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Abstract. Carbon monoxide (CO) is an air pollutant that plays an important role in atmospheric chemistry and
is mostly emitted by forest fires and incomplete combustion in, for example, road transport, residential heating,
and industry. As CO is co-emitted with fossil fuel CO2 combustion emissions, it can be used as a proxy for CO2.
Following the Paris Agreement, there is a need for independent verification of reported activity-based bottom-up
CO2 emissions through atmospheric measurements. CO can be observed daily at a global scale with the TROPO-
spheric Monitoring Instrument (TROPOMI) satellite instrument with daily global coverage at a resolution down
to 5.5× 7 km2. To take advantage of this unique TROPOMI dataset, we develop a cross-sectional flux-based
emission quantification method that can be applied to quantify emissions from a large number of cities, without
relying on computationally expensive inversions. We focus on Africa as a region with quickly growing cities and
large uncertainties in current emission estimates. We use a full year of high-resolution Weather Research and
Forecasting (WRF) simulations over three cities to evaluate and optimize the performance of our cross-sectional
flux emission quantification method and show its reliability down to emission rates of 0.1 Tg CO yr−1. Com-
parison of the TROPOMI-based emission estimates to the Dynamics–Aerosol–Chemistry–Cloud Interactions
in West Africa (DACCIWA) and Emissions Database for Global Atmospheric Research (EDGAR) bottom-up
inventories shows that CO emission rates in northern Africa are underestimated in EDGAR, suggesting overes-
timated combustion efficiencies. We see the opposite when comparing TROPOMI to the DACCIWA inventory
in South Africa and Côte d’Ivoire, where CO emission factors appear to be overestimated. Over Lagos and
Kano (Nigeria) we find that potential errors in the spatial disaggregation of national emissions cause errors in
DACCIWA and EDGAR respectively. Finally, we show that our computationally efficient quantification method
combined with the daily TROPOMI observations can identify a weekend effect in the road-transport-dominated
CO emissions from Cairo and Algiers.

1 Introduction

Carbon monoxide (CO) is an air pollutant that is mostly
emitted by anthropogenic sources. It is a product of incom-
plete combustion in, for example, road transport, residential
heating, industry, and forest fires (Zhong et al., 2017). CO
is a precursor of ozone, and because it reacts with the hy-

droxyl radical (OH), its presence effectively increases the at-
mospheric lifetime of methane (Daniel and Solomon, 1998;
Jacob, 1999; Wuebbles and Hayhoe, 2002). The concentra-
tion of CO is therefore important for climate modeling. Fur-
thermore, as many processes that emit CO also emit carbon
dioxide (CO2), knowledge of CO emission rates can provide
additional information about CO2 emissions (Wu et al., 2022;
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Park et al., 2021). The Intergovernmental Panel on Climate
Change (IPCC) identified a need for independent verification
of the reported greenhouse gas emissions through measure-
ments (IPCC, 2019). From space this is challenging for CO2,
as its long atmospheric residence time results in high back-
ground concentrations, making it hard to detect emissions.
For this reason, measuring the “short lived” CO can be a use-
ful alternative (Silva et al., 2013; MacDonald et al., 2023).
We present a method to quantify CO emission rates over
cities in Africa using TROPOspheric Monitoring Instrument
(TROPOMI) satellite observations.

As transport (23 %) and residential heating (35 %) are key
contributors to total anthropogenic CO emissions (Zhong et
al., 2017), cities are an important source of CO. In Africa,
the contributions of transport and residential heating are
estimated at 27 % and 38 % of anthropogenic CO emissions
respectively in the DICE-Africa inventory (Marais and
Wiedinmyer, 2016) and 17 % and 72 % in the Dynamics–
Aerosol–Chemistry–Cloud Interactions in West Africa
(DACCIWA) inventory (Keita et al., 2021). The importance
of these two sectors is further confirmed by a large number
of ground-based measurements specifically aimed at traffic
(Diab et al., 2005; Lindén et al., 2008; Zakari et al., 2020;
Doumbia et al., 2021) and domestic heating (Havens et al.,
2018; Kansiime et al., 2022; Saleh et al., 2023) that show
CO concentrations in African cities exceeding air quality
guidelines by the World Health Organization. Urbanization
scenarios predict a growth in both the number of megacities
and their populations, leading to larger emission rates and
increased health risks. Africa is predicted to have a large
urbanization rate in the coming years. Hoornweg and Pope
(2017) predict the continent to house 5 of the 10 largest
cities by 2100, compared to 1 of 10 today. Africa is also a
region for which relatively large uncertainties are present
in emission inventories, as only a few are dedicated to the
region (Keita et al., 2021). Current emission inventories are
based on so-called bottom-up methods, where emissions
are estimated by combining activity data (e.g., national
fuel consumption statistics) with emission factors and
spatially distributing the emission estimates using proxies
like population density (Janssens-Maenhout et al., 2019).
These bottom-up methods are also used to report country-
level greenhouse emission estimates to the United Nations
Framework Convention on Climate Change (UNFCCC).
However, lack of detailed data results in large uncertainties
(Macknick, 2011; Cai et al., 2019; Oda et al., 2019).

Independently of bottom-up methods, emissions can also
be estimated by top-down methods, where atmospheric con-
centrations are measured and used to infer the corresponding
emission rates. Multiple studies have investigated urban CO
emissions using ground-based measurements (Badarinath et
al., 2007; McKain et al., 2012; Bi et al., 2022). Many studies
have also shown the capability of satellite measurements for
this specific task (Borsdorff et al., 2020; Tian et al., 2022a;

Plant et al., 2022; Wu et al., 2022). For CO, the TROPO-
spheric Monitoring Instrument (TROPOMI) on ESA’s Sen-
tinel 5 precursor satellite is of particular interest (Veefkind et
al., 2012). It was launched in 2017 and provides daily global
coverage with a resolution of 5.5× 7 km2, which makes it
suited to investigate city emissions worldwide.

An advantage of polar-orbiting satellites is their ability to
monitor the entire globe. However, most satellite-based stud-
ies of CO so far have focused either on regional inversions
(Yumimoto et al., 2014; Qu et al., 2022) or on trends in con-
centrations (Lama et al., 2020; Park et al., 2021; Hedelius
et al., 2021), while only a few studies have tried to quantify
emissions from individual cities or point sources (Dekker et
al., 2017; Borsdorff et al., 2020). These urban emission quan-
tifications use atmospheric inversions, which require compu-
tationally expensive high-resolution simulations with chemi-
cal transport models (CTMs). Although inversions are able
to get relatively accurate emission estimates, they are dif-
ficult to apply to a large number of sources. To take full
advantage of the TROPOMI data, we adjust the mass bal-
ance cross-sectional flux (CSF) method, originally developed
for high-resolution point-source quantifications, to be used
with TROPOMI data over urban areas. After evaluating the
method using atmospheric transport simulations, we use it to
estimate emissions from the largest cities in Africa.

2 Data and methods

This section describes the different data products used in the
development of the cross-sectional flux method and the sim-
ulations that were used to calibrate the model and evaluate
its performance using an observing system simulation exper-
iment (OSSE). An OSSE is an experiment where a model
or method is applied to synthetic data to evaluate the ben-
efit of using this data and/or method. Which for this work
means evaluating whether the CSF can be used to correctly
estimate emissions from TROPOMI-like synthetic data. Fig-
ure 1 shows the roles of the different data products that are
used and further described in Sect. 2.1 to 2.6. In addition, in
Sect. 2.6 we show that the CSF method can be successfully
applied to simulated data.

2.1 TROPOMI carbon monoxide data product

TROPOMI provides total column carbon monoxide concen-
trations with daily global coverage at 13:30 local time us-
ing the shortwave-infrared band (SWIR) at 2305–2385 nm
(Veefkind et al., 2012). From the spectral signal, the CO con-
centration is inferred using the shortwave-infrared CO re-
trieval (SICOR) algorithm (Borsdorff et al., 2018). We use
3 years of data (2019–2021) from the operational data prod-
uct (Landgraf et al., 2018). To assure high quality data, all
pixels with a TROPOMI quality flag below 0.7 are removed,
leaving data that are cloud-free or only have low altitude
clouds. The CO concentration over cloud-free water surfaces
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Figure 1. Schematic description of the use of the different data products within the OSSE and the subsequent emission quantification using
TROPOMI data. The data products are discussed in Sect. 2.1–2.6. First, the CSF is applied to simulated synthetic plumes in order to determine
appropriate values for the various parameters used in our method. Second, an effective wind is calibrated by using the known emission rates
of the simulated plumes following the procedure by Varon et al. (2018). The CSF, now calibrated on the synthetic plumes, is subsequently
applied to satellite data to estimate emission rates of African cities.

is difficult to retrieve due to the low intensity of reflected
light; therefore, we only use observations with a quality flag
equal to 0.7 (low altitude clouds) over water. The resulting
dataset shows good agreement with ground-based measure-
ments, with a mean difference per station of 2.45±3.38 % to
the unscaled Total Carbon Column Observing Network (TC-
CON, Wunch et al., 2011) columns and 6.5± 3.54 % to the
Infrared Working Group of the Network for the Detection of
Atmospheric Composition Change (NDACC-IRWG, 2023)
measurement stations (Sha et al., 2021).

2.2 EDGAR and DACCIWA bottom-up inventories

We use two different bottom-up inventories to com-
pare the TROPOMI emission estimates: the Emissions
Database for Global Atmospheric Research (EDGAR) ver-
sion 5 (Oreggioni et al., 2021) and the Africa-focused
Dynamics–Aerosol–Chemistry–Cloud Interactions in West
Africa (DACCIWA) inventory (Keita et al., 2021). These in-
ventories are also used in our atmospheric transport simula-
tions (Sect. 2.3) to simulate TROPOMI observations. Both
inventories provide yearly gridded emission rates at 0.1◦ res-
olution up to 2015. Due to its global scope, the EDGAR
inventory relies mostly on international statistics and spa-
tial proxies combined with national data, while its emis-
sion factors are based on IPCC methodology for greenhouse
gases (Eggleston et al., 2006) and the EMEP/EEA emis-
sion inventory guidebook for air pollutants (Nielsen, 2013).
The DACCIWA inventory provides emission rates over the

African continent, ranging from −35 to 38◦ latitude and
−25.5 to 63.5◦ longitude. It uses similar international data
but is supplemented by local measurements of emission fac-
tors and data from local authorities (Keita et al., 2021). As
the DACCIWA inventory characterizes emission from fewer
(sub)sectors than EDGAR, we merge different sectors in
EDGAR to match those used in the DACCIWA inventory
to make them intercomparable. When reporting urban emis-
sions from EDGAR and DACCIWA, we sum emissions over
the pixel closest to the city center, its eight neighbors, and
all directly attached pixels where the population density ex-
ceeds the surroundings by 1.8 standard deviation. Changing
the city mask to 0.3× 0.3◦ or 0.7× 0.7◦ boxes changes the
emissions by 10 %–20 % for 17 out of 29 cities in EDGAR
and 16 out of 29 cities in DACCIWA. Although larger devia-
tions up to 50 % in densely populated areas like South Africa
are observed, the observed patterns discussed in Sect. 3 are
valid for these masks as well.

2.3 WRF chemical transport model

To test and calibrate our emission quantification approach,
we apply our CSF method to simulated TROPOMI data for
three urban areas. We use the Weather Research and Fore-
casting (WRF) chemical transport model version 4.1 (Powers
et al., 2017) to simulate column CO mixing ratios over Cairo
(Egypt), Bamako (Mali), and Lagos (Nigeria) for 2019, using
December 2018 as the spin-up month. These three African
cities form a diverse set, with Cairo next to the Nile river,
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Bamako at the boundary of the Sahara desert, and Lagos
at the coast of the Atlantic Ocean. We simulate CO as an
inert tracer and drive the simulations with meteorological
fields from the National Center for Environmental Predic-
tion (NCEP, 2000). All simulations have three-layer nested
domains, where the outer domain covers 2673× 2673 km2

at a resolution of 27 km; the middle and inner domains cover
891× 891 km2 at 9 km resolution and 315× 315 km2 at 3 km
resolution respectively (Fig. 2). Initial and 6-hourly bound-
ary conditions to capture the background CO are taken from
the Copernicus Atmosphere Monitoring Service (CAMS) at
0.25◦× 0.25◦ resolution (Inness et al., 2015). The result-
ing background is scaled to match the mean background
observed by TROPOMI over the full year. We use emis-
sions from the global Emissions Database for Global Atmo-
spheric Research (EDGAR) version 5 and the Africa-focused
Dynamics–Aerosol–Chemistry–Cloud Interactions in West
Africa (DACCIWA) inventory distributed across the vertical
model levels according to the sector-specific vertical profiles
provided by Bieser et al. (2011). Typical injection heights
for CO emissions from transport and the residential sector
are 0–20 m, while emissions from industry are typically in-
jected into the atmosphere at 100–200 m (Bieser et al., 2011).
City-specific hourly, daily, and monthly temporal profiles for
each emission sector are taken from Guevara et al. (2021).
To maintain flexibility over model output, the different sec-
tors in the emission inventories (19 for EDGAR and 6 for
DACCIWA) are simulated separately. We sample the model
output (at the TROPOMI overpass time) to facilitate compar-
ison to the TROPOMI carbon monoxide data as discussed in
detail in Sect. 2.6.

While EDGAR and DACCIWA only include the pri-
mary production of CO, the concentrations observed by
TROPOMI include CO from secondary production as well.
CO is produced by oxidation of volatile organic compounds
(VOCs), with methane as the main contributor (Rozante
et al., 2017). Mixing ratios of non-methane volatile or-
ganic compounds (NMVOCs) observed in urban locations
are typically of the order of 10−3–10−2

[NMVOC]/[CO]
(Von Schneidemesser et al., 2010). Dekker et al. (2019)
showed that chemical production of CO by methane and
NMVOC over cities only contributes 4 % to the total CO
signal, justifying the simulation of CO as an inert tracer in
our approach. Due to the 10-year atmospheric lifetime of
methane, its contribution to CO production will result in a
uniform concentration (Park et al., 2013) that is subtracted
with the background. NMVOCs have lifetimes of 0.6–10 d
(Guo et al., 2007) that are much shorter than the lifetime
of CH4, but due to their low urban mixing ratios (∼ 1 %),
their effect on the estimated emission rate is much smaller
than the reported uncertainty of the CSF. This is consistent
with the observation that the emission estimates of individ-
ual transects (that span a timescale of up to ∼ 10 h) are sta-
ble and do not increase with increasing distance from the city
(Sect. 2.4).

2.4 Cross-sectional flux method

The cross-sectional flux method (CSF) has been shown to
be an effective way to quantify emission rates of plumes ob-
served by satellites (Varon et al., 2018, 2020; Sadavarte et
al., 2021b; Tian et al., 2022b). It is based on the continuity
equation, which relates the flux through a closed surface to
the associated emission rate:

Q=

∮
U⊥1�dA, (1)

whereQ (kg s−1) is the emission rate,U⊥ (m s−1) is the wind
speed perpendicular to the closed surface, 1� (kg m−3) is
the enhancement at the closed surface, and dA (m2) is a sur-
face element. As illustrated in Fig. 3a, the plumes have a dis-
tinct direction as they move with the wind, they are very di-
rectional, and it suffices to integrate over perpendicular tran-
sects that cover the entire plume width (Fig. 3b). Equation (1)
can then be rewritten as

Q=

∫
U⊥(x,y)1�(x,y)dy, (2)

with x, y coordinates along and perpendicular to the plume
respectively as in Varon et al. (2018). Assuming a constant
emission rate, transects at different distances downwind of
the source should yield the same emission quantification and
can be averaged to make the method more robust.

We then optimize the implementation of the CSF on
TROPOMI data for city-like sources. Figure 3a shows a CO
plume observed by TROPOMI over Cairo on 7 April 2019.
As expected, the plume follows the 10 m wind direction
given by NASA/GMAO GEOS-FP reanalysis data (Molod
et al., 2012). We start by determining the city center for our
purposes defined as the location at the center of the urban
emissions and therefore best representing the origin of the
city’s total emission. The location of the center is determined
by taking the weighted average position of the pixels in DAC-
CIWA that are part of the city mask introduced in Sect. 2.2.
Weights of the pixels are equal to their emission rate. By de-
termining the city location using the emission inventory, we
ensure that we are comparing similar regions when we com-
pare our satellite-based emission estimates with the emission
inventories in Sect. 3. To make sure the entire plume is down-
wind, we start the transects of our CSF 0.1◦ upwind of this
city center. As the wind direction is an important source of
uncertainty, the downwind direction can not be solely based
on the GEOS-FP reanalysis wind data. Instead, following Sa-
davarte et al. (2021a), we infer the wind direction from the
satellite observations by selecting the direction of the highest
mean downwind concentration within 90◦ of the reanalysis
wind direction. To do so, we calculate the mean downwind
concentration over 180 boxes (0.1◦ width and 0.4◦ length)
rotated at 1◦ intervals and pick the direction with the high-
est downwind concentration. In the absence of a clear plume,
this method would create a positive bias, as it would select
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Figure 2. Domain setup of the WRF simulations over Cairo (Egypt), Bamako (Mali), and Lagos (Nigeria). The inner domain (red) spans
315× 315 km2 around the city at 3 km resolution. The middle (black) and outer (full figure) domain cover 893× 893 and 2673× 2673 km2

at 9 and 27 km resolution respectively. All panels show the emission rates from the DACCIWA inventory.

the highest enhancement in the noise. Therefore, we use the
reanalysis wind direction if the mean enhancement does not
exceed 5 ppb. To calculate CO enhancements, we subtract a
background calculated as a mean upwind concentration over
a 0.4◦× 0.4◦ square starting 0.3◦ upwind from the city center
(Fig. 3b). If this box contains fewer than five valid pixels, we
extend it symmetrically with two arcs of a circle of 10, 20,
45, up to 60◦ until there are at least five TROPOMI pixels in
the background region (Fig. 3c). We use extension in an arc-
like fashion rather than increasing the size of the square to
be able to get estimate background values for coastal cities.
Retrievals over water are only possible if there are clouds
present; hence, increasing the size of the background square
upwind could result in background pixels far away from the
city that are not representative for the local background.

After determining the initial direction of the plume, we
need to better capture the shape of the plume to draw tran-
sects perpendicular to the plume. The shape of the plume
is determined in two steps. First, we select all pixels in a
downwind box (0.3◦ width, 0.8◦ length) that exceed the mean
concentration in the surrounding 3◦× 3◦ area by more than
1.8 standard deviations; these pixels are referred to as the
spline mask. We then fit a 2D-spline (0.8◦ length) through
the resulting spline mask. If, due to a lack of signal or miss-
ing pixels, the spline mask contains fewer than three pixels, a
spline fit is unlikely to capture the true plume shape, and we
use a straight line in the (optimized) wind direction instead
(Fig. 3c). The transects (0.4◦ width) are drawn perpendic-
ular to the spline, separated by 0.04◦. The transects have a
larger width than the box used to determine the spline mask
to ensure the transects cover the entire plume width. All pix-
els overlapping with the transects are used in the emission
quantification. We also include days where no clear plume
is visible to avoid systematic overestimation of the average
emission rate. Using Eq. (2), an emission estimate can be de-

rived for every transect. We stop drawing transects when the
emission rate estimates of two consecutive transects are more
than 1 standard deviation below the mean estimate of the ear-
lier transects, indicating the end of the plume. Transects with
less than 70 % pixel coverage are removed from the estimate,
as they will not have a complete integral, resulting in under-
estimated emissions.

Contrary to studies using high-resolution satellites (Varon
et al., 2018, 2020), the plumes observed with TROPOMI
cover distances over which there can be significant fluctu-
ations in wind speed and direction. We therefore use the
wind speed at each transect instead of a single wind speed
for the entire plume. The wind speed at the transects is cal-
culated in two steps. First, a wind speed is calculated for
each TROPOMI pixel by interpolation of the reanalysis wind
product. Second, the wind speed for each transect is de-
termined by taking the average wind speed of the overlap-
ping TROPOMI pixels, weighted by the length of the over-
lap. Similar to trends observed in Sadavarte et al. (2021b),
the first two transects are found to have roughly 30 % lower
emissions than the transects further away, which have a sta-
ble mean emission rate. This pattern is consistent across the
cities investigated. One reason is that the early plume only
captures part of the city’s emissions, another explanation is
that the associated pixels might see a partial-pixel absorption
saturation effect (Pandey et al., 2019). Incorporating the first
two transects would result in an average underestimation of
emissions by 8 %. We therefore remove the first two transects
from the emission estimation.

On the spatial scale relevant to plumes observed by
TROPOMI, there can be contamination of the city signal by
carbon monoxide produced by open fires (e.g., agricultural
fires or wildfires). CO enhancements caused by open fires
can result in overestimation of either the background or the
downwind urban enhancement, depending on their location.
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Figure 3. Example of how the cross-sectional flux transects perpendicular to the plume are drawn. (a) TROPOMI data over Cairo on
7 April 2019. The city center is shown with a cross and taken from the DACCIWA emission inventory. The arrows show direction and
magnitude of GEOS-FP 10 m winds at their native 0.25◦× 0.3125◦ resolution (Molod et al., 2012). (b) Pixels downwind of the city that
surpass the regional background by more than 1.8σ form a plume mask through which a 2D spline is fitted (grey line). The transects used
for quantification (purple lines) are drawn perpendicular to the spline fit starting 0.1◦ upwind of the city center. The first two transects are
dashed to reflect that they are not used for the emission quantification. The background is estimated over the black 0.4◦× 0.4◦ box upwind.
(c) TROPOMI observation over Cairo on 27 March 2020. Due to a lack of coverage there are insufficient pixels to generate a reliable spline
mask. A rectangular box (grey) is therefore used to draw transects instead. The basic background is extended symmetrically, with circle arcs
to compensate for a lack of coverage upwind.

To avoid this, days with considerable CO contributions from
open fires have been removed from our estimates. These days
were selected based on the fire emission data from the Global
Fire Assimilation System fire emission (GFAS) inventory
(Kaiser et al., 2012) that is based on satellite measurements
of fire radiative power. Days with cumulative fire emissions
over 57 Mg h−1 (equivalent to 0.5 Tg yr−1) within 1.5◦ from
the city center are removed. Additionally, days with strong
burning events closer to the city (23 Mg h−1 within a 0.75◦

radius) are removed as well (Appendix B). Although the
change in emission rate by this filtering is limited for most
cities, the filter can change estimated emission rates by up to
47 %, as seen in Lusaka (Zambia).

2.5 Uncertainty analysis

To estimate the uncertainty of the estimated emission rates,
we compile an ensemble of emission estimates for each
city. We generate the ensemble by varying parameters of the
quantification method such as the wind database used. For
example, we vary parameters such as the number of tran-
sects and the distance of the background box. To incorporate
the uncertainty on the wind data, we use our method with
GEOS-FP 10 m altitude winds, GEOS-FP planetary bound-
ary layer (PBL) averaged winds (Molod et al., 2012) as well
as 10 m altitude winds from the ERA5 product, provided by
the European Centre for Medium-Range Weather Forecasts

(ECMWF; Hersbach et al., 2020). A complete list of the var-
ied parameters and their ranges can be found in Appendix A.
For each city, the spread in the resulting ensemble is reported
as uncertainty.

2.6 Calibration and validation

This section describes the application of the CSF to simu-
lated CO column mixing ratios. The simulations are used to
determine parameter settings (e.g., spline length and transect
width) and to calibrate an effective wind (Varon et al., 2018)
for TROPOMI-sized pixels. In addition, the simulations are
used to evaluate how well the CSF can quantify emission
rates of simulated plumes.

As simulated (and TROPOMI observed) plumes stay
within the inner domain, only the inner domain is used to test
the performance of the CSF. A set of synthetic TROPOMI
observations is created by sampling the simulation output
over the TROPOMI footprints, applying its averaging ker-
nel, selecting pixels based on quality value as discussed in
Sect. 2.1, and adding Gaussian noise with a standard de-
viation equal to the reported uncertainty of the respective
TROPOMI pixel. The TROPOMI quality value filtering en-
sures relatively clear sky observations with good surface
sensitivity. We also calculate “idealized” pressure weighted
columns, which assume a uniform vertical sensitivity (flat av-
eraging kernel), over the TROPOMI footprints without tak-
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ing into account whether there is a valid TROPOMI obser-
vation as a first check to see whether the CSF can reproduce
the emissions used as model input.

We first test the validity of the CSF method using the ide-
alized columns with 10 m winds output by the WRF sim-
ulation. The WRF winds are directly responsible for trans-
port within the simulation and can therefore be considered
as the true wind fields behind the modeled concentrations.
Parameters like the number of transects and distance of the
background region are tuned to get optimal quantification
estimates on the simulated data, such that the fitted splines
capture the observed curvature of the plumes and the back-
ground is not affected by the urban emissions. A list of the
different parameters and their values can be found in Ap-
pendix A. While the true wind field varies with altitude, the
CSF method requires just a single (2D) wind field that is rep-
resentative for the transport of the plume. We use the simu-
lations to calibrate the CSF by introducing an effective wind
speed that replaces the wind speed in Eq. (2), following the
procedure by Varon et al. (2018). The effective wind speed
is the wind that best captures the transport of the plume. It is
a parametrization of the true wind speed to account for the
effects of turbulence and variation in vertical wind speed and
injection height. As the emission rates in the WRF simula-
tions are known, the effective wind can be calculated explic-
itly for every orbit for each of the simulated cities. Figure 4
shows the relation between the effective wind (Ueff) and the
WRF 10 m winds U10 averaged over the plume; the fitted lin-
ear relation is

Ueff = a10U10+ b10, (3)

with a10 = 1.43 and b10 =−0.92 m s−1 (R2
= 0.82). U10 is

the wind speed at the time of overpass at 10 m altitude. We
determine the effective wind relationship separately for the
planetary boundary layer averaged winds, which tend to be
higher than the surface winds. The resulting calibration gives
aPBL = 0.98 and bPBL =−0.20 (R2

= 0.62). While the ab-
solute value of the PBL winds is closer to the effective wind
speeds, using the U10 winds captures more of the variability.

After determination of the effective wind on plumes with
idealized pressure profiles, we test the performance of the
CSF on more realistically sampled plumes, which include
the TROPOMI quality filtering and averaging kernel sensi-
tivities as described in Sect. 2.1, to see whether the CSF can
correctly quantify emission rates from synthetic observations
with quality filtering and non-uniform vertical sensitivity. To
test the method’s sensitivity, we perform an additional ef-
fective wind calibration on these data. The resulting linear
fit (a = 1.42, b =−0.86, R2

= 0.27) yields similar results
and shows that the filtering has limited impact on the cali-
bration, while the lower R2 value reflects the larger variation
in estimated emission rates. At the same time, we test the
lower limit to which we can trust the resulting emission esti-
mates, as smaller enhancements are more difficult to distin-
guish from the background. As the modeled output concen-

tration from the WRF simulations without chemistry scales
linearly with the magnitude of the input emissions, emissions
from the different sectors provided by the bottom-up inven-
tories can be scaled up and down without having to rerun the
chemical transport model. This allows us to simulate plumes
from cities with different emission rates with limited effect
on the simulated background through scaling of the emission
sector most concentrated in the considered urban area. We
use this to determine the lower limit to which our method
can be trusted. Figure 5 shows a comparison between the
simulated input and the retrieved emission rates for the three
simulated cities. The results suggest that the CSF is able to
reproduce input of the WRF simulations when using 1 year
of data for cities with emission rates larger than 0.1 Tg yr−1.

To quantify TROPOMI plumes over all major cities in
Africa, we will use the NASA/GMAO GEOS-FP wind fields
(Molod et al., 2012) rather than the WRF-simulated wind
fields, which are available only for the three cities selected
for evaluation and calibration. For each TROPOMI pixel, we
spatially interpolate the GEOS-FP wind field, which has a
0.25◦× 0.3125◦ spatial resolution and a 1 h time resolution.
The NCEP winds that drive the WRF-simulated wind fields
have a coarser time resolution of 6 h. Figure 6 shows emis-
sion estimates of simulated data using the GEOS-FP wind
fields instead of the WRF fields to mimic uncertainties in
the wind fields. Individual days are shown as colored dots,
while the mean over the full year is shown as a colored line
to represent the average estimate. The uncertainty of the av-
erage is determined as discussed in Sect. 2.5 and shown as a
shaded area. The true emission is shown as a dotted black line
and lies within the uncertainty of the estimate for both Cairo
and Bamako. For Lagos, the emission rate is underestimated
when using the WRF simulations, as the NCEP wind fields
that drive the simulations are higher than both the GEOS-FP
and ERA5 wind products specifically over Lagos by about
60 %. The difference between the wind products might be
caused by the fact that Lagos lies in the West African mon-
soon region, where transport has been shown to be difficult
to model (Liu et al., 2014).

3 Results and discussion

After verification of the validity and calibration of the
method, we apply it to 29 of the largest cities in Africa.
These cities are chosen based on their population or because
they are emitting above the CSF’s quantification threshold in
the DACCIWA inventory. Figure 7 shows the results of our
TROPOMI quantification and a comparison with the DAC-
CIWA and EDGAR inventories. These data are also included
in Appendix D in Table D1. As discussed in Sect. 2.2, we
used different sizes for the city masks applied to the bottom-
up inventories to ensure a fair comparison to the satellite-
based emission estimates and found the choice of city mask
did not impact our conclusions.
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Figure 4. Determination of the relation between the effective wind and both the wind speed at 10 m altitude (a) and the planetary boundary
layer averaged winds (b). The effective wind corrects for the effects of turbulence, injection height, and variation in the vertical wind profile.
The simulated plumes used in the calibration cover a full year over Cairo, Bamako, and Lagos.

Figure 5. Emission quantification by the CSF on simulated plumes. The plumes are simulated with the WRF model for the year 2019 over
Lagos (Nigeria), Cairo (Egypt), and Bamako (Mali). The simulations either used the EDGAR global bottom-up inventory or the DACCIWA
inventory. The dotted lines show a 30 % deviation from the (dashed) 1 : 1 line.

On average we find TROPOMI emissions of 0.25 Tg yr−1

per city, compared to 0.35 Tg yr−1 in DACCIWA and
0.18 Tg yr−1 in EDGAR. Except for Abuja (Nigeria) and
Khartoum (Sudan), the DACCIWA emission estimates are
consistently higher than the EDGAR estimates. Additionally,
the two inventories disagree on the sectoral breakdown of
the emission estimates, with the domestic sector contribut-
ing 59 % to the total emission rate in DACCIWA, while
EDGAR attributes 54 % of total emissions to the industry
sector. For 10 cities TROPOMI and DACCIWA agree within

the TROPOMI uncertainty, that is the case for 9 cities in
EDGAR. For 16 cities, the TROPOMI estimates are closer to
DACCIWA than to EDGAR. The largest differences between
TROPOMI and DACCIWA are found for Abidjan (627 %)
and Lagos (417 %), while estimates for Cairo (2 %) and An-
tananarivo (9 %) agree best. To explain the differences be-
tween TROPOMI and the inventories, we will now focus on
some specific areas.
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Figure 6. To check the validity of the CSF method for quantification of city emissions, we apply the method to simulated plumes sampled
as TROPOMI would see them. The dots show CSF emission estimates for individual days over Cairo, Bamako, and Lagos respectively.
The dark-colored line shows the annual CSF mean, with the uncertainty based on the emission ensemble shown by the shaded area. The
simulation emission input, dotted black line, lies within the uncertainty of the mean CSF emission estimate for Cairo and Bamako, showing
that the CSF can successfully quantify these urban emissions. For Lagos the emissions are underestimated, as the NCEP winds used to drive
the simulation are much higher than both the GEOS-FP and ERA5 wind products.

3.1 Northern Africa

Two cities that stand out in Fig. 7 are Algiers and Casablanca.
Unlike DACCIWA, EDGAR does not include any major
emission sources around these cities, even though they both
have populations of 4.2 million. EDGAR also appears to
largely underestimate the emissions of the two Egyptian
cities that were investigated, Cairo and Alexandria, while
the DACCIWA emissions for these cities agree well with our
TROPOMI estimates. As we can not directly obtain the un-
derlying emission factors and activity data that are used in
EDGAR and DACCIWA, we compare the TROPOMI CO
emission rates to the corresponding CO2 emission rates in
EDGAR, as shown in Fig. 8. The CO2 emission rates are
also included in Table D2 in Appendix D. Cairo, Alexan-
dria, Casablanca, and Algiers clearly deviate from the other
cities. Their much higher values for COTROPOMI/COEDGAR
correspond to lower values for CO/CO2 in EDGAR, indi-
cating that not the activity data but the CO emission factors
for these cities are underestimated in EDGAR. This is further
confirmed by the higher CO/CO2 values in DACCIWA and
the fact that the absolute CO2 emission rates for these cities
agree well between the two inventories. The underestimation
in CO may point at an overestimated combustion efficiency

used in the compilation of the EDGAR emissions for this
region. Similar observations over Cairo were made by Mac-
Donald et al. (2023) when comparing measured CO and CO2
concentrations.

3.2 South Africa

In South Africa we find closer agreement between EDGAR
and TROPOMI than in northern Africa. However, the emis-
sion rates for the four considered cities in DACCIWA are
on average 2.4 times higher than those based on TROPOMI
(Fig. 7). The emission ratios from Fig. 8 show that the South
African cities stand out from the other cities in EDGAR, as
they have relatively low CO/CO2 emission ratios, suggesting
high average combustion efficiencies. This does not hold for
DACCIWA, where the South African cities have CO/CO2
emission ratios comparable to other cities. This indicates that
the CO emission factors for South Africa are overestimated
in DACCIWA, and these cities have higher combustion effi-
ciencies more in line with EDGAR.
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Figure 7. CSF emission quantifications for the largest African cities. Comparison between TROPOMI emission estimates averaged for
2019–2021 (shown as colored circles) and the DACCIWA and EDGAR v5 emission inventories for 2015 shown by the black (dashed) rings.
The emission strength is indicated by the size of the circles or rings. The same comparison is made in bar plots, where the first two bars
show the emission rates from DACCIWA and EDGAR respectively including the sectoral breakdown. The third bar gives the corresponding
TROPOMI estimate, where the uncertainty is given by the range of the ensemble. The cities are ordered by geographical location. The
emission estimate for Lagos in DACCIWA extends beyond the figure boundary.

3.3 Nigeria

The four investigated cities in Nigeria show varying results
when comparing TROPOMI to the inventories, but the two
cities that stand out are Lagos and Kano. In Lagos we es-
timate emissions of 0.36 (0.23–0.56) Tg yr−1 that are con-
sistent with EDGAR, but DACCIWA has emissions that are
5.2 times higher, a difference which is much larger than the
uncertainty in wind data discussed in Sect. 2.6. For Kano,
in contrast to Lagos, we observe an emission rate of 0.53
(0.41–0.62) Tg yr−1, which is consistent with DACCIWA but
more than twice the EDGAR estimate (0.19 Tg yr−1). The
CO/CO2 ratios of the inventories agree within 50 %, but

the differences are caused by the activity data. Figure 9
shows that the CO2 emission rates in DACCIWA for La-
gos, Kano, and Ibadan are respectively 8.1, 3.8, and 3.3 times
higher than in EDGAR; these data are also available in Ap-
pendix D in Table D2. Comparing Nigeria’s national CO2
budget, there is a 24 % difference between the inventories
(EDGAR 530 Tg yr−1 to DACCIWA 700 Tg yr−1), but the
larger regional discrepancies (over 700 % for Lagos’ CO2
emissions) suggest differences in spatial allocation as well.
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Figure 8. Comparison between inventory combustion completeness and TROPOMI to inventory CO estimates. Each marker represents a
single city. The CO2 values for both inventories include both fossil fuel and biofuel combustion emissions. As power plants hardly emit any
CO per kilogram of emitted CO2 due to their high combustion efficiency, the contributions of this sector are removed from the CO2 values.
Cairo, Alexandria, Algiers, and Casablanca have very low CO emission rates in EDGAR compared to TROPOMI and compared to EDGAR
CO2 emissions, which indicates that EDGAR largely overestimates the combustion efficiency for these cities. The four cities in EDGAR
with CO/CO2 values around 20 are all cities in South Africa, showing lower CO emission rates than the other African cities.

Figure 9. Comparison between the TROPOMI CO emission esti-
mates and EDGAR and DACCIWA CO and CO2 for four cities in
Nigeria with the same color scheme as Fig. 7. The differences be-
tween the two inventories in CO2 emission rates indicate a different
spatial allocation – based on gridded activity data – of the national
totals.

3.4 Côte d’Ivoire

Abidjan in Côte d’Ivoire has the largest relative discrep-
ancy between DACCIWA (0.65 Tg yr−1) and TROPOMI
(0.1 (0.05–0.16) Tg yr−1). In DACCIWA, the domestic sec-
tor contributes to 89 % of the city’s emissions, and Abid-
jan is the city with one of the highest CO/CO2 values of
all investigated cities. In EDGAR, the domestic CO/CO2 ra-

tio for Abidjan is 4 times lower, which would indicate a 4
times lower emission rate. This would bring the DACCIWA
emission rate much closer to the TROPOMI observed emis-
sions, indicating that, similar to South Africa, DACCIWA
may overestimate the city’s domestic sector’s CO emission
factor.

3.5 Libya

Tripoli, the capital of Libya, stands out as its CO emissions
in both inventories are almost exclusively 90+% due to road
transport. The TROPOMI estimate for this city of 0.26 (0.15–
0.32) Tg yr−1 is 1.7 and 2.2 times higher than DACCIWA
and EDGAR respectively. The difference can be partly ex-
plained by considering the domestic and industry sectors. In
both emission inventories, the CO/CO2 ratios for these sec-
tors are 4 to 5 times lower than the mean of the other cities
and 2 to 3 times lower than the next lowest city (exclud-
ing Egypt, Morocco, and Algeria). This implies that these
sectors in Tripoli have high combustion efficiency compared
to other cities. However, based on the TROPOMI estimate,
both inventories seem to underestimate the emission factor
for Tripoli, specifically for the non-road transport sectors.

3.6 Temporal emission patterns

With the 3-year TROPOMI dataset, we can also investi-
gate the temporal variability of emissions. Earlier studies,
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Figure 10. TROPOMI emission estimates over Cairo (a) and Al-
giers (b) for different days of the week averaged over 2019–2021.
The numbers in the bars show the number of days the averages are
based on. Both cities show lower emissions on Friday, consistent
with road transport being the main contributor to urban emissions
and Friday being the standard day off in Islamic countries.

focusing on concentration trends rather than emission es-
timates, have found that CO concentrations over Cairo are
lower on Fridays, which is the day off in the Islamic world
(Rey-Pommier et al., 2022). This “weekend effect” has also
been observed for nitrogen dioxide (NO2) and ozone (O3),
which like CO in Cairo are dominated by transport emis-
sions (Beirle et al., 2003; Khoder, 2009; Stavrakou et al.,
2020). Combined with the fact that both emission inventories
agree on road transport as the main contributor to emissions
in Cairo, lower CO emissions are indeed expected on Fridays
when there is less commuter traffic. Figure 10 indeed shows
a 32 % drop in emissions on Fridays over Cairo. A similar
reduction in emissions can be seen over Algiers, which can
also be attributed to reduced road traffic. Similar significant
patterns were not seen for the other cities that tend to have
relatively lower contributions from road traffic.

4 Conclusions

We adapted and calibrated the computationally efficient
cross-sectional flux (CSF) method to quantify urban car-
bon monoxide emission rates from major cities in Africa
using TROPOMI data. We determined optimal values for
the parameters of the CSF by applying the method to a full
year of simulated WRF plumes over three distinctly different
African cities (Cairo, Lagos, and Bamako), such that the tran-
sects drawn best match the shape and curvature of the simu-
lated plumes. These simulations were also used to calibrate
the CSF’s effective wind speed relationship for TROPOMI
data. By applying the calibrated CSF to the simulated data
with known emission rates, we found that we can quantify
urban CO emissions down to 0.1 Tg yr−1 within 30 % un-
certainty. After calibration, we applied our CSF method to
TROPOMI observations of 29 of Africa’s most populated

and/or emitting cities. We focus on Africa as there are rel-
atively few dedicated emission inventories for the continent,
and large uncertainties in emission rates are expected.

We compared our TROPOMI-based emission estimates
with the global EDGAR emission inventory and the Africa-
focused DACCIWA inventory. There are substantial dif-
ferences between urban CO emissions from both invento-
ries. We did not find vastly better average agreement of ei-
ther inventory with TROPOMI. DACCIWA is closer to the
TROPOMI estimate for 16 out of 29 cities. For 10 cities, the
DACCIWA and TROPOMI estimates agree within the un-
certainty of the TROPOMI-based estimate, but there are also
cities with large significant differences of over 600 %. Com-
pared to EDGAR, we find that nine cities agree within the
uncertainty and we similarly find cities with large discrepan-
cies.

We then evaluated our results for different regions. In
northern Africa, TROPOMI observes higher emission rates
than shown in EDGAR for cities in Egypt, Algeria, and Mo-
rocco. The EDGAR CO to CO2 emission ratios for these
four cities are relatively low, implying that the mismatch
with TROPOMI may originate from the emission factors,
which implies that EDGAR would overestimate the aver-
age combustion efficiency in these cities. In South Africa,
the TROPOMI estimates agree with EDGAR, but the DAC-
CIWA estimates are high in comparison. EDGAR shows
lower CO to CO2 ratios and hence higher combustion effi-
ciency for South Africa compared to other parts of Africa,
implying that those ratios may be too high in DACCIWA.
Similarly, DACCIWA appears to underestimate the com-
bustion efficiency in Abidjan (Côte d’Ivoire). For Tripoli
(Libya), both inventories estimate lower emission rates than
the estimate based on TROPOMI. Specifically the domestic
and industry sectors show particularly high combustion effi-
ciencies compared to other cities in both inventories, which
can explain part of the discrepancy.

We also found some discrepancies that can be attributed to
the activity data used by the inventories. We found a factor∼
4 lower emissions based on TROPOMI for Lagos (Nigeria)
than estimated by DACCIWA. The associated DACCIWA
CO2 emissions are 8 times larger than in EDGAR, which
can partly be a difference in activity data but also suggests a
mismatch related to the spatial distribution of emissions. For
Kano (Nigeria), DACCIWA estimates CO2 emissions that
are 4 times larger than EDGAR. Here, the TROPOMI es-
timate agrees better with DACCIWA, and the activity rate,
which corresponds to CO2 emission, in EDGAR seems to be
an underestimation.

The large TROPOMI data volume enables the identifica-
tion of temporal emission patterns. Over Cairo and Algiers
we find significantly lower emission rates on Fridays – the
local rest day – compared to other days of the week. The abil-
ity to recognize such patterns builds confidence and shows
the strength of TROPOMI’s daily global coverage combined
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with a computationally efficient method like the CSF method
developed here.

Appendix A: TROPOMI-based CO uncertainty

The CSF method as applied in this work has many param-
eters that were calibrated on simulated plumes. In order to
determine the uncertainty of the estimated emission rate, we
have created an ensemble of emission estimates by vary-
ing these parameters. The members of the ensemble and
the ranges over which they were varied are shown in Ta-
ble A1. The wind databases are the three wind products as
described in Sect. 2.5 and are responsible for a mean uncer-
tainty of −19 % and +12 %. The standard deviation thresh-
old for spline pixels is the number of standard deviations a
pixel has to be above the background concentration in or-
der to be considered part of the plume. Pixels identified as
part of the plume are only used for fitting the spline shape.
The number of cross sections is the total number of transects
drawn perpendicular to the direction of the plume. As de-
scribed in Sect. 2.4, not all transects are taken into account
in the quantification. The number of cross sections is mostly
a measure for the line density or the distance between con-
secutive transects, as the transects are evenly spaced over the
full length of the spline. The minimum pixel coverage is the
minimum fraction of a line that needs to be covered by pix-
els and is a balance between retaining enough days with a
valid estimate and not underestimating emissions. A lower
limit of 50 % coverage per line will retain a lot of lines and,
thus, more days with an estimate; however, the cross sections
will potentially miss large parts of the plume. The distance of
the background box is important, as one would like the box
to be close to the city to get a good representation of the
local background. However, it must not overlap with any ur-
ban emissions to have a clean background. As explained in
Sect. 2.4, the transects start upwind of the city center to cap-
ture the full city plume. We vary the distance between the first
transect and the city center for our uncertainty estimate. As a
last member of the ensemble, we use the spread in emission
estimates of the individual transects. We include the means
of the transects with the lowest and highest 50 % emission
rates in the ensemble.

Table A1. Variables used in the uncertainty analysis and the ranges over which they were varied. The resulting ensemble spreads are reported
as uncertainty.

Parameter Domain Default

Wind database GEOS-FP 10m, ERA5 10m, and GEOS-FP PBL GEOS-FP 10m
Standard deviation threshold for spline pixels {1.2–2.4} 1.8
Number of transects {15–25} 20
Minimum pixel coverage per transect {50 %–90 %} 70 %
Distance of background box {0.2–0.4◦} 0.3◦

Varying upwind distance first transect {0–0.2◦} 0.1◦

Transects used for estimate {Lowest 50 %–highest 50 %} All
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Appendix B: TROPOMI data filtering

Although the CSF has been shown to reproduce simulated
emission rates (Fig. 5), it can not be applied to every sin-
gle overpass of TROPOMI. For example, days with a lot of
missing pixels in the TROPOMI data can lead to underes-
timation of the emission rates. To prevent a positive bias, it
is important to not only use days with strong, clearly visi-
ble plumes. With the filters chosen in this work, over 400 d
are accepted as quantifiable over the 3-year period studied
for most non-coastal cities and coastal cities with predom-
inantly inland winds (e.g., Cairo has 713 estimates, Johan-
nesburg 427, and Khartoum 570). With TROPOMI’s daily
overpasses this means that we estimate emissions on roughly
40 % of all days. Regions with fewer estimates tend to be
coastal. For example, we only have estimates for 160 d over
Lagos and 113 for Dakar because of limited TROPOMI cov-
erage over water. An additional reason for a small number of
valid estimates lies in the occurrence of open fires; for ex-
ample, 224 orbits (42 %) are removed from our estimate over
Lusaka (Zambia) due to fires within 1.5◦ of the city center
and stronger fires within 0.75◦.

The filters employed are shown in Table B1.

Table B1. Filtering applied to the data to ensure correct application of the CSF method.

Description Value

Per pixel Quality flag TROPOMI (land). ≥ 0.7

Quality flag TROPOMI (water). = 0.7

Per transect Misalignment between plume and wind direction. < 45◦

Minimum pixel coverage. > 70 %

Per plume Downwind coverage in a 0.3◦× 0.8◦ box. > 60 %

Effective wind speed. > 2 m s−1

Maximum concentration outside the plume. < 200 ppb (1.5◦ radius)

Number of transects used for the estimate. > 3

Fraction estimate transect 8–20 to transect 3–7. High emission estimates < 2.5×
of the far away lines tend to indicate interference of different sources.

Second derivative of spline scaled to 1◦ pixel size. This represents < 0.05
the dimensionless curvature of the fitted spline.

Mismatch between the first transect and the starting pixel of the plume. < 0.35◦

Fire emission from Global Fire Assimilation System (GFAS) < 23 Mg h−1 (0.75◦ radius),
database, Kaiser et al. (2012). < 57 Mg h−1 (1.5◦ radius)
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Appendix C: CSF estimates

Table C1. Emission estimates for the studied African cities by applying the CSF method to the TROPOMI CO product (2019–2021), as well
as the corresponding emission rates according to the DACCIWA (2015) and EDGAR (2015) inventories. All emission rates are in teragrams
per year (Tg yr−1). Population is taken from the Center for International Earth Science Information Network (CIESIN, 2018).

City Country Population TROPOMI Lower Upper DACCIWA EDGAR
estimate limit limit

Algiers Algeria 4.2 M 0.213 0.177 0.307 0.288 0.025
Luanda Angola 5.1 M 0.268 0.166 0.413 0.489 0.263
Ouagadougou Burkina Faso 2.8 M 0.273 0.243 0.335 0.126 0.076
Kinshasa Congo 7.4 M 0.628 0.49 0.894 0.477 0.266
Abidjan Côte d’Ivoire 7.1 M 0.09 0.054 0.157 0.654 0.266
Alexandria Egypt 3.3 M 0.197 0.164 0.257 0.156 0.041
Cairo Egypt 16.7 M 0.546 0.456 0.608 0.556 0.136
Addis Ababa Ethiopia 4.4 M 0.239 0.2 0.295 0.268 0.204
Accra Ghana 3.5 M 0.194 0.176 0.318 0.148 0.172
Nairobi Kenya 4.8 M 0.17 0.153 0.247 0.441 0.353
Tripoli Libya 1.2 M 0.264 0.151 0.32 0.146 0.121
Antananarivo Madagascar 3.0 M 0.135 0.104 0.156 0.123 0.083
Casablanca Morocco 4.2 M 0.11 0.078 0.171 0.091 0.008
Maputo Mozambique 2.5 M 0.151 0.125 0.199 0.176 0.097
Abuja Nigeria 2.6 M 0.255 0.089 0.483 0.161 0.247
Ibadan Nigeria 2.2 M 0.145 0.039 0.183 0.207 0.232
Kano Nigeria 5.3 M 0.531 0.409 0.616 0.413 0.189
Lagos Nigeria 10.9 M 0.36 0.227 0.558 1.862 0.397
Dakar Senegal 4.2 M 0.293 0.154 0.381 0.157 0.081
Cape Town South Africa 4.1 M 0.189 0.155 0.252 0.288 0.252
Durban South Africa 3.3 M 0.157 0.132 0.233 0.482 0.204
Johannesburg South Africa 9.1 M 0.232 0.184 0.291 0.77 0.482
Pretoria South Africa 6.4 M 0.197 0.139 0.209 0.338 0.216
Khartoum Sudan 3.1 M 0.396 0.336 0.432 0.12 0.155
Dar es Salaam Tanzania 5.4 M 0.286 0.241 0.496 0.396 0.181
Kampala Uganda 4.3 M 0.362 0.279 0.431 0.245 0.117
Lusaka Zambia 2.4 M 0.226 0.108 0.23 0.269 0.168
Bulawayo Zimbabwe 0.8 M 0.094 0.043 0.111 0.13 0.057
Harare Zimbabwe 2.7 M 0.142 0.076 0.157 0.304 0.117
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Appendix D: Inventory emission rates

Table D1. Sectoral breakdown of the CO emission rates for the studied African cities according to the DACCIWA and EDGAR inventory.
All emission rates are in gigagrams per year (Gg yr−1).

City DACCIWA EDGAR

Domestic Industry Other Power Road Domestic Industry Other Power Road

Algiers 0.3 33.7 0.6 0.9 252.2 1.3 2.7 0.2 0.4 20.0
Luanda 326.1 19.4 12.0 3.4 129.0 25.4 174.0 0.3 6.5 56.1
Ouagadougou 90.3 8.0 0.0 0.8 26.4 13.2 39.8 0.1 2.8 20.0
Kinshasa 411.1 25.4 0.0 0.0 40.4 20.1 222.3 0.1 0.1 23.5
Abidjan 579.9 21.4 20.4 7.0 25.5 10.8 183.6 0.3 1.6 15.7
Alexandria 24.3 46.7 20.7 4.4 59.6 3.4 1.8 0.3 15.8 19.9
Cairo 75.8 145.5 64.6 26.1 244.3 3.5 6.4 1.1 9.3 115.9
Addis Ababa 245.3 8.5 1.8 0.0 12.3 55.3 134.8 0.2 0.0 13.9
Accra 108.2 3.2 3.9 0.0 32.4 5.0 90.2 1.0 0.5 43.2
Nairobi 370.8 11.7 0.2 2.3 59.1 23.5 266.9 0.3 2.1 60.0
Tripoli 3.1 4.2 0.0 6.6 131.6 1.9 0.1 0.1 0.0 118.9
Antananarivo 68.8 17.0 30.2 0.1 6.5 7.5 68.3 0.1 0.0 7.3
Casablanca 29.2 37.1 4.6 0.5 20.0 1.5 3.9 0.0 0.2 2.2
Maputo 153.1 5.3 0.1 3.1 14.7 21.0 62.7 0.0 0.3 13.1
Abuja 126.2 10.2 3.6 0.1 21.0 82.6 32.1 0.0 0.0 131.9
Ibadan 145.8 11.7 4.1 0.3 44.7 36.2 46.4 0.0 0.0 149.1
Kano 286.3 23.0 8.1 0.0 95.5 96.9 60.6 0.0 0.0 31.0
Lagos 733.5 59.0 20.8 2.4 1046.3 33.2 143.5 0.1 0.7 219.8
Dakar 123.3 17.4 0.1 6.1 10.0 2.7 62.7 0.2 3.2 12.6
Cape Town 139.9 50.7 5.7 1.4 90.5 56.9 170.1 0.7 0.0 23.8
Durban 183.8 66.6 7.5 0.0 224.4 53.3 139.4 0.3 0.0 10.9
Johannesburg 355.8 128.9 14.5 22.4 247.9 108.8 317.5 0.1 0.0 55.1
Pretoria 180.4 65.4 7.4 0.9 83.4 57.3 129.0 0.1 0.4 29.3
Khartoum 77.2 10.8 3.8 1.6 26.2 16.3 90.0 0.1 5.6 42.6
Dar es Salaam 354.2 15.0 9.6 1.7 15.8 15.1 138.1 0.1 10.4 17.7
Kampala 198.8 10.5 0.1 1.2 34.2 65.6 42.5 0.0 0.0 8.8
Lusaka 239.0 11.7 1.2 0.0 16.7 31.7 126.3 0.0 0.0 9.8
Bulawayo 79.1 4.3 3.5 0.2 42.4 21.5 2.0 0.0 0.2 33.0
Harare 248.2 13.3 10.8 0.2 31.5 69.8 4.5 0.1 0.4 41.7
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Table D2. Sectoral breakdown of the CO2 emission rates for the studied African cities according to the DACCIWA and EDGAR inventory.
All emission rates are in teragrams per year (Tg yr−1).

City DACCIWA EDGAR

Domestic Industry Other Power Road Domestic Industry Other Power Road

Algiers 2.0526 2.3547 0.3026 0.7006 5.9577 2.2141 2.3123 0.1231 0.0446 1.4081
Luanda 4.8853 1.4104 2.2871 0.0 1.2816 1.8331 1.4681 0.1276 1.6398 0.6036
Ouagadougou 2.1571 0.5752 0.701 0.4603 0.1553 0.3469 0.2106 0.1102 0.4868 0.1633
Kinshasa 9.1058 2.4811 4.9228 0.0 0.3205 0.4757 1.1183 0.0897 0.0245 0.2184
Abidjan 5.6168 1.2141 7.6905 4.1632 0.3916 0.3994 1.1479 0.1115 1.1956 0.1948
Alexandria 1.7076 3.1371 0.3293 0.0 0.6755 0.8145 4.1211 0.0639 23.3842 0.9927
Cairo 9.7364 17.8872 3.5146 17.7906 5.4195 3.1328 11.4975 0.7648 13.7938 4.9941
Addis Ababa 5.2452 0.4889 1.0817 0.0 0.3851 1.2733 0.5438 0.2141 0.0005 0.2297
Accra 1.172 0.3122 0.7803 0.6024 0.3533 0.231 0.6034 0.4059 0.3562 0.3729
Nairobi 5.3718 0.9503 4.7633 0.429 0.8817 0.6676 1.6001 0.2878 0.4414 0.5657
Tripoli 0.3477 0.8711 0.3068 7.4683 0.9077 0.252 0.6718 0.022 0.0 0.9969
Antananarivo 1.7812 0.9208 1.0695 0.0798 0.1474 0.205 0.144 0.046 0.0195 0.0622
Casablanca 1.4466 2.1949 0.0158 4.0377 0.4885 0.7635 1.2911 0.0514 1.2078 0.3914
Maputo 2.3379 0.2568 0.6895 0.0 0.1877 0.4888 0.7266 0.0355 0.0795 0.1202
Abuja 4.1275 0.6013 0.5368 0.1024 0.2142 1.9347 0.4962 0.0413 0.0 0.9858
Ibadan 6.678 0.9728 0.8684 0.2404 0.1572 0.944 0.7214 0.0006 0.0006 1.0063
Kano 10.773 1.5693 1.401 0.0311 0.1601 2.3444 0.9346 0.0206 0.0008 0.2502
Lagos 26.3529 3.8388 3.5988 1.9078 4.5136 1.1902 2.2007 0.0889 0.6383 1.5765
Dakar 1.5405 1.01 0.9282 1.9502 0.3954 0.1379 0.4475 0.1115 1.2811 0.2292
Cape Town 3.1332 10.8663 1.2788 1.0896 0.823 1.759 9.0686 0.247 0.0009 1.5695
Durban 2.3207 8.0484 0.543 0.1116 0.7436 1.5599 8.5055 0.0943 0.1335 0.9045
Johannesburg 5.5358 19.1984 2.2775 23.3095 1.7699 3.1791 17.0838 0.1623 4.9948 3.2495
Pretoria 2.2686 7.8676 0.5308 3.0576 0.5046 1.6006 6.6839 0.1254 3.4728 1.7434
Khartoum 0.6315 0.9569 0.3614 0.1673 0.198 0.5049 0.6555 0.101 1.4848 0.5062
Dar es Salaam 5.582 1.0448 1.4222 1.073 0.0259 0.3639 1.5205 0.0908 1.3461 0.1923
Kampala 5.0997 0.8774 1.6523 0.5054 0.2586 1.4997 0.329 0.009 0.0 0.1042
Lusaka 3.8478 1.6338 2.2394 0.0 0.0951 0.7361 1.4979 0.0327 0.0 0.0699
Bulawayo 1.8723 0.1759 0.0062 0.2274 0.1068 0.5132 0.2041 0.0134 0.2151 0.263
Harare 5.522 0.5187 0.0183 0.2416 0.193 1.6508 0.3461 0.059 0.4645 0.4179

Code and data availability. TROPOMI CO data
(https://doi.org/10.5270/S5P-bj3nry0, Copernicus Sentinel-
5P, 2021) are publicly available from the ESA Sentinel-
5P data hub at https://s5phub.copernicus.eu (last ac-
cess: 1 June 2023). ERA5 wind data are available at
https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
(Hersbach et al., 2022). WRF-Chem code is available at
https://github.com/wrf-model/WRF/releases (Powers et al.,
2023); in this work, version 4.1.5 was used. EDGAR v5 CO
data are available at https://edgar.jrc.ec.europa.eu/dataset_ap50
(Crippa et al., 2021). EDGAR v5 CO2 data are available
at https://edgar.jrc.ec.europa.eu/dataset_ghg50 (Crippa et
al., 2022). DACCIWA CO and CO2 data are available at
https://doi.org/10.25326/56 (Keita et al., 2020) at the Emis-
sions of atmospheric Compounds and Compilation of An-
cillary Data (ECCAD) system. GPW v4 gridded population
density is available at https://doi.org/10.7927/H49C6VHW
(CIESIN, 2018). Open fire emissions from GFAS are available at
https://atmosphere.copernicus.eu/global-fire-emissions (Kaiser et
al., 2022).
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