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Abstract. Chemical mechanisms describe how emissions of gases and particles evolve in the atmosphere and
are used within chemical transport models to evaluate past, current, and future air quality. Thus, a chemical
mechanism must provide robust and accurate predictions of air pollutants if it is to be considered for use by reg-
ulatory bodies. In this work, we provide an initial evaluation of the Community Regional Atmospheric Chemistry
Multiphase Mechanism (CRACMMv1.0) by assessing CRACMMv1.0 predictions of surface ozone (O3) across
the northeastern US during the summer of 2018 within the Community Multiscale Air Quality (CMAQ) model-
ing system. CRACMMv1.0 O3 predictions of hourly and maximum daily 8 h average (MDA8) ozone were lower
than those estimated by the Regional Atmospheric Chemistry Mechanism with aerosol module 6 (RACM2_ae6),
which better matched surface network observations in the northeastern US (RACM2_ae6 mean bias of+4.2 ppb
for all hours and +4.3 ppb for MDA8; CRACMMv1.0 mean bias of +2.1 ppb for all hours and +2.7 ppb for
MDA8). Box model calculations combined with results from CMAQ emission reduction simulations indicated
a high sensitivity of O3 to compounds with biogenic sources. In addition, these calculations indicated the dif-
ferences between CRACMMv1.0 and RACM2_ae6 O3 predictions were largely explained by updates to the
inorganic rate constants (reflecting the latest assessment values) and by updates to the representation of monoter-
pene chemistry. Updates to other reactive organic carbon systems between RACM2_ae6 and CRACMMv1.0
also affected ozone predictions and their sensitivity to emissions. Specifically, CRACMMv1.0 benzene, toluene,
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and xylene chemistry led to efficient NOx cycling such that CRACMMv1.0 predicted controlling aromatics re-
duces ozone without rural O3 disbenefits. In contrast, semivolatile and intermediate-volatility alkanes introduced
in CRACMMv1.0 acted to suppress O3 formation across the regional background through the sequestration of
nitrogen oxides (NOx) in organic nitrates. Overall, these analyses showed that the CRACMMv1.0 mechanism
within the CMAQ model was able to reasonably simulate ozone concentrations in the northeastern US dur-
ing the summer of 2018 with similar magnitude and diurnal variation as the current operational Carbon Bond
(CB6r3_ae7) mechanism and good model performance compared to recent modeling studies in the literature.

1 Introduction

Both short-term acute and long-term chronic exposure to el-
evated surface ozone (O3) concentrations can be detrimental
to human and ecosystem health (Bell et al., 2005; Rich et
al., 2006; Larrieu et al., 2007; Iriti and Faoro, 2008; Ghosh
et al., 2018; U.S. Environmental Protection Agency, 2020).
The buildup of O3 in the lower atmosphere also has a notice-
able impact on earth’s radiative budget (e.g., Brasseur et al.,
1998; Stevenson et al., 2013). As a result, many countries
and governments across the world have enacted legislation
to limit surface ozone pollution. In the United States the cur-
rent National Ambient Air Quality Standards (NAAQS) for
maximum daily 8 h average ozone (MDA8 O3) is set at 70
parts per billion by volume (ppb) (Bachmann, 2007; U.S. En-
vironmental Protection Agency, 2015). Despite reductions in
emissions of precursor gases that lead to O3 formation, many
areas across the US are still in non-attainment of these stan-
dards (U.S. Environmental Protection Agency, 2022a). Thus,
understanding current O3 pollution mitigation strategies and
developing new strategies for the future are pivotal if air qual-
ity standards are to be met.

The chemistry of tropospheric O3 formation is com-
plex and involves the non-linear reactions of nitrogen ox-
ides (NOx =NO+NO2) with reactive organic carbon (ROC)
compounds (Seinfeld and Pandis, 2006; Jacob, 1999; Heald
and Kroll, 2020). Similarly, the formation of secondary fine-
particle (PM2.5) species such as sulfate, nitrate, and sec-
ondary organic aerosol (SOA) involves complex chemistry
in multiple phases and is dependent on concentrations of nu-
merous precursor species and atmospheric oxidants. In to-
tal, this chemistry can involve thousands of individual chem-
ical compounds and over 10 000 chemical reactions (Dodge,
2000; Stockwell et al., 2012; Jenkin et al., 2015). Due to
these complex interactions as well as the role of meteorolog-
ical and dry deposition processes on O3 and PM2.5 (Seinfeld
and Pandis, 2006), regulatory bodies use numerical models to
simulate past, current, and future (e.g., under modified emis-
sion scenarios) concentrations to inform air quality manage-
ment. Rather than simulating the explicit chemistry of ev-
ery known atmospheric compound and reaction, these mod-
els usually employ chemical mechanisms which simplify the
atmospheric chemistry into a more limited number of species
and reactions in order to capture the most important path-

ways for forming O3 and PM2.5 in a computationally effi-
cient manner (Gery et al., 1989; Carter, 1990; Stockwell et
al., 1997). Typically, the chemistry leading to O3 is repre-
sented separately from the chemistry leading to PM2.5 and
SOA formation in chemical transport models (e.g., Pye et al.,
2010; Koo et al., 2014).

The Community Multiscale Air Quality (CMAQ) model
is a numerical model developed by the United States En-
vironmental Protection Agency (U.S. EPA) to estimate O3,
PM2.5, and other pollutants, both regionally in the US and in
other parts of the world (http://www.epa.gov/cmaq, last ac-
cess: 8 August 2023; U.S. Environmental Protection Agency,
2022b). CMAQ is available online (see “Code and data
availability”) and is distributed publicly with three types
of chemical mechanisms: the Regional Atmospheric Chem-
istry Mechanism (RACM), Carbon Bond (CB), and SAPRC.
These three chemical mechanisms represent ozone chem-
istry with less than 1000 reactions and up to ∼ 200 species
and have been tested on multiple model domains where they
show acceptable performance at estimating ambient O3 con-
centrations (e.g., Sarwar et al., 2008, 2013; Yu et al., 2010;
Mathur et al., 2017; Appel et al., 2021). Currently, Carbon
Bond version 6 (CB6r3 as of CMAQv5.3) is the most com-
mon mechanism used by the U.S. EPA for predicting O3 (Ap-
pel et al., 2021).

The Community Regional Atmospheric Chemistry Multi-
phase Mechanism version 1.0 (CRACMMv1.0) (Pye et al.,
2023) is a next-generation chemical mechanism that was dis-
tributed for the first time with the release of CMAQv5.4 in
October 2022 (U.S. EPA Office of Research and Develop-
ment, 2022). CRACMMv1.0 builds on the RACM2 frame-
work (Goliff et al., 2013) and includes new representations of
several organic systems, most notably monoterpenes and aro-
matics, and couples gas-phase with particle-phase products.
In addition, the CRACMMv1.0 mechanism provides built-
in transparent mapping of emissions to mechanism species
and was designed to conserve emitted carbon as well as track
carbon in products as gases react and evolve. These fea-
tures were included in CRACMMv1.0 to represent particu-
late matter formation more accurately while also maintaining
the ability to predict O3 concentrations.

The goal of this work is to compare CRACMMv1.0 O3
predictions with the previously well-established RACM2 and
CB6r3 chemical mechanisms and understand drivers of dif-
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ferences between CRACMMv1.0 and these mechanisms. Fu-
ture work will present analyses evaluating CRACMMv1.0
PM2.5 predictions. For the comparison presented here we
used the CMAQ model and performed simulations at
4 km× 4 km horizontal grid resolution for the northeastern
United States (US) domain during summer 2018 (Torres-
Vazquez et al., 2022). This domain was chosen specifically
because areas in the northeastern US frequently violate the
O3 NAAQS (U.S. Environmental Protection Agency, 2022a).
In addition, past field studies such as the Long Island Sound
Tropospheric Ozone Study (LISTOS) and future field studies
(e.g., Atmospheric Emissions and Reactions Observed from
Megacities to Marine Areas, AEROMMA; Warneke et al.,
2022) have been designed to specifically address the issue of
high O3 events in the New York City metropolitan area. Air
Quality System (AQS) observations made during the sum-
mer of 2018 were used to aid in the evaluation. Finally, a box
model was employed to study the different chemical systems
and updates that were driving differences in O3 predictions
between RACM2 and CRACMMv1.0.

2 Methods

2.1 CMAQ model

CMAQ simulations were performed for the northeastern
United States (NE US) domain at 4 km× 4 km horizontal
grid resolution with 35 vertical layers from 1 June through 31
August 2018 with 2 through 31 May as the simulation spinup
period. In addition to CRACMMv1.0, simulations were also
performed with CB6r3 using aerosol module 7 (CB6r3_ae7;
AERO7) (Appel et al., 2021) and with RACM2 using aerosol
module 6 (RACM2_ae6; AERO6) (Sarwar et al., 2013), both
of which are available in the standard CMAQv5.3.3 release
(used here) and v5.4 (latest public release). The major dif-
ference between AERO6 and AERO7 is in the represen-
tation of monoterpene SOA, with AERO7 producing more
monoterpene SOA from photooxidation (Xu et al., 2018)
and organic nitrates (Pye et al., 2015) than AERO6. Chem-
ical initial and boundary conditions for the NE US domain
were generated from previous nested WRF-CMAQ simula-
tions (Weather Research and Forecasting) (12 km), which
used CB6r3_ae7 (Torres-Vazquez et al., 2022). The initial
and boundary conditions from CB6r3_ae7 were mapped to
CRACMMv1.0 and RACM2_ae6. See the CMAQv5.4 code
repository for the mapping of Carbon Bond-based mech-
anisms to CRACMMv1.0 for boundary and initial condi-
tion purposes. Meteorological files for the simulation were
generated offline using the Weather Research Forecasting
(WRF version 4.1.2) model as described by Torres-Vazquez
et al. (2022), and the files were pre-processed through the
Meteorology-Chemistry Interface Processor (MCIP) (Otte
and Pleim, 2010) for input to the CMAQ simulations.

2.2 Emissions

Anthropogenic emissions were created following the 2016
version 7.2 North American Emissions Modeling Platform
(Torres-Vazquez et al., 2022; U.S. Environmental Protection
Agency, 2019) with updates described below. The anthro-
pogenic emissions for CB6r3_ae7 are the same as those for
the 4 km domain in the work by Torres-Vazquez et al. (2022)
and include year-specific mobile emissions predicted by the
MOtor Vehicle Emission Simulator (MOVES) model, air-
port emissions following the 2017 National Emissions Inven-
tory (NEI) estimates from the Federal Aviation Administra-
tion (FAA) airport model, year-specific wildland fires, moni-
tored electric generating unit (EGU) emissions, year-specific
commercial marine vehicle emissions, and emissions from
other sectors following the 2016v7.2 modeling platform. Pri-
mary organic aerosol (POA) in CB6r3_ae7 was considered
semivolatile, and evaporated POA was allowed to undergo
gas-phase reaction with OH following the work of Murphy
et al. (2017). The empirical representation of anthropogenic
SOA sources (potential combustion SOA, pcSOA; Murphy
et al., 2017) was turned off in all cases. For a more complete
description of the anthropogenic emissions employed in the
CB6r3_ae7 simulations, see the work by Torres-Vazquez et
al. (2022). Biogenic emissions for all mechanism simulations
were calculated within CMAQv5.3.3 using the EPA’s Bio-
genic Emission Inventory System (BEIS v3.6.1) (Bash et al.,
2016).

CRACMMv1.0 emission inputs build on the same meth-
ods as the CB6r3_ae7 inputs with a few additional updates.
The total mass and speciation of emissions from volatile
chemical products were updated to follow VCPy, a model
for predicting volatile chemical product (VCP) emissions
(Seltzer et al., 2021). Individual ROC species were mapped
to CRACMMv1.0 species as described by Pye et al. (2023).
Primary organic aerosol in CRACMMv1.0 was considered
semivolatile with volatility profiles of alkane-like emissions
for diesel vehicles, gasoline vehicles, and aircraft (Lu et al.,
2020) and slightly oxygenated species profiles for biomass
burning and all other POA sources. For sources without spe-
cific volatility profiles, the volatility profile of meat-cooking
emissions was used to produce a lower bound on the evapo-
ration of semivolatile species (Woody et al., 2016; Mohr et
al., 2009). Semivolatile POA was implemented using the De-
tailed Emissions Scaling, Isolation, and Diagnostic (DESID)
module in all cases (Murphy et al., 2021).

The anthropogenic emissions created for CRACMMv1.0
were also used with slight adjustments for RACM2_ae6 sim-
ulations in CMAQ (see Table S1 in the Supplement for map-
pings). For the RACM2_ae6 simulations, primary organic
aerosol (POA) was treated as semivolatile with the same
volatility profiles as in the CRACMMv1.0 simulations but
with the chemistry of AERO6 (Murphy et al., 2017). Alkane-
like semivolatile and intermediate-volatility organic com-
pounds (S/IVOCs) emitted in the gas phase were ignored
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in RACM2_ae6, and the empirical representation of anthro-
pogenic SOA sources (pcSOA, Murphy et al., 2017) was
turned off in RACM2_ae6 as in CB6r3_ae7.

2.3 Air quality network observations

Surface-level network observations of air pollutants made in
the northeastern US between June and August 2018 were
used to evaluate CMAQ model outputs. Hourly measure-
ments of O3 and NOx were obtained from the AQS database
using the available pre-generated files and paired in time and
space with model quantities using the Atmospheric Model
Evaluation Tool (AMET) (Appel et al., 2011). The observa-
tions in AQS were quality-assured by the reporting agency
(e.g., EPA, states, tribes), and therefore no additional qual-
ity checks of AQS data were done in AMET. In the case of
time periods with missing data, those missing periods were
removed from the analysis. In cases where multiple observa-
tions were reported for a single site using different parame-
ter occurrence codes (POCs), those observations were treated
as individual measurements with the POC number used to
distinguish between the different measurements for the same
site.

2.4 Box modeling in F0AM

The Framework for 0-D Atmospheric Modeling (F0AMv4.2)
box model was used as a tool to examine differences in chem-
istry between the mechanisms (Wolfe et al., 2016). Chemical
species and reactions from the RACM2 and CRACMMv1.0
mechanisms were ported into F0AM from CMAQ-ready
mechanism files using a custom MATLAB script (see “Code
and data availability”). Photolysis rates in RACM2 and
CRACMMv1.0 were matched to existing Master Chemi-
cal Mechanism (MCM) rates in F0AM, and the F0AM de-
fault example actinic flux rates were prescribed for all sim-
ulations. Three chamber experiments were run by initiat-
ing experiments with 10 ppb of either α-pinene, isoprene,
or benzene under high- (5 ppb) and low-NOx (0.5 ppb) con-
ditions at standard temperature (T = 298 K) and pressure
(P = 1013 mbar). Hydrogen peroxide, set at 200 ppb, was
used as the radical OH source (∼ 2× 10−4 ppb initial OH),
and relative humidity was set at 10 % across all simulations.
After initiation, each chemical system was allowed to evolve
for 24 h to reach steady state before the simulation was termi-
nated. In addition, to gain insight into the role organic vs. in-
organic updates played in O3 production in CRACMMv1.0,
all three ROC precursors were re-run in simulations using
a modified RACM2 mechanism (RACM2_mod) where all
inorganic rate constants in RACM2 were updated to match
those in CRACMMv1.0. This was needed because the devel-
opment of CRACMMv1.0 not only incorporated updates to
various ROC reaction systems in terms of product yields and
chemical fates but also included inorganic rate constant up-

dates (> 20 rate constants) to reflect current literature values,
which differ from those prescribed in RACM2.

3 Ozone predictions

3.1 Ozone predictions by mechanism

Figure 1a shows the June–August average surface ozone
concentration (averaged for all hours) predicted by the
CRACMMv1.0 chemical mechanism across the northeast-
ern US model domain. CRACMMv1.0 average ozone predic-
tions ranged from 16–32 parts per billion by volume (ppb),
with the highest average ozone predictions occurring over the
Great Lakes region, Appalachian Mountain region, and the
Atlantic coastline. The higher average O3 predictions (28–
32 ppb) in the Great Lakes region and around Chesapeake
Bay (Fig. 1) have been shown to be driven by land–water
circulation due to the difference in daytime planetary bound-
ary layer (PBL) heights over cool water (typically < 300 m)
compared to much higher PBL heights over land (often
1500–2500 m) (Dye et al., 1995; Lennartson and Schwartz,
2002; Foley et al., 2011; Dreessen et al., 2019; Cleary et
al., 2022). In particular, O3 exceedance events around Lake
Michigan have been predominantly attributed to the north-
easterly transport of O3 and O3 precursors to the lake, where
photochemical O3 production then becomes intensified un-
der conditions of lower vertical mixing and lower dry de-
position (Sillman et al., 1993; Dye et al., 1995; Lennartson
and Schwartz, 2002; Foley et al., 2011; Cleary et al., 2022).
These lake effects often lead to regular NAAQS exceedances
in the region (Foley et al., 2011). The elevated O3 concen-
trations predicted for the Appalachian Mountain region have
also been shown to be driven primarily by the transport of
O3 and other pollutants from nearby urban centers and coal-
fired power plants (Aneja et al., 1991; Neufeld et al., 2019).
In addition, O3 losses in the region have been measured to
be lower at the higher elevation on the mountaintops, which
leads to the buildup of O3 during the night (Aneja et al.,
1991; Neufeld et al., 2019).

The magnitude of the ozone concentrations predicted by
CRACMMv1.0 was in good agreement with O3 predictions
from the base CB6r3_ae7 simulation, with inland differ-
ences typically falling below ±1 ppb across the model do-
main (Fig. 1b). These absolute differences corresponded to
relative differences of ±5 % (Fig. S1a). The largest observed
spatial discrepancies between the two mechanisms occurred
near bodies of water, where CRACMMv1.0-estimated aver-
age ozone was ∼ 2–4 ppb higher than estimates made by the
CB6r3_ae7 chemical mechanism. The higher predicted dif-
ferences near water are likely explained by intensified chem-
istry due to the land–water circulation effect described pre-
viously, which generally drives the higher O3 concentrations
in the regions. In addition, Foley et al. (2011) and Vermeuel
et al. (2019) found that O3 production showed greater NOx
sensitivity as urban plumes advected across Lake Michigan.
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Figure 1. (a) Simulated summer (June–August) 2018 surface ozone average (all hours) as predicted by CRACMMv1.0. Simulated summer
ozone average (all hours) differences of (b) CRACMMv1.0−CB6r3_ae7 and (c) CRACMMv1.0−RACM2_ae6.

Thus, differences in O3 production near waterbodies between
the simulations were influenced by the representation of O3–
NOx–ROC chemistry in the two mechanisms and their char-
acterization of the chemical regime. Differences in chemical
production of O3 between CRACMMv1.0 and CB6r3_ae7
are discussed and further explored later (Sect. 4.2). The dif-
ferences over water between CB6r3_ae7 and CRACMMv1.0
were not expected to be driven by dry deposition over the
Great Lakes as deposition is largely suppressed over water
(Sillman et al., 1993).

Because different VCP emission inventories were em-
ployed between the CRACMMv1.0 and CB6r3_ae7 simula-
tions (see Sect. 2.2), differences in the two inventory meth-
ods, in addition to differences in chemistry, could account
for a small fraction of the differences shown in Fig. 1b. This
would be expected to have the most pronounced effect over
urban areas, where VCP emissions are largest. In a previous
model study, simulations showed that a complete removal of
VCP emissions led to a 1 ppb O3 change in downtown New
York City over a 24 h period (Seltzer et al., 2022); thus, the
choice of VCP inventory is expected to result in differences
much less than 1 ppb.

In comparison with RACM2_ae6, CRACMMv1.0 esti-
mated a lower average concentration (average O3 differ-
ence of 2–4 ppb) across the model domain, with the largest
differences in predictions occurring near urban centers in
the metropolitan northeastern US in addition to coastal ar-
eas along the Great Lakes region and the Atlantic seaboard
(Fig. 1c). The mechanism-to-mechanism average O3 dif-
ferences presented in Fig. 1c corresponded to relative av-
erage O3 differences of 0 %–15 % between the mecha-
nisms across the model domain (Fig. S1b). The coupling
of meteorology and chemistry, similar to the situation dis-
cussed for Lake Michigan, could again explain the larger
relative differences in O3 concentrations near waterbod-

ies (Fig. 1c). Since RACM2_ae6 emissions were mapped
from CRACMMv1.0 inputs, the differences between these
simulations were due to chemical differences between the
mechanisms alone. Over land, differences in O3 predictions
between CRACMMv1.0 and RACM2_ae6 were smaller
(< 2 ppb, < 7 %) but were consistently biased in one direc-
tion (Figs. 1c, S1b). These findings suggest that updates in
chemistry between RACM2_ae6 and CRACMMv1.0 led to
a ubiquitous reduction in O3 across the model domain. The
role of chemistry as a driver in mechanism-to-mechanism
ozone differences between RACM2_ae6 and CRACMMv1.0
is revisited in Sect. 4.

3.2 Evaluation of spatial distribution

Hourly ozone performance statistics were calculated by pair-
ing CMAQ outputs in space and time with 313 AQS sites
that reported hourly observations between the months of June
and August 2018 using AMET (See Sect. 2.3). Figure 2a
and b show the spatial distribution in model–observation
hourly mean biases and linear correlations (r) between pre-
dictions and observations for all hourly observations covered
by the CRACMMv1.0 simulation. In general, the hourly O3
mean bias (MB) indicates a high bias across the model do-
main, with the highest biases (> 15 ppb) occurring along the
North Carolina–Tennessee border (Fig. 2a). Model biases
were much lower around the metropolitan NE US (Wash-
ington, DC; Maryland; New Jersey; New York City–Long
Island regions), where predictions fell within ±4 ppb of the
observed average values. Linear correlations between hourly
O3 estimates and observations at a given AQS site were typ-
ically high (r > 0.8) in the northeastern US (Fig. 2b). Cor-
relations between hourly observations and predictions were
the weakest at sites located in the Appalachian Mountain
region (r = 0.4–0.6) and were strongest at sites located in
the metropolitan northeastern US (r > 0.9). The hourly O3
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normalized mean bias (NMB) and normalized mean error
(NME) across the domain can be found in the Supplement
(Fig. S2), and values followed a similar spatial distribution as
Fig. 2a and b, with lower NMB (−20 % to+20 %) and NME
(< 30 %) values nearer population centers (e.g., Washing-
ton, DC; Baltimore; Philadelphia; Boston) and higher NMB
(+ 20 %–100 %) and NME (> 40 %) at sites further from city
centers (Fig. S2). Even so, hourly ozone predictions had val-
ues of NMB between±20 % at 250 out of 313 sites and NME
less than 30 % at 227 out of 313 of the reporting sites.

The bias and correlation for daily maximum 8 h aver-
age ozone concentration (MDA8 O3) were also calculated
for CRACMMv1.0 at each site (Fig. 2c, d). Predictions of
MDA8 O3 are often used by regulating bodies, such as the
U.S. EPA, to determine whether regions are in attainment or
non-attainment of national ozone air quality standards. Pre-
dictions of MDA8 O3 also reflect a model’s ability to es-
timate daytime O3 concentrations as O3 concentrations are
higher during the day. CRACMMv1.0 MDA8 O3 mean bi-
ases were similar to the reported hourly O3 biases and ranged
from −4 to +16 ppb across the model domain, with model–
observation biases falling within ±4 ppb at 245 out of 313
sites (Fig. 2c). Correlations between modeled and observed
MDA8 O3 were also determined to be high (Fig. 2d), and
CRACMMv1.0 MDA8 O3 predictions showed a stronger
correlation than hourly O3 predictions at the Appalachian
Mountain sites (e.g., North Carolina–Tennessee border) but
were weaker in central North Carolina and in Ohio. MDA8
O3 normalized mean biases did not exceed ±40 %, with
305 sites reporting normalized mean biases within ±20 %
(Fig. S2c). MDA8 O3 normalized mean errors did not ex-
ceed 45 % across the domain, and NME values were lower
than 20 % for the majority (95 %) of sites (Fig. S2d).

Hourly and MDA8 O3 predictions that were biased high
were not isolated to the CRACMMv1.0 simulation as both
the CB6r3_ae7 and RACM2_ae6 hourly and MDA8 O3 es-
timates showed high biases over the northeastern US in
summer 2018 (Figs. S3–S6). High summer O3 daytime and
nighttime biases have been noted in previous studies in
CMAQ investigating air quality over the northeastern US and
contiguous US (CONUS) using the RACM2 and CB6 mech-
anisms (Appel et al., 2021; Sarwar et al., 2013; Cheng et al.,
2022). Cheng et al. (2022) noted in their study that daytime
high O3 biases were reduced by a more accurate represen-
tation of cloud cover via the assimilation of satellite data.
Nighttime overestimation of O3 in a previous study using
CMAQ, on the other hand, was attributed to high O3 coming
in from the domain boundaries and low vertical mixing (Li
and Rappenglueck, 2018). The exact drivers of the high sum-
mer O3 estimates in CMAQ, however, are still under investi-
gation. The calculated hourly and MDA8 ozone statistics for
the CB6r3_ae7 and RACM2_ae6 simulations were found to
be of very similar spatial distribution and magnitude to those
calculated for CRACMMv1.0 (Figs. 2 and S2–S6), where
both simulations reported lower biases in the metropolitan

NE US and higher biases in other areas of the domain. Given
that all mechanism O3 biases were lowest nearer to major
cities, this suggests that the CMAQ simulations better esti-
mated O3 concentrations in areas exposed to higher levels of
anthropogenic pollutants.

Table 1 summarizes the domain-wide averages of site-
specific ozone performance statistics for all three mecha-
nisms and highlights that CRACMMv1.0 performed well
when compared with domain-wide hourly and MDA8 O3 es-
timates from RACM2_ae6 and CB6r3_ae7. The lower O3
estimates by CB6r3_ae7 across the domain most closely
matched observations and showed the lowest domain-
wide hourly and MDA8 O3 mean bias (MB), normalized
mean bias (NMB), and normalized mean error (NME).
CRACMMv1.0 hourly O3 predictions showed a similar MB
(+2.7 ppb vs. +2.4 ppb) and NMB (+8.8 % vs. +7.9 %) to
CB6r3_ae7, while CRACMMv1.0 MDA8 O3 MB (+2.1 ppb
vs. +1.5 ppb) and NMB (+7.7 % vs. +3.4 %) values were
slightly higher than CB6r3_ae7.

While on average, hourly O3 and MDA8 O3 were slightly
overestimated by all mechanisms, the highest O3 values
were generally underestimated by all mechanisms (Table 1).
For the subset of conditions where observed O3 was above
50 ppb (approximately the highest 10 % of concentrations)
RACM2_ae6 (MB of −1.7 ppb) performed best followed by
CRACMMv1.0 (MB of−4.7 ppb) and then CB6r3_ae7 (MB
of −6.2 ppb). CRACMMv1.0 with the Automated MOdel
REduction (AMORE) representation of isoprene chemistry
(CRACMM1AMORE) is expected to perform even better
than CRACMMv1.0 at high ozone concentrations (Wiser et
al., 2022).

Emery et al. (2017) characterized NMB and NME model
statistics from modeling studies reported in the literature (Si-
mon et al., 2012) and found that two-thirds of modeling stud-
ies reported hourly and MDA8 NMB of < 15 %, NME of
< 25 %, and r of> 0.50. With the exception of domain-wide
hourly O3 NME, all mechanisms examined here had model
performance (NMB, NME, and r) within the range reported
in the literature. By these metrics, CRACMMv1.0 performs
consistently with state-of-science criteria for predicting O3
in photochemical models while also treating the loss of mass
to SOA formation.

3.3 Evaluation of diurnal distribution

Figure 3a shows the diurnal average hourly ozone sur-
face concentrations (±1 standard deviation) estimated by
CRACMMv1.0 (blue trace) compared to average hourly
network observations (±1 standard deviation) for all AQS
sites (black trace) that reported measurements during the
summer of 2018 within the domain. Figure 3a shows that
CRACMMv1.0 captured the general diurnal pattern of the
observed ozone concentrations across the model domain, and
predictions fell within the standard deviation of the obser-
vations. CMAQ simulations using CRACMMv1.0 predicted
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Figure 2. Ozone (a, c) mean biases (in ppb) and (b, d) correlations between predictions and observations for (a–b) all hourly O3 values and
(c–d) MDA8 O3 values across the NE US for CRACMMv1.0 calculated using AQS observations between June–August 2018.

Table 1. Performance of domain-wide site-specific average hourly O3 (number of observations, n= 652 476), MDA8 O3 (n= 27 037), and
hourly O3 above 50 ppb (n= 69 103) in terms of mean bias (MB), the Pearson correlation coefficient (r), normalized mean bias (NMB), and
normalized mean error (NME) for the CRACMMv1.0, and CB6r3_ae7, and RACM2_ae6 simulations. The last rows reflect conditions when
observed hourly ozone was above 50 ppb.

Metric Mechanism Domain-wide Domain-wide Domain-wide Domain-wide
MB∗ (ppb) correlation (r) NMB (%) NME (%)

Hourly O3 CRACMMv1.0 +2.7 0.75 +8.8 27.2
CB6r3_ae7 +2.4 0.75 +7.9 26.8
RACM2_ae6 +4.3 0.75 +14.0 28.7

MDA8 O3 CRACMMv1.0 +2.1 0.76 +7.7 15.8
CB6r3_ae7 +1.5 0.76 +3.4 13.5
RACM2_ae6 +4.2 0.75 +9.6 15.9

Hourly O3 above 50 ppb CRACMMv1.0 −4.7 0.54 −8.0 15.0
CB6r3_ae7 −6.2 0.53 −10.6 15.2
RACM2_ae6 −1.7 0.54 −2.8 14.6

∗ Equations used for the calculations of MB, r , NMB, and NME are reported in the Supplement.

a similar onset in O3 production and an earlier and sharper
decline in afternoon O3 than what was typically observed
at the AQS sites. The model also predicted higher average
nighttime minimum O3 than what was observed. The aver-
age summer diurnal O3 concentrations predicted by CMAQ
using the CB6r3_ae7 (dashed red trace) and RACM2_ae6
(dashed green trace) mechanisms followed the same diur-
nal trend, with CRACMMv1.0 and CB6r3_ae7 simulations
showing better agreement with hourly observations than the
RACM2_ae6 simulation (Fig. 3a).

Because the offset observed in morning growth and late-
afternoon decline in O3 between CMAQ and the AQS ob-
servations was predicted by all mechanism simulations, me-
teorology was likely a driving contributor to the model–
observation discrepancies during these time periods. For ex-
ample, a previous study comparing CMAQ O3 predictions
across North America determined that the timing of the diur-
nal ozone signal was likely driven by boundary layer dynam-
ics in the model over emissions or chemistry (Solazzo et al.,
2017). As mentioned in Sect. 3.2 the high nighttime biases
observed in Fig. 3a could have also been driven by meteo-

https://doi.org/10.5194/acp-23-9173-2023 Atmos. Chem. Phys., 23, 9173–9190, 2023



9180 B. Place et al.: Northeastern US surface ozone predictions

Figure 3. Average (± standard deviation) hourly O3 concentrations predicted by CMAQ using CRACMMv1.0 (blue trace) and observed
(black trace) at (a) all AQS sites within the domain; (b) Queens, NY (AQS site 36-081-0124); (c) Flax Pond, NY (AQS site 36-103-0044);
and (d) Garrett, MD (AQS site 24-023-0002) during June, July, and August 2018. Predicted average hourly O3 values in the CB6r3_ae7
CMAQ simulation (dashed red trace) and the RACM2_ae6 CMAQ simulation (dashed green trace) are also overlaid in each panel.

rology or by O3 coming in from the boundaries (Li and Rap-
penglueck, 2018). However, mechanism-to-mechanism dif-
ferences and, more specifically, predictions of peak O3 dur-
ing the daytime are influenced by the different treatments of
chemistry between the simulations.

To further examine how different treatments of chemistry
and/or emissions impacted hourly O3 differences between
mechanisms compared to observations, comparisons at three
selected AQS sites (one urban, one suburban, and one ru-
ral site) were also plotted in Fig. 3b, c, and d. Queens, NY,
was chosen as a representative urban site (average hourly
[NOx]mod ≈ 12 ppb); Flax Pond, NY, was chosen as a repre-
sentative suburban site (average hourly [NOx]mod ≈ 3 ppb);
and Garrett, MD, was chosen as a representative rural/remote
site (average hourly [NOx]mod < 1 ppb). Similar to Fig. 3a,
all mechanism predictions fell within the standard deviation
of the observations at all hours for all three sites (Fig. 3b, c,
d). The RACM2_ae6 simulation showed the greatest diurnal
change in hourly O3 concentrations (daytime ozone produc-
tion) and highest daytime biases, while CB6r3_ae7 predicted
the smallest changes in hourly O3 (daytime ozone produc-
tion) and showed the lowest daytime biases at all three sites.
All simulations showed the lowest hourly relative biases
(±10 %) at the urban site (Queens, NY), suggesting that the
model provides reasonable prediction of O3 production under

high-NOx conditions. This reduced bias in an urban area is
consistent with the hourly O3 biases shown previously across
the northeastern US (Figs. 2 and S2–S6), where spatial biases
were found to be lowest in the metropolitan NE US where
local ozone formation is expected to make up a larger frac-
tion of total ozone than at more rural locations. Larger dif-
ferences between hourly mechanism-to-mechanism O3 pre-
dictions were observed at the more polluted sites. In partic-
ular, the daytime O3 estimated by RACM2_ae6 at Queens
and Flax Pond (Fig. 3b, c) showed a much larger relative
increase to CRACMMv1.0 and CB6r3_ae7 than what was
seen at Garrett, MD (Fig. 3d). Again, this may in part be
due to larger relative contribution from boundary conditions
and transported ozone at rural locations vs. urban locations.
Modeled NOx concentrations at all the sites were similar be-
tween mechanisms (within ±0.05 ppb), and the relationship
between ozone production and NOx is further explored in the
following section.

4 Drivers of ozone formation

In this section, CMAQ simulations with emission perturba-
tions are combined with box modeling to understand drivers
of ozone formation. In addition, mechanism ozone produc-
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tion efficiency is quantified using modeled NOx and O3 con-
centrations across the northeastern US.

4.1 Sensitivity to specific ROC emissions

A series of emission sensitivity simulations were performed
in CMAQ to gain insight into the precursor ROC systems
important for O3 formation in CRACMMv1.0 across the
NE US summer 2018 model domain. The sensitivity sim-
ulations were conducted by running a set of zeroed emis-
sion simulations (i.e., setting emissions of a chemical class
or emission sector to zero) and determining the response
in O3 concentrations to the emission perturbation. A list
of all the zeroed emission simulations can be found in Ta-
ble 2. Due to the non-linear response of ozone production
to perturbations in NOx concentrations, the interpretations
of zeroed emission simulations can be challenging. Nonethe-
less, these types of perturbations provide an initial assess-
ment of the ozone production response in CRACMMv1.0
and provide insight into how chemical systems respond to
lower ROC emissions in CRACMMv1.0 vs. RACM2_ae6
and CB6r3_ae7. Figure 4 shows domain-wide percent dif-
ferences in average ozone concentrations (1O3) between the
base CRACMMv1.0 simulation and a series of zeroed emis-
sion simulations. The largest 1O3 response occurred when
emissions from biogenic sources were excluded from the
simulation (Fig. 4a). The zeroed biogenic-emission simula-
tion resulted in percent changes in average O3 concentra-
tions ranging from −10 % to +3 %. Spatially, average O3
concentrations decreased by ∼ 5 %–10 % in the metropoli-
tan northeastern US and increased in the southern part of
the model domain in response to the perturbation. Relatively
large changes in 1O3 were also predicted in the zeroed
olefin and benzene–toluene–xylene (BTX) emission simula-
tions, with average O3 concentration changes ranging from
−4 % to +2 % (Fig. 4b, c). A similar spatial response in
1O3 was seen between the zeroed biogenic-emission and
anthropogenic-olefin emission simulations (Fig. 4a, b), while
the response of 1O3 in the zeroed BTX emission simulation
was localized to urban areas, particularly in the metropolitan
NE US and never indicated disbenefits (Fig. 4c). The chem-
ical formation of O3 in CRACMMv1.0 was less sensitive
to large alkanes (HC10) and semivolatile and intermediate-
volatility organic compound (S/IVOC) emissions across the
model domain as a 1O3 response of +1 % was predicted in
these simulations (Fig. 4d, e). All five sensitivity simulations
showed some reduction in O3 in the New York City urban
core with ROC reductions indicating ROC-sensitive ozone
formation.

A 1O3 response like the one in CRACMMv1.0 was also
predicted when biogenic emissions were zeroed in a simula-
tion run with RACM2_ae6 (+3 % to −10 %) (Fig. S7), in-
dicating that biogenic emissions were important to O3 for-
mation across chemical mechanisms in the northeastern US
domain. This strong sensitivity of O3 formation to biogenic-

ROC emissions in the eastern and northeastern United States
has also been noted in previous chemical transport model
studies (e.g., Hogrefe et al., 2004; Fiore et al., 2005). A
slightly higher and more widespread decrease in 1O3 was
seen in the RACM2_ae6 zeroed biogenic-emission simula-
tion (Fig. S7) than in the CRACMMv1.0 zeroed emission
simulation (Fig. 4a), which suggests different representa-
tions of biogenic-ROC chemistry between CRACMMv1.0
and RACM2_ae6 lead to some of the differences in mod-
eled O3 concentration shown in Figs. 2 and 4. Zeroed BTX
emission simulations run using RACM2_ae6 and CB6r3_ae7
(Figs. S8 and S9) resulted in1O3 responses (−2 % to−4 %)
around urban areas similar to those that were observed in the
CRACMMv1.0 zeroed BTX emission simulation (Fig. 4c).
Domain-wide BTX emission effects on ozone were lower
than biogenic-emission effects and more pronounced in ur-
ban source regions. Unlike CRACMMv1.0, the RACM2_ae6
and CB6r3_ae7 simulations predicted slightly higher ozone
concentrations (1O3=+1 %) in non-urban regions in the
domain in the zeroed BTX emission simulations compared
to the base model run (Figs. S8 and S9). Note that the or-
ganic nitrate yield in aromatic systems was reduced from
8.2 % to 0.2 % based on recent work by Xu et al. (2020) in
CRACMMv1.0 (Pye et al., 2023). This change increases NO-
to-NO2 conversion, which indicates BTX oxidation gener-
ally leads to ozone production in CRACMMv1.0. However,
CRACMMv1.0 also removes radicals from the gas phase
when autoxidation or phenol chemistry leads to SOA, thus
reducing radical abundances, and Sect. 4.2 will illustrate that
CRACMMv1.0 has a different baseline O3 prediction than
RACM2_ae6 for benzene. These results indicate that the dif-
fering representation of aromatic chemical systems within
the mechanisms explains some of the differences in modeled
O3 concentrations shown in Sect. 3.

The modeled reductions in O3 seen near urban regions
(Fig. 4a–c) and in the New York City urban core specifi-
cally (Fig. 4a–e) are mechanistically consistent for regions
expected to have relatively high emissions of NOx , and thus
reductions in ROC would lead to less ozone production. In
these more ROC-sensitive regions, ozone production drops
due to changes in total ROC reactivity. When ROC emis-
sion reductions are large enough (such as in the zeroed
biogenic-ROC emission simulation in Fig. 4a), even NOx-
sensitive locations could transition to a NOx-saturated chem-
ical regime, where ROC reductions reduce ozone. The ze-
roed emission simulations often showed less sensitivity in the
1O3 response to emission reductions in rural/remote regions
(Fig. 4a–c) and even predicted an increase in O3 formation
in rural regions in response to some emission perturbations
(Fig. 4a, b, d, e). S/IVOCs and large alkanes (HC10) in par-
ticular suppressed ozone formation in the base simulation as
indicated by their zeroed emission simulations, leading to in-
creases in ozone with the exception of the New York City
urban core (Fig. 4d, e). The ozone formation potential for
HC10 compounds across the entire US for all of 2017 was
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Figure 4. Relative changes in O3 concentrations from the CRACMMv1.0 base simulation (zeroed emissions− base) for the (a) zeroed
biogenic-emission scenario, (b) zeroed olefin emission scenario, (c) zeroed BTX emission scenario, (d) zeroed HC10 emission scenario, and
(e) zeroed S/IVOC emission scenario.

Table 2. List of emission perturbations relative to the base simulations in CMAQ. In the case of IVOC and SVOC emission perturbations,
species over a saturation concentration, C∗, range are modified.

Chemical
mechanism

Emission perturbation

CRACMMv1.0 Benzene-, toluene-, and xylene-like emissions
set to zero

CRACMMv1.0 Biogenic-ROC emissions set to zero

CRACMMv1.0 Anthropogenic-olefin emissions set to zero

CRACMMv1.0 IVOC (C∗ range 103–106 µg m−3) emissions
set to zero

CRACMMv1.0 SVOC (C∗ range 10−2–102 µg m−3) emissions
set to zero

CRACMMv1.0 HC10 (decane and species of similar reactivity)
emissions set to zero

RACM2_ae6 Benzene-, toluene-, and xylene-like emissions
set to zero

RACM2_ae6 Biogenic-ROC emissions set to zero

CB6r3_ae7 Benzene-, toluene-, and xylene-like emissions
set to zero
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high in previous work due to the overall abundance of emis-
sions despite low maximum incremental reactivity (MIR)
(Pye et al., 2023); however a much smaller change in average
O3 concentration (±1 %) was observed in the zeroed HC10
emission simulation here compared to the olefin and BTX
simulations. This result suggests that the emissions of HC10
compounds were relatively less important to ozone formation
in the NE US domain compared to the entire US for all of
2017. Given the low MIR of IVOC and SVOC compounds,
zeroing the emissions of these compounds was expected to
have mild impacts on O3 formation, and Fig. 4e showed that
O3 concentrations increased by ∼ 0.5 % across the full do-
main.

The emission perturbation results suggest that large
volatile alkanes (HC10 and S/IVOCs) primarily act to se-
quester oxidants such as OH and NOx , thus resulting in in-
creases in O3 for the zeroed emission simulations. Specif-
ically, S/IVOC alkanes as well as HC10 in CRACMMv1.0
sequester NOx with the high efficiency due to a 26 %–28 %
yield of alkyl nitrates (Pye et al., 2023). This hypothesis is
supported by observed domain-wide increases (up to 4 %)
in NO2 when both HC10 and SVOC emissions are removed
from the simulations (Figs. S10 and S11). In addition, or-
ganic nitrates decrease up to 10 % near the urban core when
HC10 emissions are omitted from the simulation (Fig. S12).
Decreases in organic nitrate formation due to emission re-
moval could also explain the increases in O3 formation seen
in the rural regions of the zeroed biogenic-emission and
olefin emission simulations (Fig. 4a, b), where O3 forma-
tion would increase in response to less NOx loss in a NOx-
sensitive regime.

4.2 Ozone production efficiency

Ozone production efficiency (OPE) is defined as the num-
ber of molecules of O3 produced per molecule of NOx loss
and can be viewed as a metric describing chain length in O3
propagation before NOx is chemically removed from the at-
mosphere (Jacob, 1999). Thus, model-constrained OPE esti-
mates can provide mechanistic insight into O3–NOx–ROC
cycling within a given chemical system or region. Opera-
tionally, OPE has been calculated using the slope of the lin-
ear regression between O3 and the sum of all NOx oxidation
products (NOz) as O3 and NOz evolve during the photochem-
ically active hours of the day (e.g., Arnold et al., 2003; Sar-
war et al., 2013; Henneman et al., 2017). This OPE proxy
(1O3 /1NOz) provides a good first-order approximation of
OPE but may not sufficiently capture ozone recycling in re-
gions impacted by fresh NOx emissions and regions where
NOx and NOz losses through deposition are high. Using this
proxy (i.e., 1O3 /1NOz) we estimated mechanism domain-
wide OPE values for the northeastern US (Fig. 5). This calcu-
lation leveraged the fact that different locations experienced
air masses of different ages and 1O3 /1NOz can be cal-
culated using the linear relationship between O3 and NOz

Figure 5. Average domain-wide hourly ozone production efficiency
(OPE) calculated from the slope of the linear regression between
NOz and O3 at a given hour between 11:00 and 17:00 local time for
the CRACMMv1.0, RACM2_ae6, and CB6r3_ae7 mechanism base
simulations.

concentrations across all grid cells in the model domain for
each hour of the day. The OPE proxy showed very strong lin-
ear correlations between O3 and NOz (r > 0.7) between the
hours of 11:00 and 17:00 local time. The 1O3 /1NOz val-
ues showed a linear increase from the morning to the evening
for all three mechanisms and were consistently highest for
the RACM2_ae6 simulation and consistently lowest for the
CB6r3_ae7 mechanism for all hours of the day. The OPE val-
ues evolved at similar rates during the day between the three
mechanisms and reached a peak between the hours of 16:00
and 17:00 local time (Fig. 5).

Figure 5 indicates that there are either differences in
O3 production or NOx recycling or a combination of
both between mechanisms and that these differences per-
sist at all hours during the day. The trend in OPE values
(CB6r3_ae7<CRACMMv1.0<RACM2_ae6) is consistent
with the diurnal trends in the modeled O3 concentrations ob-
served in Fig. 3. This trend in mechanisms was noted in a
previous study model where RACM2_ae6 OPE predictions
were shown to be consistently higher than Carbon Bond ver-
sion 5 (specifically CB05TUCL) OPE predictions, leading
to a poorer match with observations than Carbon Bond in
the southeastern US (Sarwar et al., 2013). Figure 5 confirms
that updates between RACM2_ae6 and CRACMMv1.0 led
to decreases in OPE and improvement in CRACMM O3 pre-
dictions with observations in the northeastern US (Fig. 2;
Table 1). In the following section, differences in the rep-
resentation of chemical systems between RACM2_ae6 and
CRACMMv1.0 that may have led to differences in ozone
production and/or NOx loss between the two mechanisms are
further explored.

4.3 Box model simulations

The F0AM box model (Wolfe et al., 2016) was used to fur-
ther probe the mechanistic drivers of differences between

https://doi.org/10.5194/acp-23-9173-2023 Atmos. Chem. Phys., 23, 9173–9190, 2023



9184 B. Place et al.: Northeastern US surface ozone predictions

the CRACMMv1.0 and RACM2 chemical mechanisms that
could be important for photochemical O3 production. Note
that, for this study, only the gas-phase aspects of the RACM2
base mechanism from CMAQ were ported and tested in
F0AM; thus, RACM2 rather than RACM2_ae6 nomencla-
ture will be used to refer to these results throughout this sec-
tion. The box model investigation focused on RACM2 and
CRACMMv1.0 because the definitions of chemical species
and ROC families are similar between mechanisms, allow-
ing for a more direct chemical comparison between the
mechanisms. In addition, CRACMMv1.0 was built upon the
RACM2 framework and can be more incrementally tested.
Differences in chemistry between Carbon Bond- and RACM-
based mechanisms have been explored previously (Sarwar et
al., 2013), and detailed analyses are beyond the scope of this
study.

Box model simulations were initiated in batch mode with
10 ppb of a precursor ROC, 200 ppb of H2O2 (OH source),
and either 5 ppb of NO2 (NOx conditions typically ob-
served at the Queens, NY, and Flax pond, NY, sites from
Fig. 3) or 0.5 ppb NO2 (NOx conditions typically observed
at the Garrett, MD, site from Fig. 3). The chemical sys-
tems were allowed to evolve for 24 h to reach steady state
(see Sect. 2.5 for a full description of the model setup). The
dominant fate of RO2 in simulations under high-NOx con-
ditions was confirmed to be RO2+NO, while simulations
initiated with NOx concentrations of 0.5 ppb were domi-
nated by RO2+RO2 reactions. For each simulation, the evo-
lution of O3 was monitored over time. Box model simula-
tions were run with α-pinene, isoprene, and benzene as the
ROC precursors because the α-pinene and aromatic chemical
systems underwent major updates in CRACMM compared
to RACM2. Additionally, the CRACMMv1.0 and RACM2
zeroed biogenic-emission and BTX emission simulations
(Figs. 4 and S7–S9) showed substantial impact on ambient
O3 concentration (anthropogenic-olefin chemistry, although
important for O3 formation, remained unchanged between
RACM2 and CRACMMv1.0).

The production of O3 over time predicted by RACM2 and
CRACMMv1.0 under both high- and low-NOx conditions is
plotted in Fig. 6 for all three ROC precursor system simula-
tions. The evolution of O3 over time followed similar trends
in both mechanisms and confirms that updates made to the
different ROC systems in CRACMMv1.0 did not lead to
massive changes in the kinetics of ozone production. For all
three high-NOx (5 ppb) simulations, RACM2 led to higher-
O3 predictions than CRACMMv1.0. The largest mechanism
differences in O3 production occurred in the simulation run
with α-pinene under higher-NOx conditions, where 31.1 ppb
of O3 was produced by CRACMMv1.0 vs. 35.8 ppb pro-
duced by RACM2 by the end of the simulation (Fig. 6a).
The absolute difference in O3 production between RACM2
and CRACMMv1.0 (CRACMMv1.0−RACM2, −3.2 ppb)
in the α-pinene high-NOx simulation corresponded to a rel-
ative difference of −13.1 % (Table 3). The differences in O3

between CRACCMv1.0 and RACM2 for the simulations run
with isoprene (36.8 vs. 38.9 ppb of O3) and benzene (33.3 vs.
34.2 ppb of O3) under high-NOx conditions were lower than
those predicted for α-pinene (Fig. 6b, c) but still indicated
mechanism differences of up to −5.7 % (Table 3). The total
amount of O3 produced in the three simulations under low-
NOx conditions (0.5 ppb) was lower and ranged from 4.7 to
9.9 ppb (Fig. 6), with the overall changes in ozone between
mechanisms very minor for the isoprene and benzene sys-
tems (O3 changes within 2.2 %). The largest relative changes
in O3 production under lower-NOx conditions (−26.3 %) be-
tween the mechanisms was again observed in the simulation
initiated with α-pinene.

The absolute and relative differences in O3 production
between the two mechanisms were reduced in almost all
simulations when RACM2 inorganic rates were updated
(RACM2_mod) to match those in CRACMMv1.0 (Table 3).
The relative difference in O3 production in the simula-
tions initiated with 5 ppb NO2 and 10 ppb ROC using
RACM2_mod decreased from−13.1 % to−10.4 % in the α-
pinene simulation, decreased from −5.7 % to −2.1 % in the
isoprene simulation, and decreased from −2.6 % to −1.8 %
in the benzene simulation. Further, in the low-NOx simula-
tions run with RACM2_mod, O3 differences were reduced to
within 0.5 % of CRACMMv1.0 for the isoprene and benzene
systems. The only simulation that showed an increase in O3
production when RACM2_mod was run in place of RACM2
was the simulation run with α-pinene under low-NOx condi-
tions, where relative differences in O3 production increased
from −26.3 % to −28.2 %.

The results presented in Table 3 indicate that differences in
the representation of organic chemistry in CRACMMv1.0 vs.
RACM2 do partially explain the differences in O3 concentra-
tions from CMAQ across the northeastern US model domain,
given that mechanism differences in O3 production still re-
mained in all simulations after inorganic rate constants were
matched between the mechanisms. In particular, a majority
of the observed O3 differences in the α-pinene–NOx–O3 sys-
tem (≥ 80 %) under both high- and low-NOx conditions re-
sulted from changes to the organic reactions alone. A large
fraction of the O3 differences (∼ 70 %) in the benzene–NOx–
O3 system were also driven by organic reaction updates for
the simulations run with higher NOx . As anticipated, organic
reaction change updates played a smaller role in the simu-
lations with isoprene; however a difference in O3 produc-
tion of 2 % still remained after running the simulations with
RACM2_mod. Since RACM2_ae6 O3 predictions in CMAQ
were shown to be generally biased high for the northeastern
US (Table 1) and biogenic emissions were shown to be im-
portant for ozone formation (Fig. 4a), reductions in O3 pro-
duction in CRACMMv1.0 contributed to the more accurate
average O3 predictions across the northeastern US compared
to RACM2_ae6. Previous work has found properly repre-
senting monoterpene chemistry, in particular, is important
for accurately predicting organic nitrates and thereby ozone

Atmos. Chem. Phys., 23, 9173–9190, 2023 https://doi.org/10.5194/acp-23-9173-2023



B. Place et al.: Northeastern US surface ozone predictions 9185

Table 3. Absolute and relative differences between CRACMMv1.0 and RACM2 in the amount of ozone produced (ppb) in box model
simulations run with α-pinene, isoprene and benzene under both low-NOx (0.5 ppb) and high-NOx (5 ppb) conditions. All results are reported
relative to CRACMMv1.0.

ROC Chemical Absolute Relative Absolute Relative
precursor mechanism difference in O3 difference in O3 difference in O3 difference in O3

difference (high NOx ) (high NOx ) (low NOx ) (low NOx )

α-Pinene CRACMMv1.0−RACM2 −4.7 ppb −13.1% −1.0 ppb −26.3 %
Isoprene CRACMMv1.0−RACM2 −2.1 ppb −5.7 % +0.1 ppb +2.2 %
Benzene CRACMMv1.0−RACM2 −0.9 ppb −2.6 % +0.1 ppb +1.0 %
α-Pinene CRACMMv1.0−RACM2_mod −3.6 ppb −10.4 % −1.1 ppb −28.2 %
Isoprene CRACMMv1.0−RACM2_mod −0.8 ppb −2.1 % < 0.1 ppb < 0.5 %
Benzene CRACMMv1.0−RACM2_mod −0.6 ppb −1.8 % < 0.1 ppb < 0.5%

across North America (Browne et al., 2014; Fisher et al.,
2016; Zare et al., 2018), including in the northeastern US
(Schwantes et al., 2020).

Further investigation into the mechanisms revealed that
there were also differences in the predicted loss of NOx
between RACM2_mod and CRACMMv1.0 (Fig. S13) and
that the differences in the evolution of NOx with time were
highest in the experiment run with α-pinene. Thus, the pa-
rameterization of monoterpene reactions (which included
the addition of autoxidation and explicit second-generation
chemistry of monoterpene nitrates and aldehydes) led to
both decreased O3 production and increased loss of NOx in
CRACMMv1.0 vs. RACM2. Despite a reduction in organic
nitrate yield in the benzene system (0.2 % in CRACMMv1.0
and 8.2 % in RACM2_mod), there was also higher NOx
loss observed in the benzene simulation run with 5 ppb NO2
(Fig. S13). Overall, the mechanism differences in NOx loss,
in addition to ozone production, are consistent with pre-
dicted differences in OPE across the northeastern US in
CRACMMv1.0 vs. RACM2 (Fig. 5).

5 Conclusions

This study provides the first evaluation of O3 predictions
using the newly developed CRACMMv1.0 chemical mech-
anism in the context of other currently available mech-
anisms and demonstrates CRACMMv1.0 can provide ac-
curate ozone predictions. Average O3 predictions across
CRACMMv1.0, CB6r3_ae7, and RACM2_ae6 simulations
during the summer of 2018 over the northeastern US were
generally within ±10 % of each other, and all had domain-
wide mean biases of less than 5 ppb. Mechanism differ-
ences were most pronounced over bodies of water, where
meteorology amplified differences. Over land, domain-wide
O3 estimates in CRACMMv1.0 were found to be of sim-
ilar magnitude to the CMAQv5.3.3.3 operational mech-
anism (CB6r3_ae7) (±1 ppb) but were universally lower
in the mechanism upon which CRACMMv1.0 was built
(RACM2_ae6) by 1–3 ppb. The lower O3 concentrations
and OPE in the CRACMMv1.0 simulation compared to

RACM2_ae6 resulted in better predictions of all-hour and
MDA8 O3 concentrations across the NE US region as indi-
cated by reductions in the mean bias, normalized mean bias,
and normalized mean error.

CRACMMv1.0 evaluation against AQS ozone observa-
tions indicated it is more skilled at predicting ozone in lo-
cations with elevated ozone, which is important for under-
standing sources of exposure at concentrations most likely to
cause harm. CRACMMv1.0 showed improved performance
over the current CMAQ operational mechanism (CB6r3_ae7)
when hourly ozone was elevated above 50 ppb. Spatially,
CRACMMv1.0 showed lower bias in the northeastern US
urban corridor and higher bias at rural sites, particularly in
the Appalachian Mountains. Similar results were found for
diurnal predictions at individual sites where CRACMM best
matched O3 observations at a site that experienced higher
NOx concentrations. As regional boundary conditions for
CRACMMv1.0 were obtained from CB6r3_ae7, the full ef-
fects of CRACMMv1.0 on regional background air quality
and long-range transport predictions have yet to be fully
examined. Further, since the coupling of meteorology and
chemistry has been shown to play a major role in O3 distribu-
tions, the robustness of the mechanism should also be tested
on a variety of domains that encompass different terrains.

Improvements in CRACMMv1.0 compared to
RACM2_ae6 O3 predictions were driven by updates to
the inorganic reaction rate constants as well as updates in
the representation of organic chemistry. These updates also
caused slight changes in the sensitivity of ozone–ROC pre-
cursor emissions. Box model simulations in F0AM showed
lower O3 production and higher NOx loss for monoterpene
oxidation consistent with the lower overall OPE predicted
across the northeastern US with CRACMMv1.0 compared
to RACM2_ae6. The zeroed emission simulations revealed
that domain-wide average O3 estimates slightly increased
when emissions of S/IVOCs were omitted, suggesting the
inclusion of these emissions played a role in O3 forma-
tion and mainly acted to reduce ozone. As S/IVOCs are
not integrated with radical chemistry leading to ozone in
RACM2_ae6 or CB6r3_ae7, some changes in the sensitivity
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Figure 6. Evolution of O3 from photochemical oxidation simula-
tions in the F0AM box model using (a) α-pinene, (b) isoprene, and
(c) benzene as ROC precursors under high-NOx (5 ppb) and low-
NOx (0.5 ppb) conditions.

of ozone to emissions are expected in CRACMMv1.0
compared to current mechanisms. As a further example,
zeroed BTX emissions indicated rural ozone is relatively in-
sensitive to aromatic emissions in CRACMMv1.0, whereas
RACM2_ae6 (and CB6r3_ae6) predicted ozone disbenefits
(increases) in the rural northeastern US when aromatic
emissions were removed.

Isoprene and monoterpenes, largely from biogenic
sources, are examples of chemical systems where accurate
representation of their chemistry across phases is critical

to improve prediction of both ozone and fine-particle end-
points. As with RACM2_ae6, CRACMMv1.0 O3 concentra-
tions showed great sensitivity to biogenic emissions, empha-
sizing the need to represent their NOx cycling and radical
chemistry well. In addition, autoxidation products with low
volatility that sequester radicals are abundant from monoter-
penes and critical for SOA formation (Pye et al., 2019). Sep-
arate work building on CRACMMv1.0 demonstrated that up-
dated isoprene chemistry led to improved ozone predictions
at high (> 50 ppb) concentrations as well as predictions of
isoprene epoxydiol SOA precursors (Wiser et al., 2022). This
need to have gas-phase mechanisms predict intermediates
leading to SOA and have SOA products removed from the
gas phase was a major motivation behind the development of
CRACMM. Future evaluation of the fine-particle predictions
of CRACMMv1.0 will provide even further constraints on
the radical chemistry leading to ozone explored here.

Code and data availability. The implementation of
RACM2_ae6 and CB6r3_ae7 used here is available in
CMAQv5.3.3 (https://doi.org/10.5281/zenodo.5213949, U.S.
Environmental Protection Agency Office of Research and De-
velopment, 2021). CRACMMv1.0 is available in CMAQv5.4
(https://doi.org/10.5281/zenodo.7218076, U.S. EPA Office
of Research and Development, 2022). Supporting data for
CRACMM including guidance on emission preparation
and species metadata (including SMILES identifiers; sim-
plified molecular-input line-entry system) are available at
https://github.com/USEPA/CRACMM (U.S. Environmental Pro-
tection Agency, 2022c and in the work of Pye et al., 2023).
AMET is available at https://github.com/USEPA/AMET
(U.S. Environmental Protection Agency, 2022d) and
https://doi.org/10.5281/zenodo.8156171 (Appel and Gilliam,
2023). F0AM is available at https://github.com/AirChem/F0AM
(Wolfe, 2022). Specific analyses and scripts used in this paper,
such as the modeled and observed ozone concentrations, F0AM
box model inputs, and exact CMAQ code used, are archived at
https://doi.org/10.23719/1528552 (Pye, 2023).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-23-9173-2023-supplement.
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