbon, black carbon,
sea salt, and mineral dust. The aerosol emissions from an-
thropogenic sources were based on the Community Emission
Data System (CEDS) for the CMIP6 anthropogenic emission
inventory. Sea salt and dust emissions were calculated on-
line. Aerosol microphysics were calculated by the sectional
aerosol module SALSA. A detailed description of the model
is given in Kokkola et al. (2018). SALSA describes aerosols
using 10 size bins in size space, and the 7 largest bins are
separated into externally mixed soluble and insoluble popu-
lations. Ensemble members were produced by using insignif-
icantly different values for one of the tuning parameters (the
rate of snow formation by aggregation) for January 1991 of
each ensemble member.

ECHAMS-HAM

ECHAMS-HAM has the ECHAMS GCM (Giorgetta et al.,
2006), used as a high-top model in the middle atmosphere
(MA) version, and is interactively coupled to the aerosol mi-
crophysical model HAM (Stier et al., 2005). The horizon-
tal resolution is about 2.8° in longitude and latitude, in a
spectral truncation at wave number 42 (T42), with 90 ver-
tical layers up to 0.01 hPa (about 80km) and an interactive
simulation of the QBO. The aerosol microphysical model
HAM (Stier et al., 2005) calculates the oxidation of sulfur
and sulfate aerosol formation, including nucleation, accumu-
lation, condensation, and coagulation processes. The width
of the HAM modes has been adapted to the conditions under
a high-sulfur load. The aerosols are prescribed in three modes
with a fixed width (Niemeier et al., 2009). HAM was fur-
ther adopted to stratospheric conditions by applying a simple
stratospheric sulfur chemistry above the tropopause (Timm-
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reck, 2001; Hommel et al., 2011). ECHAM prescribes oxi-
dant fields of OH, NO;, and O3 on a monthly basis, as well
as photolysis rates of OCS, H,SO4 SO;, SOz, and O3. The
sulfate was radiatively active for both SW and LW radiation
and coupled to the radiation scheme of ECHAM. Further de-
tails are described in Niemeier et al. (2021). The ensemble
members were produced by increasing the stratospheric hor-
izontal diffusion from one level to the next above on 1 Jan-
uary of the year of the eruption. The parameter generating a
different dynamical state is perturbed between 1.0, 1.0001,
and 1.001.

SOCOL-AERv2

SOCOL-AERV2 is an interactive aerosol-chemistry—climate
model that is also based on the ECHAMS GCM but cou-
pled to the MEZON chemistry (Egorova et al., 2003) and
AER sulfate aerosol microphysics (Weisenstein et al., 1997)
modules. The model version used here has a horizontal res-
olution of about 2.8° in longitude and latitude (T42) and
39 vertical layers up to 0.01 hPa. Because of the coarse
vertical resolution (~ 1.5km in the lower stratosphere), the
QBO is nudged to the observed equatorial wind profiles. The
chemistry module calculates the interactions of 89 chemical
species of the oxygen, hydrogen, nitrogen, carbon, chlorine,
bromine, and sulfur groups in gas-phase, photolysis, and het-
erogeneous reactions, including reactions in/on aqueous sul-
furic acid aerosols. The sulfate aerosol module resolves the
aerosol particles in 40 size bins (the highest aerosol size res-
olution compared to other participating models), ranging in
dry radius from 0.39 nm to 3.2 pm, and calculates nucleation,
condensational growth, evaporation, coagulation, and sedi-
mentation of sulfate aerosol bins. HySO4 weight percent is
calculated online based on actual temperature and relative
humidity. Dry and wet deposition of species are interactively
calculated based on actual meteorological conditions in the
model (Feinberg et al., 2019). Modeled aerosols and chemi-
cal species are coupled with the shortwave- and longwave-
radiation schemes. Aerosol radiative properties are treated
following a lookup-table approach with precalculated val-
ues using Mie theory for actual HySO4 weight percent and
temperature. All boundary conditions follow the recommen-
dations of ISA-MIP (Timmreck et al., 2018). Three ensem-
ble members were produced by scaling the global CO, con-
centration by £0.05 %, which started in January 1991 and
was maintained for the whole simulation. Besides the 39-
level version, SOCOL-AERvV2 can also be run on 90 lev-
els, as the other two ECHAMS-based participating models
ECHAMS-HAM and EMAC. However, increased resolution
more than doubles the computational expenses of the already
heavy calculations of interactive chemistry and highly re-
solved sectional aerosol microphysics. Therefore, the model
is mostly used in the 39-level configuration. To test the ef-
fects of increased resolution, SOCOL-AERvV?2 has been addi-
tionally used here for the Low-22 km experiment with the 90
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levels instead of the 39 reference levels. With this configura-
tion, the model has been spun up to the conditions of 1991.
Besides changed resolution, all other settings have been kept
the same.

ULAQ-CCM

ULAQ-CCM (University of L’Aquila Chemistry Climate
Model) is a global-scale climate—chemistry coupled model
with a horizontal resolution of 5° x 6° (T21) and 126 log
pressure levels (approximate pressure altitude increment of
568 m), from the surface to the mesosphere (0.04 hPa). How-
ever, the QBO is not internally resolved and is nudged to ob-
served values (Morgenstern et al., 2017), and its future val-
ues are repeated from the historical time series. The chem-
istry module includes medium- and short-lived species (Oy,
NO,, NO,, CHO,, Cly, Bry, SO,) and the major component
of stratospheric and tropospheric aerosols (sulfate, nitrate,
organic and black carbon, soil dust, sea salt, polar strato-
spheric clouds). The microphysical code for aerosol forma-
tion and growth includes a gas—particle conversion scheme,
homogeneous and heterogeneous nucleation, coagulation,
condensation, and evaporation (Pitari et al., 2002, 2016a).
It also includes heterogeneous chemical reactions on sulfu-
ric acid aerosols and polar stratospheric cloud particles; both
heterogeneous and homogeneous upper-tropospheric forma-
tion processes are also included (Visioni et al., 2018a). The
aerosol module calculates the aerosol extinction, asymme-
try factor, and single-scattering albedo, given the calculated
size distribution of the particles for different wavelengths,
and they are passed daily to the radiative transfer module,
which is a two-stream delta-Eddington approximation model
(Toon et al., 1989).

UM-UKCA

UM-UKCA model simulations are performed using the
Global Atmosphere 4.0 configuration (Walters et al., 2014,
GA4) of the UK Met Office Unified Model (UM v8.4)
general circulation model with the UK Chemistry and
Aerosol chemistry-aerosol sub-model (UKCA). The GA4 at-
mosphere model has a horizontal resolution of 1.875° x 1.25°
and 85 vertical levels (N96L8S5) ranging from the surface
to about 85 km, with an interactive simulation of the QBO.
The UM-UKCA configuration adapts GA4 with aerosol ra-
diative effects from the interactive GLOMAP aerosol mi-
crophysics scheme and ozone radiative effects from the
whole-atmosphere chemistry, which is a combination of
the detailed stratospheric chemistry and simplified tropo-
spheric chemistry schemes (Archibald et al., 2020). The
GLOMAP stratospheric aerosol microphysics scheme is de-
scribed in Dhomse et al. (2014), and the model setup is
described in Dhomse et al. (2020). Briefly, the model uses
the GLOMAP aerosol microphysics module coupled with
the troposphere—stratosphere chemistry scheme, and mod-
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eled aerosols are coupled with the radiation scheme. The
model also uses greenhouse gas (GHG) and ozone-depleting
substance (ODS) concentrations from the Ref-C1 scenario
used in the CCMI-1 (Morgenstern et al., 2017) activity.
Simulations are performed in atmosphere-only mode, and
CMIP6-recommended sea surface temperatures and sea ice
concentrations that are obtained from https://esgf-node.llnl.
gov/projects/cmip6/ (last access: 25 March 2021) are used.
Three ensemble members were initialized using the fields
of 3 model years of 20-year time-slice simulations prior to
1990 that gave a QBO transition approximately matching
that of ERA-Interim reanalysis (for more details, see Dee
et al., 2011; Dhomse et al., 2020).

EMAC

EMAC is the ECHAMS general circulation model cou-
pled with the Modular Earth Submodel System Atmospheric
Chemistry (Briihl et al., 2015, 2018). The resolution is
T63/L.90, i.e., about 1.9° latitude and longitude and 90 layers
up to about 80 km with a vertical resolution of about 500 m
near the tropopause. The QBO is internally generated but
slightly nudged to observations compiled by the Free Univer-
sity of Berlin. Below 100 hPa and above the boundary layer
dynamics and temperature are nudged to ERA-Interim. It
contains comprehensive gas-phase and heterogeneous chem-
istry. The applied aerosol module GMXE (Pringle et al.,
2010) accounts for seven modes using lognormal size distri-
butions (nucleation, soluble and insoluble Aitken, accumu-
lation, and coarse modes). The boundary between accumu-
lation mode and coarse mode, a model parameter, is set at
a dry particle radius of 1.6 um to avoid too-fast sedimen-
tation of a too-large coarse-mode fraction in case of ma-
jor volcanic eruptions. Optical properties for the types sul-
fate, dust, organic carbon and black carbon (OC and BC),
sea salt (SS), and aerosol water are calculated using Mie-
theory-based lookup tables for each mode consistent with
the selected size distribution widths of the modes. This also
means that no overall effective radius is used. The resulting
total optical depths, single-scattering albedos, and asymme-
try factors are used in radiative transfer calculations which
feed back to atmospheric dynamics. The results from EMAC
were taken from an existing 30-year transient simulation for
comparison (Schallock et al., 2021).

2.2 Observation data sets

2.2.1 AVHRR

The Advanced Very High Resolution Radiometer
(AVHRR/2) is a space-borne sensor that measures the
reflectance of the Earth in five spectral bands covering
visible and infrared wavelengths (0.63, 0.86, 3.7, 11, 12 um).
AVHRR/2 instrument was on board the polar-orbiting satel-
lites (POES) NOAA-11 that provided global coverage data
with a resolution of 1.1 km and a frequency of Earth scans of
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twice per day (https://www.avl.class.noaa.gov/release/data_
available/avhrr/index.htm, last access: 12 January 2023).
The data used here are on a 1° x 1° grid as monthly averages
(as archived at the NOAA’s National Climatic Data Center).
As in Long and Stowe (1994) and Aquila et al. (2012),
the stratospheric optical depth at 0.5 um is calculated by
removing monthly mean background values (June 1989 to
May 1991) from AVHRR observations. The optical depth at
0.5 um is retrieved through a radiative transfer surface/atmo-
sphere model (RAO et al., 1989); therefore, combined with
the previous assumption, AVHRR cannot detect the changes
in stratospheric aerosol optical depth (AOD) smaller than
0.01 but can detect values up to 2.0 (Russell et al., 1996).

222 SAGEI

The Stratospheric Aerosol and Gas Experiment II (SAGE II)
is a satellite-based sun photometer that was launched in
October 1984 aboard the Earth Radiation Budget Satellite
(ERBS) and retired in August 2005. The instrument mea-
sures the extinction of the solar radiation through the limb of
the Earth’s atmosphere in seven channels ranging from 385
to 1020 nm, with a global coverage from 80° S to 80° N lat-
itude and a vertical resolution of 1 km for the retrieved data
(Mauldin et al., 1985). We used the effective radius and the
surface area density of aerosol particles from SAGE II ver-
sion 7.0 (Damadeo et al., 2013; NASA/LARC/SD/ASDC,
2012b). The SAD (and thus the effective radius) is derived
by a method that is a linear mix between the Thomason
et al. (1997) method, which is valid for the 525-1020 nm
extinction ratio below 1.5, and the Thomason and Burton
(2008) method for ratios above 2.0 (Damadeo et al., 2013).
Both methods assume that aerosols are spherical droplets of
H>S04-H,O solution with a constant composition of 75 %
H>SO4 and 25% H;0O by weight. The Thomason et al.
(1997) method uses the principal component analysis to de-
rive the SAD from a linear combination of four aerosol
extinction measurements (386, 452, 525, 1020 nm). In the
Thomason and Burton (2008) method, SAD is derived from
the 525 and 1020 nm channels using an empirical parameter-
ization based on the 525-1020 nm extinction ratio.

The stratospheric sulfate burden is taken from the SAGE-
3 data set (ftp://iacftp.ethz.ch/pub_read/luo/CMIP6/, last
access: 12 January 2023) that was compiled for Phase 6
of the Coupled Model Intercomparison Project (CMIP6).
H>SO4 particle number density (and other secondary prod-
ucts not used here) is derived via the SAGE-3A algorithms
that assume a single mode lognormal size distribution of
stratospheric aerosol where number density, mode radius,
and width are obtained by fitting the SAGE II extinction coef-
ficients at three wavelengths (452, 525, and 1024 nm) (Revell
et al., 2017).
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2.2.3 HIRS

The High Resolution Infrared Radiation Sounder (HIRS) is
an infrared-scanning radiometer that has been onboard sev-
eral NOAA platforms starting with the first satellite of the
Television Infrared Observation Satellite series (TIROS-N),
followed by NOAA-6 up to NOAA-19 (Borbas and Menzel,
2021). It measures the reflectance of the Earth in 19 infrared
channels (3.7 to 15 um) and 1 solar channel (0.69 um) with a
spatial resolution at nadir of 20.4 km on HIRS/2. Baran and
Foot (1994) used HIRS/2 cloud-cleared radiances at 8.3 um
(NOAA-10/12) and 12.5 um (NOAA-11) to retrieve the col-
umn number density of sulfuric acid aerosols from May 1991
to November 1993. Among the assumption and the approx-
imations, the stratospheric aerosols are assumed to be 75 %
H>SO4 and 25 % H,O, with a spectral transmittance based
on dustsonde measurements by Deshler et al. (1992) and a
single-scattering albedo calculated from Mie theory by inte-
grating the extinction and scattering coefficients over a log-
normal size distribution using a mode radius 0.35 um and a
normalized standard deviation of 1.6 (Baran and Foot, 1994).
The data cover the latitudes from 80° N to 80° S and all lon-
gitudes with 5° of resolution and are affected by a systematic
error of 10 % due to the sensitivity of the retrieved method
and uncertainties in the background.

224 OPC

The University of Wyoming balloon-borne Optical Parti-
cle Counter (OPC) is a spectrometer that measures the
light-extinction cross section of the particles using a broad-
band incandescent light source, developed by Rosen (1964),
providing the particle size and the number concentra-
tion. The stratospheric aerosol measurements from 1991
to 2012 are made over Laramie (Wyoming) with the so-
called OPC40, which can detect particles throughout the size
range 0.1-10.0 ym, distinguished in 8 or 12 channels, de-
pending on the instruments (Deshler, 2003). Here we used
the revised data set (UWv2.0; http://www.atmos.uwyo.edu/
~deshler/Data/Aer_Meas_Wy_read_me.htm, last access: 12
January 2023) of the OPC measurements (Deshler et al.,
2019). Surface area density and volume density are calcu-
lated from the size distribution derived from particle size and
concentration by fitting the data to a unimodal or bimodal
lognormal distribution (depending on the number of mea-
surements and on which of the two minimizes the difference
between the calculated and the measured number concentra-
tion) (Kovilakam and Deshler, 2015).

2.25 GloSSAC

The Global Space-based Stratospheric Aerosol Climatol-
ogy (GloSSAC) is a global and gap-free data set of zon-
ally averaged optical properties of stratospheric aerosols (fo-
cused on aerosol extinction coefficient at 525 and 1020 nm)
from 1976-2018. It is mainly based on the Aerosol and

https://doi.org/10.5194/acp-23-921-2023


https://www.avl.class.noaa.gov/release/data_available/avhrr/index.htm
https://www.avl.class.noaa.gov/release/data_available/avhrr/index.htm
http://www.atmos.uwyo.edu/~deshler/Data/Aer_Meas_Wy_read_me.htm
http://www.atmos.uwyo.edu/~deshler/Data/Aer_Meas_Wy_read_me.htm

[. Quaglia et al.: Pinatubo aerosol: model intercomparison

Gas Experiment (SAGE) and on the Optical Spectrograph
and InfraRed Imager System (OSIRIS) and the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO). Ground, airborne, and balloon-based instru-
ments were used to fill major gaps in the data set (Thoma-
son et al., 2018). Here, we used the updated version v2
(NASA/LARC/SD/ASDC, 2012a) from Kovilakam et al.
(2020).

3 Results

The various sets of initial conditions of SO, injections result
in an aerosol cloud with different optical properties depend-
ing on the dispersion of the cloud over time and the size of
the aerosols produced.

In the following section, we start by analyzing the AOD
and how the models reproduce the measured AOD with
different volcanic emission source parameters. Since the
amount of attenuation depends on the particle number con-
centrations and size, we then investigated both the magnitude
and distribution of the sulfate burden and the size of the sul-
fate aerosols.

3.1 Aerosol optical depth

The stratospheric AOD simulated by the different interac-
tive aerosol microphysical models is evaluated by compar-
ing it with satellite observations from AVHRR and GloSSAC
(Fig. 2). The AOD is calculated at a wavelength of 550 nm
in EMAC, ECHAMS5-HAM, ULAQ-CCM, and UM-UKCA;
533nm in ECHAMG6-SALSA; 525nm in SOCOL-AERV2
and GloSSAC; and 600 nm in AVHRR. Differences between
those wavelengths are however negligible. GIoSSAC pro-
vides zonal values with a latitudinal resolution of 5° and uni-
form spatio-temporal coverage up to the year 1994. As it is
mostly based on SAGE II measurements, the instrument sat-
urates for optical depth of about 0.15; therefore it is less ac-
curate in the center of tropical clouds in the first months after
the eruption (Russell et al., 1996). Conversely, AVHRR can
only measure stratospheric AOD larger than 0.01. Because of
the paucity of data points, “global values” when comparing
against AVHRR are calculated between 60° S—60° N.

Figure 2 shows the time evolution of the zonal-mean
stratospheric AOD for each model and ensemble mean. It
is clear that medium and high injection of SO, (Med-22 km
and High-22 km, respectively) overestimate the stratospheric
AQOD in the tropics or/and in the Northern Hemisphere (NH)
extratropics compared to both observations. The ability to
reproduce the observed values in the Southern Hemisphere
(SH) extratropics depends on both the model and the injec-
tion parameters. UM-UKCA™* and EMAC, contrary to other
models, show more southward transport, probably due to the
different injection settings (see Sect. 2.1.1). In UM-UKCA*
the meridional-spread emission (0—15° N) accounts for the
initial west-southwestward drift of the volcanic cloud (Bluth
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et al., 1992), contributing to a more hemispherically sym-
metric aerosol distribution (Dhomse et al., 2014; Mills et al.,
2016; Jones et al., 2017). EMAC used a 3D-plume injec-
tion and also included smaller eruptions such as that of
Cerro Hudson in the Southern Hemisphere in August 1991
(45.9° S, 72.9° W). The additional injection is a 3D-plume
injection of 0.65 Tg S in the form of SO,, whose maximum
in terms of mixing ratio is at 18 km, and differs from the
two additional cases performed with ULAQ-CCM (2.1.1.1).
In ULAQ-CCM, the Med-22 km+Low-Hud includes a sim-
ilar amount of SO, but at lower altitudes compared to the
Cerro Hudson eruption in EMAC, and its effect on the strato-
spheric burden and AOD is negligible. In contrast, Med-
22 km+High-Hud enhances them in the Southern Hemi-
sphere, approaching observation, but only for a few months
after the eruption (Fig. S6 in the Supplement).

A quantitative comparison with the observations is shown
with the use of Taylor diagrams (see Appendix A) in Fig. 3.
Model results are compared for the first year after the erup-
tion with both AVHRR and GloSSAC (first row and second
row, respectively) and for the second year only with GloS-
SAC (third row). Three-member ensembles, when provided,
are represented with smaller circles of the same color with
respect to the ensemble mean of a specific simulation. In
ECHAMG6-SALSA, the differences between members of the
same scenario are greater than those between scenarios be-
cause of differences in local winds at the time of the erup-
tion in each ensemble member. The impact of local winds is
weaker when SO; is injected over the deep altitude range be-
tween 19 and 25 km (blues circles in Fig. 3a and h). There are
various sets of initial conditions for SO, injections which,
depending on the model, are close to the observations. The
experiments that best reproduce the observations are those
with similar variability to that of the observations, defined
by their standard deviations (SDs), higher correlation (COR),
and lower root-mean-square difference (RMSD). The values
of COR and RMSD for these experiments are summarized in
Table 2.

During the first year after the eruption, all models show
better agreement with AVHRR than GIoSSAC: correlations
range between 0.73 and 0.78 with AVHRR versus 0.54 and
0.82 with GloSSAC, for which RMSDs are also higher. In
ECHAMOG-SALSA, SOCOL-AERvV2, and ULAQ-CCM, the
injection of 7 Tg S in the form of SO, closer to the tropopause
is a good compromise between the too-high and too-low
stratospheric AOD produced in the tropics by an injection of
5 and 10TgS in the form of SO, respectively, and this sce-
nario also produces a better southward and northward trans-
port (Fig. 2). The best set of initial parameters also depends
on the observation considered for comparison: in ECHAMG6-
SALSA Med-18-25km and Med-19km reproduce better
AVHRR and GloSSAC measurements, respectively, and in
the comparison with GloSSAC the correlation increases, and
the RMSD decreases over time (Fig. 2a5). For SOCOL-
AERV2 and ULAQ-CCM, Med-19 km is in good agreement
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Figure 2. Time evolution of zonal stratospheric AOD for all models and in Low-22 km (first column), Med-22 km (second column), High-
22 km (third column), Med-19 km (fourth column), and Med-18-25 km (fifth column). The last row includes the different scenario simu-
lated by EMAC* and the two observations used for comparison: GloSSAC and AVHRR. AOD is calculated at a wavelength of 550 nm in
ECHAMS-HAM, EMAC, ULAQ-CCM, and UM-UKCA; 533 nm in ECHAM6-SALSA; 525 nm in SOCOL-AERvV2; 525 nm in GloSSAC;
and 600 nm in AVHRR. * Models with spatially spread SO, injections.
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Table 2. Correlation (COR) and root-mean-square difference (RMSD) of the stratospheric AOD calculated between observations and model

results for the experiments that best reproduce the observations.

| AVHRR (June 1991-May 1992)

GloSSAC (June 1991-May 1992)

‘ GloSSAC (June 1992-May 1993)

Model ‘ Experiment COR RMSD ‘ Experiment COR RMSD ‘ Experiment COR RMSD
ECHAM6-SALSA | Med-18-25km  0.74 0.08 Med-19 km 0.60 0.07 Med-19km  0.79 0.02
ECHAMS-HAM High-22km 0.74 0.09 Low-22km 0.71 0.07 Med-22km  0.82 0.02
EMAC 0.79 0.07 0.54 0.10 0.63 0.03
SOCOL-AERv2 Med-19 km 0.73 0.08 Med-19km/Low-22km  0.61 0.09 Med-19km  0.86 0.02
ULAQ-CCM Med-19km 0.84 0.07 Med-19km 0.74 0.07 Med-19km  0.69 0.03
UM-UKCA Low-22km 0.56 0.12 Low-22km 0.63 0.11 Med-19km  0.47 0.05
UM-UKCA* Low-22km 0.87 0.07 Low-22km 0.82 0.09 Med-19km  0.86 0.02

* highlights models with spatially distributed SO, injections.
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Figure 3. Taylor diagrams for the global stratospheric AOD. Zonal monthly mean values for different time periods have been used to
calculate the standard deviation, correlation, and centered root-mean-square difference between model experiments and measurements. In
the first row, model results are compared with respect to AVHRR over the period June 1991 to May 1992, in the second row with respect to
GloSSAC over the period June 1991 to May 1992, and in the third row with respect to GlIoSSAC over the period June 1992 to May 1993
(See Appendix A1 for more details). * Models with spatially spread SO, injections.

with both AVHRR and GloSSAC in the two different peri-
ods considered (Fig. 2c4 and d4). During the first year af-
ter the eruption, the correlation between Med-19 km and the
observations is higher for ULAQ-CCM (0.84 and 0.74 com-
pared with AVHRR and GloSSAC, respectively) as it better
reproduces the tropical confinement, while in the following
year (June 1992-July 1993), in SOCOL-AERvV2 compara-
ble values of stratospheric AOD persist for longer in the ex-
tratropics compared with GIoSSAC (correlation of 0.86). In
ECHAMS-HAM the injection at 21-23 km results in a com-
parable stratospheric AOD in the tropics and SH extratropics
compared to both observations but overestimates northern-

https://doi.org/10.5194/acp-23-921-2023

hemispheric (NH) extratropics values by up to a factor of
2 (Fig. 2bl, b2, and b3). The amount of SO, to obtain the
highest correlation between modeling experiments and ob-
servations depends on the observation and on the period con-
sidered: High-22km and Low-22km when compared with
AVHRR and GloSSAC during the first year after the erup-
tion, respectively, Med-22 km when compared with GloS-
SAC the following year. In UM-UKCA, the point injection
and meridional-spread emission agree that Low-22 km bet-
ter reproduces the stratospheric AOD of both observations
during the first year after the eruption, as it shows a good
tropical confinement and comparable values in the NH, and

Atmos. Chem. Phys., 23, 921-948, 2023
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Figure 4. Time evolution of monthly values of the normal-
ized global stratospheric AOD for models (colored lines) and
AVHRR and GloSSAC observations (black lines). The dashed gray
line represents the 1/e value. The experiments shown are Med-
19 km for ECHAM6-SALSA, SOCOL-AERvV2, ULAQ-CCM, UM-
UKCA, and UM-UKCA* and Med-22 km for ECHAMS5-HAM. For
EMAC?*, it refers to the only experiment provided. * Models with
spatially spread SO, injections.

for the meridional-spread emission also in the SH (Fig. 2el
and f1). Therefore, the correlation is higher, and the RMSD
is lower for the meridional-spread emission experiment. The
poleward transport, especially in the NH, is enhanced in
Med-19km (Fig. 2e4 and f4) and found to have a higher
correlation with GIoSSAC 1 year after the eruption (COR
of 0.86 and 0.47 for UM-UKCA* and UM-UKCA, respec-
tively). During the first year after the eruption, EMAC has
comparable values in the tropics and northern mid-latitudes
with respect to AVHRR, while in the southern mid-latitudes
the stratospheric AOD is up to twice as large and results in
a correlation of 0.79. The correlation decreases to 0.63 when
comparing with GloSSAC during the following year because
of the more rapid decline in the stratospheric volcanic cloud.

The persistence of the volcanic aerosol in the stratosphere
is shown in Fig. 4, which represents the global normalized
stratospheric optical depth, calculated as explained at the be-
ginning of Sect. 3.1. The Med-19 km experiment is shown
for all models, as it is the experiment which best repro-
duces the GloSSAC observations after June 1992 for all
models, with the exception of Med-22km for ECHAMS-
HAM and EMAC with the only experiment provided. The
e-folding time, calculated as the time between the maximum
and the 1/e value, is 13 months in AVHRR and 15 months
in GloSSAC. This range includes ULAQ-CCM and UM-
UKCA, with an e-folding time of 14 months, and UM-
UKCA¥*, with an e-folding time of 15 months. Lower values
were found for SOCOL-AERvV2 with 12 months, ECHAMG6-
SALSA and ECHAMS5-HAM with 11 months, and EMAC
with 10 months.
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3.2 Sulfate burden

Figure 5 shows the time evolution of the global and tropical
stratospheric sulfate burden of different injection setups for
each model. The results of each model are compared with
satellite measurements from HIRS and the SAGE-3) data
set. Large differences are evident in the temporal evolution
of the sulfate burden between the aerosol model simulation
on one hand and the satellite data set on the other, which
show similar values and a similar temporal evolution for the
sulfate burden.

In the 6 months following the eruption (July—December,
termed the build-up phase), ECHAM6-SALSA, ECHAMS-
HAM, SOCOL-AERv2, and ULAQ-CCM best match the
global stratospheric sulfate burden of HIRS and SAGE-3A
with the injection 5 TgS in the form of SO, (Low-22 km),
a lower amount compared to the one required for a com-
parable stratospheric aerosol optical depth (Fig. Sa, b, d,
and e). For SOCOL-AERvV2, Med-19 km also shows values
within the uncertainties in the HIRS measurements. How-
ever, Low-22km, and also Med-19 km for SOCOL-AERvV2,
anticipates the peak and underestimates the tropical bur-
den in ECHAMG6-SALSA, ECHAMS-HAM, and SOCOL-
AERv2, while the peak is reached later, and larger values
are produced in ULAQ-CCM (Fig. 5h, i, k, and 1). In UM-
UKCA, point and meridional-spread injection show similar
results for the global stratospheric sulfate burden and agree
with observations with Med-19km and Med-18-25km ex-
periments (Fig. 5f and g). The differences between the two
strategies emerge in the tropics, where values are lower for
point injection experiments due to the lack of aerosols trans-
ported to the southern tropics and that are therefore confined
to the Northern Hemisphere. For the point injection, Low-
22 km and Med-18-25 km approaches SAGE-3A for the first
months and HIRS for the last 3 months of the build-up phase.
All the experiments with larger amounts of injected SOp,
including the EMAC experiment with 8.5TgS in the form
of SO;, overestimate the measured global sulfate burden;
all experiments in ULAQ-CCM and the single scenario in
EMAC overestimate the tropical burden, while in ECHAMG6-
SALSA, ECHAMS-HAM, and SOCOL-AERV?2 they overes-
timate the burden in the NH extratropics (Fig. S5).

In the build-up phase, SAGE-3\ assumes the lowest val-
ues and slowly reaches a peak of 5.0TgS in December,
compared to 5.4TgS of HIRS in September. Lower val-
ues in SAGE-3)1 are related to the saturation effects of
the limb-occultation instrument; therefore HIRS measure-
ments are to be considered more reliable for this initial pe-
riod (Sukhodolov et al., 2018). For EMAC, the injection of
8.5TgS in the form of SO, produces a sulfate aerosol cloud
that peaks in September at 7.0 Tg S, a value comparable to
the results of the Med-22 km experiment (performed by the
other models), in which 7TgS in the form of SO; is in-
jected. For SOCOL-AERV2 and UM-UKCA with both in-
jection strategies, Med-19 km shows the best agreement with
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Figure 5. Time evolution of monthly values of global and tropical stratospheric sulfate burden in teragrams of sulfur (first and second
column, respectively). Each panel refers to the respective model in which the different results of the experiments (colored lines; different line
styles for different experiments; see legend on the left) are compared with the HIRS and SAGE-3A data sets (black lines; see legend on the

right). * Models with spatially spread SO, injections.

HIRS in terms of peak and timing of the peak (September for
SOCOL-AER, October for UM-UKCA), whereas in Low-
22 km and the other experiments it is reached 1 month later.
This is followed by ECHAMG6-SALSA in October (Novem-
ber only in High-22km) and ULAQ-CCM in November.
ECHAMS-HAM is more sensitive to the altitude of injec-
tion: it peaks between October in Med-19 km, November
in Med-18-25km, and December in the experiments with
the same altitude of injection (Low-21km, Med-21 km, and
High-21 km); the values of the peak are 14.3 % lower in Med-
19km and 7.1 % lower in Med-18-25 km compared to Med-
22 km.

The sensitivity to injection altitude depends on the model:
during the build-up phase, the Med-18-25km and Med-
22km curves coincide in ECHAM6-SALSA and SOCOL-
AERV2, and, compared to these experiments, the values
in Med-19km are up to 9% and 20 % smaller for each
model, respectively. In ULAQ-CCM, ECHAMS5-HAM, and
UM-UKCA, the more SO, is injected at lower altitudes the
smaller the value of the peak is, but for ULAQ-CCM the peak

https://doi.org/10.5194/acp-23-921-2023

is only 1 % and 6 % lower in Med-18-25 km and Med-19 km
compared to Med-22 km. The value and time of the peak for
all models and experiments are summarized in Table S2. In
general, when the amount of SO, injected is exclusively in
the lowest levels or in some vertical levels that include the
lowest levels (Med-19 km and Med-18-25 km, respectively),
the sulfate burden is lower, and therefore this effect is less
pronounced at Med-18-25 km, as the aerosol distribution is
more dependent on the balance between gravitational sedi-
mentation in the lower stratosphere and the strength of ver-
tical transport by the Brewer—Dobson circulation, as well as
the height of the tropopause.

Differences among models and experiments in terms of
amount and timing during the build-up phase are influenced
by the oxidation of SO, by OH that determines the timescale
for aerosol formation (Clyne et al., 2021). For this reason, we
distinguish between models with prescribed OH (ECHAMG6-
SALSA and ECHAMS-HAM) and those with interactive OH
(SOCOL-AERvV2, ULAQ-CCM, UM-UKCA) when looking
at the SO, evolution. The global normalized SO, burden

Atmos. Chem. Phys., 23, 921-948, 2023
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Figure 6. Time evolution of global stratospheric sulfate burden normalized to the amount of injected SO,. Each panel refers to the respective

model in which the different experiments are compared.

curves (Fig. S4a) coincide for all models with prescribed OH.
An exception is Med-19 km in ECHAMG6-SALSA, which has
lower values and might depend on an early removal through
tropopause flux, facilitated by injection near the tropopause.
In ULAQ-CCM and UM-UKCA, when comparing High-
22km with Low-22km we find that a higher injected SO»
mass produces a longer initial e-folding time for SO;. The
same applies when comparing injections concentrated in a
few kilometers (Med-22km and Med-19km), i.e., where
SO, oxidation depletes OH more quickly (Mills et al., 2017),
with those where the same amount of SO; is injected over a
wider altitude band. Consequently, initial values of the strato-
spheric sulfate burden in Med-18-25km are slightly higher
compared to Med-22 km and Med-19 km.

In order to better understand the models’ sensitivity to the
different emission scenarios and eventual non-linearities, in
Fig. 6 we normalize the resulting global sulfate burden by
the amount of SO, injected. Thus, in the build-up phase we
would expect all the curves for all experiments to reach a
value of 1, since no SO; and sulfate aerosols have yet been
removed from the atmosphere. This will highlight the dif-
ferences in the aerosol removal (wet removal, deposition,
sedimentation) depending on the injection altitude and dif-
ferences in microphysical growth, especially in the descend-
ing phase. Not all models and experiments, however, reach
the value of 1: ECHAMS-HAM in Med-19 km and Med-18—
25 km and ULAQ-CCM in Med-19 km do not, nor do any ex-
periments in ECHAMG6-SALSA, SOCOL-AERvV2, and UM-
UKCA. This is due to the use of monthly averages for our
analyses and the faster removal, near the tropopause, of sul-
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fate aerosol and SO; not yet converted to aerosols, especially
in Med-19 km and Med-18-25 km experiments. To confirm
this, we observe that this is particularly evident in Med-
19 km with the lowest injection height. The curves of the ex-
periments with injection between 21-23 km coincide in the
build-up phase and the differences emerge later, after 1992:
the aerosol lifetime decreases with increasing mass of SO,
injected (Table S2), which corresponds to the increase in the
aerosol size in all models. In UM-UKCA, the lifetime is in-
creased by 1 to 2 months for the meridional-spread emission
compared with the point injection. In ECHAMG6-SALSA the
lifetime increases when increasing the injected SO, mass.
However, Figs. 3 and S1 show that the differences in re-
sults between ensemble members of the same scenarios are
larger in ECHAMG6-SALSA than in other models. This in-
dicates that differences in aerosol lifetimes between Low-
22 km, Med-22 km and High-2 km scenarios are probably not
statistically significant in ECHAMG6-SALSA. Figure Slla
shows the sulfate burden from SOCOL-AERvV?2 for the Low-
22 km experiment calculated with two vertical model reso-
lutions. This figure further confirms the faster removal of
volcanic sulfur during the first months after the eruption in
SOCOL-AERV2 even in the 22km injection experiments.
The lower-vertical-resolution version shows a much lower
burden peak already in late 1991, while the higher-resolution
version peaks at exactly the emitted amount of 5 Tg S plus the
background value of ~0.17 Tg S and maintains this peak till
early 1992. This is an effect of increased vertical diffusion
in the lower-resolution version, which quickly redistributes
the volcanic cloud vertically in both directions. This brings
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[. Quaglia et al.: Pinatubo aerosol: model intercomparison

some of the volcanic sulfur mass closer to the tropopause
and the shallow branch of the Brewer—Dobson circulation,
reducing its confinement in the tropical reservoir and enhanc-
ing removal from the stratosphere (Brodowsky et al., 2021).
This agrees with the results of 22 km experiments of high-
resolution ECHAMS-HAM, which also maintain the emitted
amount for some months after the eruption (Fig. 6).

Among all models and experiments, the shortest e-folding
time of the global stratospheric sulfate burden is 8 months for
EMAC; ranges between 10 and 14 months for ECHAMG6-
SALSA, ECHAMS-HAM, SOCOL-AERv2, and ULAQ-
CCM; and reaches the highest values for UM-UKCA, with
values between 17 and 23 months, which more closely
matches those of HIRS and SAGE-3A of 21 and 20 months,
respectively. The e-folding time of the tropical stratospheric
sulfate burden is 12 and 13 months in HIRS and SAGE-31
and half for the models, with the exception of ECHAMS-
HAM for Low-22 km, Med-22 km, and Med-18-25 km, with
a longer duration of 9 months, and UM-UKCA, for which it
varies between 8 and 14 months, based on the experiments
and injection strategy. No model except UKCA can repro-
duce the observed slow-descent phase during 1992 of the
stratospheric sulfate burden, and only the High-22km sce-
nario approaches the measured values at the end of 1992 for
these models, while strongly overshooting them in the pre-
ceding months.

Overall, we find that Low-22 km and High-22 km are the
experiments that, in all models, better reproduce the observa-
tions in the build-up and descent phase, respectively (Figs. 5,
S6). The spatio-temporal development of the sulfate burden
(Fig. S6) reflects in general that of the AOD (Figs. 2, 3). In
the SH, the stratospheric burden shown in SAGE-31 is not re-
produced by the models in Low-22 km; therefore more SO»
(High-22 km) must be injected for the aerosol cloud to per-
sist for as long as in SAGE-3A and reach the same values.
This way, however, the burden in the NH is overestimated
(Fig. S5). There are clear differences in the position of the
stratospheric AOD peak, which lies between 5-20° N in the
models but around 5° S—10° N in the observations, pointing
to differences in the meridional transport in the early phase
after the eruption (Fig. 2). In addition, Fig. S11b—c illus-
trate that the volcanic aerosol mass redistribution between
the hemispheres could also be affected by the vertical reso-
lution of the models because it affects the timings of tropical
confinement and across-tropopause removal.

In order to discuss the meridional transport, Fig. 7 shows
the aerosol mass fraction of the simulated sulfate burden
in the tropics (20° N-20°S), in the northern mid-latitudes
(35°-60° N), and in the southern mid-latitudes (35°-60° S)
with respect to the global value, for SAGE-3\ (black line),
and for all models and scenarios (first row for the differ-
ent injection amounts, second row for the different injection
altitudes). Tropical confinement (Fig. 7a and d), as shown
in the observations, is not captured by ECHAMG6-SALSA,
ECHAMS-HAM, SOCOL-AERv2, and EMAC, which un-
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derestimate the tropical aerosol mass fraction, resulting in a
stronger transport to the NH for the first three models and
to the SH for EMAC. ULAQ-CCM overestimates the frac-
tion during the first 6 months after the eruption and becomes
comparable thereafter. UM-UKCA shows tropical confine-
ment comparable to that of SAGE-3A for the 21-23 km in-
jection experiments for point injection and shallow and deep
injection for meridional-spread emission, otherwise underes-
timated or overestimated in the other experiments, respec-
tively. However, the similarity between observations and the
21-23 km injection experiments for the UM-UKCA point
injection masks the lack of aerosols in the southern trop-
ics (0-20°S) and a higher load in the northern extratropics
(0-20° N). Indeed, the fraction of burden for the NH mid-
latitudes (Fig. 7b and e) is overestimated, with differences of
up to 20 % compared to SAGE-31 (Fig. 7h), while for the SH
(Fig. 7c and f) it is underestimated but to a smaller extent,
with differences of 10 % compared to SAGE-31 (Fig. 7i).
The same happens for ECHAMG6-SALSA, ECHAMS-HAM,
and SOCOL-AERv2. Overall, NH transport is favored in all
models at the expense of tropical confinement.

In most models, varying the injected SO, mass does not
affect the fraction of aerosols transported out of the tropics
towards both hemispheres (Fig. 7a, b, and c). The only excep-
tion is ECHAMG6-SALSA, where an increased injected SO;
mass increases the tropical confinement, especially in the
first 6 months after the eruption. All models, except ULAQ-
CCM, show that the tropical confinement is reduced in favor
of transport towards both hemispheres when SO; is injected
below 20 km (Med-19 km). Compared to high-altitude injec-
tion settings (> 20 km), Med-19 km has the greatest transport
in SH. The increase in altitude of injection (Med-22 km and
Med-18-25 km) produces a higher confinement in the trop-
ics with a consequent reduced transport toward both hemi-
spheres in ECHAM6-SALSA, SOCOL-AERvV2, and UM-
UKCA. In ECHAMS-HAM, the strongest confinement is
achieved in Med-22 km, while Med-18-25 km shows a simi-
lar behavior to Med-19 km as most of the sulfate aerosols are
found below 20 km. In ULAQ-CCM differences among the
injection settings emerge 6 months after the eruption, and the
injection at lower altitudes (Med-19 km) shows a more effi-
cient polewards transport, especially towards the NH.

3.3 Effective radius and surface area density

Figure 8 shows the time evolution of the observed and sim-
ulated stratospheric effective radius in the tropics (20° S—
20° N) and over Laramie (41° N-105° W) (calculation of the
effective radius and error bar in Appendix A2). In the tropics
(Fig. 8a—g) the stratospheric effective radius is calculated as
the SAD-weighted average between 21-27 km because of a
paucity of tropical measurements below 21 km in SAGE II.
Over Laramie (Fig. 8h—n), the stratospheric effective radius
is defined as the SAD-weighted average between 14-30 km
in order to compare it with in situ OPC measurements (Desh-
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Figure 7. Time evolution of the latitudinal partition of the stratospheric sulfate burden. The aerosol mass fraction is calculated with respect
to the total burden, for the tropical burden (20° N-20°S) (a, d g), for the burden integrated over the northern mid-latitudes (35°-60° N)
(b, e, h), and for the burden integrated over the southern mid-latitudes (35°-60° S) (c, f, i). The first row includes the experiments with
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in the latitudinal partition for all model experiments compared to SAGE-3\. Experiments are identified here with different line styles; the
different colors refer to the models. * Models with spatially spread SO, injections.

ler et al., 2019). Model results are calculated as the value of
the nearest grid cell to Laramie; therefore, the ability to re-
produce the OPC measurements is more influenced by atmo-
spheric circulation patterns as zonal-mean comparisons dis-
cussed earlier and depends also on the horizontal resolution
(see Table S1).

Before the eruption, the simulated evolution of the
tropical-mean effective radius in most models is almost
steady compared to SAGE II. Only ULAQ-CCM reproduces
the observed seasonal variation and matches the pre-eruption
measurements, resulting in particles with a radius of 0.27 um,
similar to SAGE II (calculated over the 5 months before the
eruption). The other models have smaller background parti-

Atmos. Chem. Phys., 23, 921-948, 2023

cles with a constant value of 0.14 in ECHAMG6-SALSA, 0.17
in ECHAMS5-HAM, 0.17 in EMAC, 0.15 in SOCOL-AERV2,
and 0.10 in UM-UKCA. Over Laramie, ECHAMO6-SALSA,
ECHAMS-HAM, EMAC, and SOCOL-AERV?2 have compa-
rable radii to the OPC ones, while ULAQ-CCM and UM-
UKCA lie outside the uncertainty range with larger and
smaller radii, respectively. The causes of these differences
are unclear; however, an in-depth exploration of the back-
ground behavior is out of the scope of this paper and needs to
be addressed by studies specifically designed to study aerosol
microphysics and transport under volcanically quiescent con-
ditions such as the ISA-MIP background experiment (Timm-
reck et al., 2018).
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After the eruption, all models are able to capture the
same decay rate as the SAGE II measurements, remain-
ing flat around the peak reached approximately after Oc-
tober 1991. Most produce a comparable tropical effec-
tive radius for about a couple of years, based on differ-
ent injection settings. The models agree that particle size
increases with increasing injected SO, mass, with differ-
ences from the medium-injection scenario within 15 % in
ECHAMO6-SALSA and 10 % in ECHAMS5-HAM, SOCOL-
AERv2, ULAQ-CCM and UM-UKCA. The differences are
larger when comparing different injection altitude scenar-
ios, and the corresponding increase in the particle size
is model-dependent. In ECHAMG6-SALSA and SOCOL-
AERv2, High-22 km shows a tropical stratospheric effective
radius within 10 % of SAGE II until the end of 1993, peak-
ing, respectively, at 0.47 and 0.49 um compared to 0.51 in
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SAGE II. In ECHAMS-HAM, all experiments except High-
22 km, which best fits the observed AOD (see Sect. 3.1),
produce similar effective radii, ranging between 0.46 and
0.51 um, and are comparable with SAGE II until the end
of 1992. High-22 km differs by larger radii reaching a max-
imum of 0.56 um. One year after the eruption, the differ-
ences among the different ECHAMS-HAM experiments dis-
appear, and the effective radius decreases more rapidly than
in SAGE II. EMAC peaks at 0.33 ym in October, and radii
stay around 0.30 um for less than 1 year. The low bias hides
the faster decrease in the effective radius at about 22 km al-
titude than in most other models, while in the stratosphere
below it is similar to observations. In ULAQ-CCM, the effec-
tive radius of Med-19 km reproduces the SAGE II measure-
ments with a similar time decrease, as differences stay within
10 % until the end of 1995, while other experiments pro-
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duce larger particles, with peaks ranging between 0.53 and
0.71 pm. In UM-UKCA, the growth of the effective radius is
slower compared to other models, particularly for point in-
jection, but both injection strategies show the slowest decay,
which is closest to that of SAGE II. After peaking at different
times, the radii between the two injection strategies are sim-
ilar and range between the smallest value of 0.10 for Med-
19 km and the largest value of 0.49 in High-22 km, which is
comparable with the observations.

Over Laramie, all experiments of ECHAMG6-SALSA,
SOCOL-AERvV2, and UM-UKCA produce radii within the
estimated uncertainties in the OPC measurements for all 5
years in the first two models and after the end of 1991 in
UM-UKCA. ECHAMS5-HAM and EMAC show comparable
values during the pre-eruption phase, but in ECHAMS5-HAM
radii rise faster compared to the observation during the build-
up phase, while in EMAC, after reaching a peak that is about
30 % smaller than that of OPC, the radii assume the small-
est values, below the uncertainty. In ULAQ-CCM, all exper-
iments overestimate OPC measurements until early 1992; in
particular Med-19 km peaks at 0.78 um in November 1991,
and the effective radius remains at the upper extreme of mea-
surement uncertainty from there on. Increased vertical reso-
lution calculations with SOCOL-AERV?2 reveal no difference
to the aerosol size before and 1.5 years after the eruption
compared to the reference configuration (Fig. 11f—g). During
the period of the tropical residence, however, the effective ra-
dius noticeably increases due to more aerosol staying in the
tropics and the stratosphere and thus available for coagula-
tional growth.

Figure 9 summarizes the information regarding the ver-
tical distribution of the effective radius, SAD, and extinc-
tion at 0.5 um for the Med-22 km experiment, in the tropi-
cal area (20° S-20° N), and over Laramie, 6 months after the
eruption. A corresponding figure including all available ex-
periments is shown in Fig. S10. By looking at the vertical
profiles of various quantities, biases that are hidden in inte-
grated variables emerge. Figure 9c reveals that the vertical
profiles differ not only between models and observations but
also strongly between the observations themselves.

In the tropics, the effective radius peaks between 100—
50 hPa in ECHAMG6-SALSA, EMAC, and ULAQ-CCM and
between 50-20 hPa in ECHAMS-HAM and UM-UKCA as
in SAGE II, with values within 30 % of that measured, except
for ULAQ-CCM, where the radii are up to 4 times larger.
In UM-UKCA, the peak of SAD for point injection is cen-
tered at higher altitude, around 30 hPa compared to 20 hPa
for meridional-spread emission, and with smaller values.
SOCOL-AERvV2 shows good agreement with SAGE II be-
tween 100-20 hPa, with values that remain constant around
0.44 uym above 70hPa. The tropical SAD simulated by the
models follows the same vertical distribution as that of
SAGE 11, and all models have a peak between 50-20 hPa,
with the exception of EMAC, whose peak is around 50 hPa.
In that range of altitudes, the values of the SAD are compa-
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rable with the observations for SOCOL-AERvV2 and ULAQ-
CCM for most of the attitudes and are up to 2 times larger in
the other models.

The tropical extinction follows the same distribution of the
SAD. In this case, the extinction is compared with SAGE II
and GloSSAC, and large differences exist between them:
below 20hPa the extinction in GloSSAC is larger than in
SAGE II, and the differences increase with decreasing height
up to 100 % compared to SAGE II because of its gap-filling
with ground-based measurements (Thomason et al., 2018;
Kovilakam et al., 2020). Above 70hPa, around the lower
bound of the injection altitude, models’ extinction is even
larger than GIoSSAC: ECHAMG6-SALSA, SOCOL-AERV2,
and ULAQ-CCM approach the measurements at the limit
of maximum uncertainty around at 70-25hPa, and EMAC
does so between 40—20 hPa, while ECHAMS5-HAM and UM-
UKCA overestimate measurements up to twice their value.
Below 70 hPa, all models underestimate the GloSSAC data,
but the models’ extinction is still larger than that of SAGE 1I,
with the exception of EMAC, which shows the greatest ex-
tinction below 50 hPa, where it peaks. Considering that the
SAD depends on the size and the number of particles, we
can assume, for the models that show a comparable radius
and a larger SAD compared to SAGE II in the tropics, that
they overestimate the number of optically active particles
and therefore show a larger extinction (ECHAMS-HAM and
UM-UKCA).

Over Laramie, the vertical distribution of the effective
radius is within the error bar of the OPC measurements
up to 20hPa in ECHAMG6-SALSA, ECHAMS-HAM, and
SOCOL-AERvV2, while ULAQ-CCM produces larger parti-
cles, especially below 50hPa. In EMAC the effective ra-
dius is at the lower limit of the uncertainty but is the only
model able to reproduce the vertical profile of the SAD from
OPC measurements for most of the altitudes. The models that
showed faster transport in the northern mid-latitudes overes-
timate the observed SAD for most of the altitudes.

The ability to reproduce the observations also depends on
the period considered (Figs. S8 and S9): in the first months
after the eruption, models and observations show large dif-
ferences, especially for SAD and extinction, which are over-
estimated at both latitudes considered. This may be related
both to the sensitivity to the actual meteorological conditions
that climate models are unable to accurately replicate and to
the absence in HErSEA simulations of volcanic ash injec-
tion that could remove some of the initial SO, gas or affect
the local winds and the SO, dispersion ??. This sensitivity
to the initial conditions of SO, injections decreases the more
time passes after the eruption. One year after the eruption,
the models still show a vertical profile of the effective ra-
dius comparable to observations, while the simulated SAD
starts to decrease everywhere after 6 months from the erup-
tion, underestimating tropical values but still overestimating
OPC measurements.
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Figure 9. Vertical profile of the effective radius in micrometers (a, d), surface area density (SAD) in square micrometers per cubic centimeter
(b, e), and extinction at 0.5 um in km™1 (c) in the tropics (a—c) and over Laramie (d—e) for Med-22 km in December 1991. Model results are
compared with SAGE II and GloSSAC in the tropics and with OPC over Laramie. * Models with spatially spread SO, injections.

4 Discussion

With the use of Taylor diagrams, we highlighted the experi-
ments that better match the observations in terms of strato-
spheric AOD, in two different time periods, based on the
reliability of the measurements. Each model requires differ-
ent injection scenarios to reproduce the observations, due to
differences in the transport and microphysical processes and
their mutual interaction. Even considering the best set of ini-
tial parameters based on AOD (Fig. 2), differences with ob-
servations more or less persist in the models, and we cannot
unequivocally define a “best” model as that varies depending
on the variable considered and the timing of the observation.

Comparing the results of the models between the experi-
ments with the same injection setup, we observe a large dif-
ference between models in reproducing the stratospheric op-
tical depth compared to the similar evolution of the global
stratospheric sulfate burden. It is hard to disentangle the
transport and the microphysics contribution to the differ-
ences in the considered variables, i.e., what fraction of it
depends on microphysical schemes or different dispersion
of the aerosol cloud. We first considered the contribution
of SO, oxidation by OH to differences in the timing of the
peak for the stratospheric sulfate burden (Fig. 5) and, con-
sequently, AOD (Fig. S2). For models with prescribed OH,
differences in the stratospheric rate of SO, conversion may
depend on the injection altitude, due to an earlier removal
through the tropopause flux when the injection is closer to
the tropopause. For models with interactive OH we observe
a longer e-folding time for higher mass of SO, injected and
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when injected in a narrow altitude range (Med-22km vs.
Med-18-25 km). Due to the availability of only monthly val-
ues, some observations of the SO, behavior at a more finely
resolved temporal scale are not possible here. Furthermore,
since the lifetime of sulfate depends on OH concentration
and transport and mixing into adjacent grid boxes, when
comparing different models, the timing of the peak cannot
be simply related to the treatment of OH.

However, we find a common problem in transport, ei-
ther too fast from the tropics to high northern latitudes
(ECHAMG6-SALSA, ECHAMS-HAM, SOCOL-AERv2),
confined in the NH (UM-UKCA for point injection), or too
confined to the tropics (ULAQ-CCM). The different tropi-
cal confinement can be affected by a different vertical ad-
vection scheme between ULAQ-CCM and the other models,
based on the same dynamical core ECHAMS or ECHAMG.
Here, the tropical confinement depends on the different hor-
izontal resolution (Niemeier et al., 2020), while the partic-
ular definition of the tropical pipe (see Waugh et al., 2018)
may also strongly affect this conclusion. The vertical resolu-
tion of a model can also affect the transport from the tropics
to high northern latitudes: Brodowsky et al. (2021) showed
for the SOCOL-AER model that a longer tropical confine-
ment was found with increased vertical resolution. Hence,
the transport to NH and SH can depend on model version
and injection setting: the previous MAECHAMS-HAM sim-
ulation of the Mt. Pinatubo eruption by Niemeier et al. (2009)
showed a similar pattern for the stratospheric AOD compared
to AVHRR and SAGE II, by injecting a mid-range amount of
SO, between the Med-22 km and High-22 km experiments
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(8.5 TgS) into one grid box at the location of Pinatubo and a
model layer around 24 km, but assuming fewer vertical lev-
els without internally generated QBO. The Typhoon Yunya,
which cannot be reproduced with coarse resolution in mod-
els, might have played a role in the equatorward transport
of the volcanic cloud as well, causing a stronger transport
into the SH than in most model results. Better transport to
the SH showed EMAC, which has been nudged to the real
meteorological conditions and the UM-UKCA version with
emissions between 15° N and the Equator.

The meridional transport in the models depends on the ver-
tical wind structure and on the vertical distribution of the
simulated volcanic cloud in the first months after the erup-
tion. Labitzke and McCormick (1992), based on SAGE II
measurements, showed for the early post-Pinatubo period an
upper transport regime (above 20km) in which aerosols re-
main confined to the tropical reservoir spreading between
30° N and 10° S and a lower transport regime (below 20 km)
in which aerosols mainly spread to northern high lati-
tudes. Between August and September, aerosols above 20 km
spread across most of the SH, reaching latitudes of 50° S,
followed in November and December by an enhancement in
the NH due to the transition from boreal summer to winter
circulation in the middle and upper stratosphere. Most of the
models show that a faster transport in the NH is favored when
aerosols are mainly distributed in the lower transport regime
(Timmreck et al., 1999). The lower-stratospheric part of the
injection profiles is also strongly affected by the inconsisten-
cies between the modeled and real tropopause heights at the
time of eruption (Brodowsky et al., 2021). This effect can be
additionally enhanced in the models with low vertical reso-
lution (Fig. S11). We note that the strength of the meridional
transport is also seasonally dependent, and therefore erup-
tions happening in other seasons would result in different dis-
tributions of the aerosol cloud (Visioni et al., 2019; Toohey
et al., 2011). We find that the injection rate does not affect
the fraction of aerosols transported out of the tropics towards
both hemispheres, with the exception of ECHAMG6-SALSA,
where an increased injected SO, mass increases the tropical
confinement, especially in the first 6 months after the erup-
tion. This is probably due to a stronger radiative interaction
from the absorption of more longwave radiation by larger
particles. The behavior of the other models is consistent with
the findings of Young et al. (1994) and Aquila et al. (2012),
where the aerosol heating by absorption of the infrared radia-
tion induces a lofting and a divergent motion that affects only
the initial transport (within 1 month) of the aerosols towards
and within both the northern and southern tropics.

Even when models and measurements look comparable
for the integrated variables (Figs. 8 and S2), these similari-
ties hide the models’ inability to reproduce the observed ver-
tical structure depending on the latitude and time period af-
ter the eruption under consideration (Figs. 9, S8, and S9).
Most models take up to 6 months before they can reproduce
the vertical structure of effective radius, SAD, and extinc-
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tion in the tropics and up to a year at mid-latitudes. The ver-
tical distribution of SAD and effective radius in three mo-
ments identifying the build-up, maximum, and descent phase
of the evolution of the sulfate burden (September and De-
cember 1991 and June 1992, respectively) shows an initial
overestimation of the observations and an underestimation 1
year after the eruption. The lack of ash co-emission, a pro-
cess not included in HErSEA simulations, could be crucial
in the first days/month to better reproduce the initial cloud
evolution (Stenchikov et al., 2021). On one hand, the ash
may have removed parts of the initial sulfur cloud through
the SO, or H,SO4 uptake on these coarse particles, which
have a significant fall velocity (Zhu et al., 2020); on the other
hand, the presence of smaller ash particles causes greater
heating and vertical lofting of the volcanic cloud (Niemeier
et al., 2021; Kloss et al., 2021), which could result in slower
meridional transport and longer lifetimes of stratospheric
volcanic aerosols, depending on the latitude and injection
altitude of SO, (Niemeier et al., 2009; Stenchikov et al.,
2021). Aberystwyth lidar measurements from Vaughan et al.
(1994) show a signature of depolarizing particles around
16 km between November and December 1991. That cor-
responds to the sudden enhancement of the SAD from the
Laramie measurements and has been identified as ash-rich
particles (Pueschel et al., 1994). The faster transport to the
northern mid-latitudes in the models than observed may have
removed most of the stratospheric particles so that the aerosol
lifetime in the models is about half that observed.

In addition to different transport and microphysical mech-
anisms, the neglection of the Cerro Hudson eruption in Au-
gust 1991 that injected about 0.75-2.0 Tg S in the form of
SO; between 12 and 18 km (e.g., Saxena et al., 1995; Bluth
et al.,, 1997; Neely III and Schmidt, 2016; Carn, 2022) in
the simulations may partially explain the lack of the ob-
served sulfate aerosol in the southern extratropics that we
find in all model scenarios. The only exception is EMAC,
which included the eruption of Cerro Hudson and nudged the
meteorological variables. The importance of the Cerro Hud-
son eruption has therefore been evaluated with ULAQ-CCM
by performing two additional simulations that consider the
lower and upper estimates of the SO, injection in addition to
the Med-22 km experiment. Significant deviations from the
results of Med-22 km emerge only when including the Cerro
Hudson eruption with the injection of 4 Tg SO, at 12-18 km
altitudes (Fig. S7c, g, k—n). We observe an increase in the
stratospheric sulfate burden and optical depth in the SH that
better reproduces the observations for the 2 months following
the Cerro Hudson eruptions. However, the shorter e-folding
time of stratospheric aerosol for the extra-tropical eruption
does not affect the global stratospheric lifetime and is still
not sufficient to explain the lack of aerosol in the SH in the
following months, which we therefore attribute to transport.

The inter-model differences may depend on numerous fac-
tors that interact with one another; this makes it hard to
group models by perceived similarities, for instance a sim-
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ilar modal scheme, similarities in the large-scale transport,
or an absence of interactive stratospheric chemistry. Laakso
et al. (2022), for instance, used the same climate model
(ECHAM-HAMMOZ) with two different aerosol micro-
physics schemes, one sectional and one modal. Even just this
difference produced an effective radius up to 52 % greater
in the sectional scheme than in the modal scheme simula-
tion for the same amount of injected SO;. Further, Niemeier
et al. (2020) showed that, in two models with a similar modal
scheme but different vertical advection (CESM-WACCM-
110L and MAECHAM-HAM), the resulting vertical distri-
bution of the aerosol cloud can be substantially different.
Even in the same model (CESM1-WACCM), Richter et al.
(2017) showed that the presence or not of interactive chem-
istry could strongly affect the local stratospheric warming,
and thus the residual vertical velocity changes, due to feed-
back from the changing ozone. In our case, all of these differ-
ences are compounded; therefore it is hard to identify which
exactly is the cause of the disagreement. Furthermore, in all
the works cited above, SO, was injected continuously for a
number of years rather than in an impulsive way, whereas
in the case of a volcanic eruption, the synoptical conditions
at the time of the eruption play an important role (Thomas
et al., 2009; Toohey et al., 2014; Niemeier et al., 2021;
Jones et al., 2016). In our case, the experimental protocol re-
quires the consistency of the QBO with observations through
the post-eruption period; nonetheless, there are smaller-scale
processes and variability that are not reproducible by models
with a coarse resolution that would affect the initial state of
the system, such as the formation of a mesocyclone during
the first day after the eruption (Chakraborty et al., 2009) or
the passage of Typhoon Yunya within 75 km northeast of the
eruption (Oswalt et al., 1996).

5 Conclusions

The ISA-MIP HErSEA experiment protocol was designed to
investigate the differences and the consensus among a group
of climate models, all with interactive stratospheric aerosol
microphysics, by comparing them with measurements after
the Mt. Pinatubo eruption in 1991. This is done through a
well-defined experimental protocol with different sets of ini-
tial parameters for the stratospheric SO», in terms of both
magnitude (5, 7, or 10 Tg S injected) and altitude of the SO,
cloud (18-20, 21-23, 18-25 km, uniformly distributed). One
important finding from this intercomparison is that there is
now a general consensus among the models that an SO;
emission amount at or below the lower end of the observed
stratospheric SO, mass loading (14-23 Tg) is required to re-
produce the observed sulfate aerosol loading from that time
period. However, the set of injection parameters that best fits
the observation changes in some models depending on the
variables to be considered (aerosol optical depth, effective
radius, sulfate burden, surface area density).
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The main reason for the disagreement with observations is
stratospheric transport, which is too fast towards the north-
ern mid-latitudes for some models or results in stronger trop-
ical confinement in others. The transport consequently in-
fluences the growth of sulfate aerosols and their global dis-
tribution, which in turn affects the persistence of aerosols
in the stratosphere, with a feedback on the transport itself
(Briihl et al., 2015; Niemeier and Schmidt, 2017; Visioni
et al., 2018b). Other reasons could be related to the absence
of processes such as the absence of the Cerro Hudson erup-
tion in the southern extratropics 2 months after the Pinatubo
eruption, which may partly explain the initial lack of sul-
fate aerosols in the Southern Hemisphere and the omission
of ash injection, which would be crucial in the early days/-
months to better reproduce the initial evolution of the cloud.
Our results highlight the need for some specific experiments
that might be needed to disentangle the different components
that contribute to the overall uncertainty. For instance, sim-
ulations that nudge stratospheric transport to reanalyses (as
done in Schmidt et al., 2018, in CESM(WACCM)) in mul-
tiple models could clarify the role of different microphysical
schemes. Similarly, consistently turning interactive strato-
spheric chemistry on and off in multiple models could high-
light the importance of ozone feedback (as done in Richter
et al., 2017). Last but not least, dedicated tracer experiments
of an idealized volcanic cloud excluding chemical micro-
physical processes are necessary to assess the role of strato-
spheric transport in the models.

Overall, considering the best set of initial parameters, dif-
ferences between models and observations remain, and the
inter-model differences are still large, as found before in
other multi-model experiments of explosive volcanic clouds
(i.e., Tambora in Marshall et al., 2018; Clyne et al., 2021).
We also note that the observations themselves show disagree-
ment, sometimes as high as inter-model differences, because
of various issues with the saturation or sensitivity of the par-
ticular instrument. Our observations around the reliability of
the measurements during the Pinatubo event highlight the fu-
ture need for more observations in order to be better pre-
pared for future explosive volcanic eruptions (Newhall et al.,
2018; Marshall et al., 2022), both for understanding short-
and long-term impacts and as a benchmark test for current
Earth system models. In the absence of large volcanic erup-
tions in the early 21 century, where a wealth of observational
data exist, it might therefore be also an alternative to focus on
moderate eruptions in future aerosol model intercomparison
studies, e.g., the Raikoke eruption in 2019.

As a first study of the inter-model differences within ISA-
MIP HErSEA, we focused on the aerosol optical depth and
the variables on which it depends, such as the loading and
size of the sulfate aerosols. Therefore, we suggest for follow-
up studies the comparison of radiative forcing and ozone
changes, which immediately follow the analyses done here.
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Appendix A: Analysis of model output

A1 Taylor diagrams

In Sect. 3.1 we use Taylor diagrams (Taylor, 2001) in order
to summarize all the information regarding the reproducibil-
ity of the stratospheric optical depth simulated compared to
satellite observations. Taylor diagrams provide a concise sta-
tistical summary of how well patterns from simulations and
observations match each other in terms of their correlation
(COR; azimuthal angle), their root-mean-square difference
(RMSD; proportional to the distance between the observa-
tions (gray and black circles on the x axis) and experiments
(colored circle)), and the ratio of their variances (SDs on x
and y axis). SDs, RMSDs, and CORs are calculated for zonal
values of the stratospheric AOD for two different time peri-
ods (first year and second year after the eruption). Therefore,
similar SD, higher COR, and lower RMSD mean similar am-
plitudes of variation in terms of latitudinal distribution and
time evolution.

A2 Effective radius

The effective radius is calculated as the ratio of the third
and second moments of the number size distribution of the
aerosol particles. This results in Eq. (A1) for models with a
sectional scheme; in this case, the sum is over the bins, n;
is the number of particles, and r; is the radius of particles in
each bin. In models with a modal scheme, the effective radius
is calculated as the sum over the modes as in Eq. (A2), where
SAD,; is the surface area density, and vol; is the volume den-
sity. In EMAC (modal scheme) the quantity is estimated from
the median radii for accumulation- and coarse-mode particles
since it was not stored in the output.

3

reff = 2T (A1)
D oini 'ri2
3.3 vol:

reff = 2Ol (A2)
".SAD;

The stratospheric effective radius (reffq) for the models
and SAGE Il is calculated in Eq. (A3) by integrating the pro-
vided effective radius (reff) from the tropopause to the top of
the atmosphere weighted with the SAD. The thickness of the
vertical layer (%) is calculated from the hypsometric equation
(Eq. A4).

> .(SAD - h - reff),

refft t = (A3)
s > .(SAD-h),
R-T P
h = - ‘In ;jl (A4)
Z

For the OPC measurements, we calculate the stratospheric
effective radius (Eq. AS) as in Kleinschmitt et al. (2017) for
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the updated UWv2.0 data set. The measurement error bars
consider a 40 % uncertainty in SAD and vol and assume a
correlation coefficient of 0.5 between SAD at different alti-
tudes, vol at different altitudes, and SAD and vol at the same
altitude.

3-> . vol;

>.SAD; (A5

reffyrar =
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