Supplement of

A dynamic parameterization of sulfuric acid-dimethylamine nucleation and its application in three-dimensional modeling

Yuyang Li et al.
Correspondence to: Bin Zhao (bzhao@mail.tsinghua.edu.cn) and Jingkun Jiang (jiangjk@tsinghua.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

241 Lookup table for necessary parameters

25 Table S1. Lookup table for $\boldsymbol{G}(i, j)$ and $\boldsymbol{H}(\boldsymbol{i})$ in the parameterization

$G(i, j)$		i							$\begin{gathered} 26 \\ \hline 27 \end{gathered}$
		1	2	3	4	5	6	7	
j	1	0.71	0.96	0.86	0.91	1.01	1.15	1.28	
	2	0.96	1.20	1.20	1.31	1.47	1.70	1.90	
	3	0.86	1.20	1.00	1.01	1.11	1.22	1.32	
	4	0.91	1.31	1.01	0.99	1.06	1.13	1.20	
	5	1.01	1.47	1.11	1.06	1.12	1.18	1.24	
	6	1.15	1.70	1.22	1.13	1.18	1.20	1.24	
	7	1.28	1.90	1.32	1.20	1.24	1.24	1.26	
$H(i)$		1.00	0.89	0.63	0.51	0.43	0.34	0.29	

2 Derivation of the Explicit Formula

Based on the kinetic model presented by Cai et al. (Cai et al., 2021), the formula of pseudo-steady-state cluster concentrations and nucleation rates is as follows:
$\left[A_{1} B_{1}\right]=\left[\mathrm{SA}_{\mathrm{tot}}\right]-[A]$,
$\left[A_{1} B_{1}\right]=\frac{\beta_{1-2}[A][B]}{\beta_{1-3}[A]+\beta_{3-3}\left[A_{1} B_{1}\right]+\beta_{3-5}\left[A_{2} B_{2}\right]+\beta_{3-6}\left[A_{3} B_{3}\right]+\beta_{3-7}\left[A_{4} B_{4}\right]+\operatorname{Cog}_{3} S_{3}+\gamma}$,
$\left[A_{2} B_{1}\right]=\frac{\beta_{1-3}[A]\left[A_{1} B_{1}\right]}{\beta_{2-4}[B]+\text { CoagS }_{4}}$,
$\left[A_{2} B_{2}\right]=\frac{\frac{1}{1} \beta_{3-5}\left[A_{1} B_{1}\right]\left[A_{1} B_{1}\right]+\beta_{2-4}\left[A_{2} B_{1}\right][B]}{\beta_{3-5}\left[A_{1} B_{1}\right]+\beta_{5-5}\left[A_{2} B_{2}\right]+\operatorname{Coag} S_{5}}$,
$\left[A_{3} B_{3}\right]=\frac{\beta_{3-5}\left[A_{2} B_{2}\right]\left[A_{1} B_{1}\right]}{\beta_{3-6}\left[A_{1} B_{1}\right]+\text { Coag }_{6}}$,
$\left[A_{4} B_{4}\right]=\frac{\beta_{3,6}\left[A_{3} B_{3}\right]\left[A_{1} B_{1}\right]+\frac{1}{2} \beta_{5,5}\left[A_{2} B_{2}\right]\left[A_{2} B_{2}\right]}{\beta_{3,7}\left[A_{1} B_{1}\right]+\operatorname{CoagS}_{7}}$,
$J_{A_{4} B_{4}}=\beta_{3,6}\left[A_{3} B_{3}\right]\left[A_{1} B_{1}\right]+\frac{1}{2} \beta_{5,5}\left[A_{2} B_{2}\right]\left[A_{2} B_{2}\right]$,
where $\left[\mathrm{SA}_{\mathrm{tot}}\right]$ represents the concentrations of sulfuric acid (SA) molecules or clusters containing one SA molecule, A is SA molecules, B is dimethylamine (DMA) molecules, and $A_{\mathrm{m}} B_{\mathrm{n}}$ is the clusters consisting of m SA molecules and n DMA molecules. $\beta_{i-j}\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)$ represents the collision coefficients (β) between molecules or clusters i and j, and 1-7 represent A, B, $A_{1} B_{1}, A_{2} B_{1}, A_{2} B_{2}, A_{3} B_{3}$, and $A_{4} B_{4}$, respectively. Similarly, CoagS ${ }_{i}$ represents the coagulation sinks of molecules or clusters $i . \gamma$ $\left(\mathrm{s}^{-1}\right)$ is the evaporation rate of $A_{1} B_{1}$ clusters. Here the concentrations of clusters are shown as $\left[A_{\mathrm{m}} B_{\mathrm{n}}\right]$ in m^{-3}.

The analytical solution should be simplified based on proper approximations. For typical polluted urban areas, the sink of $A_{1} B_{1}$ is mainly due to the coagulation scavenging and evaporation, that is,
$\left[A_{1} B_{1}\right] \approx \frac{\beta_{1-2}[A][B]}{\operatorname{CoagS}_{3}+\gamma}$,
however, for a wider range of atmospheric environments with lower CS and temperatures, the above approximations might lead to an overestimation of SA-DMA nucleation rates. Thus in this study, the self-coagulation of $A_{1} B_{1}$ and coagulation with A would also be taken into account as a sink of $A_{1} B_{1}$:
$\left[A_{1} B_{1}\right] \approx \frac{\beta_{1-2}[A][B]}{\left.\beta_{1-3}[A]+\beta_{3-3}\left[A_{1} B_{1}\right]+\operatorname{CoggS}_{3}+\gamma\right]} \approx \frac{\beta_{1-2}[A][B]}{\beta_{1-3}\left[\mathrm{SA}_{\text {tot }}\right]+\mathrm{CoagS}_{3}+\gamma}$,
Putting the above assumption together with the pseudo-steady-state nucleation rates formula, the explicit formula could be simplified to the version in the main text (Eqs. 8-11).

Sinks	This study	Variation range
Wet deposition $\left(\right.$ Henry Law's constant $\left./ \mathrm{mol} \mathrm{m}^{-3} \mathrm{~Pa}^{-1}\right)$	0.56	$0.3-0.6($ Sander, 2015 $)$
Gas-phase reaction $\left(\cdot \mathrm{OH}\right.$ oxidation rate constant $\left./ \mathrm{cm}^{-3} \mathrm{~s}^{-1}\right)$	6.49×10^{-11}	$(5.85-7.13) \times 10^{-11}$ $($ Carl and Crowley, 1998)
Aerosol uptake (Uptake coefficient)	0.001	$5.9 \times 10^{-4}-4.4 \times 10^{-2}$ (Qiu et al., 2011; Wang et al., 2010)

Figure S1. Simulated $\boldsymbol{J}_{1.4}$ (blue) and characteristic equilibrium time (red) of $\mathbf{A}_{3} \mathbf{B}_{3}$ and $\mathbf{A}_{\mathbf{1}} \mathbf{B}_{1}$. The typical conditions are [DMA] $=3.0$ pptv with $C S=0.0001 \mathrm{~s}^{-1}$ and $T=255 \mathrm{~K}$ in (a) and $C S=0.01 \mathrm{~s}^{-1}$ and $T=315 \mathrm{~K}$ in (b). The variation of SA concentrations is equal to the averaged diurnal variations.

3 Dimethylamine Emission inventory for marine area

Similar to the continental emission inventory for DMA, the maritime part is also built by combination of NH_{3} emission inventory and DMA/ NH_{3} emission ratio. The maritime NH_{3} emission is adopted from the results of Paulot et al with a grid transformation. The DMA/ NH_{3} emission ratio is estimated by the measured data from a previous study (Chen et al., 2021). During their maritime campaign, mean gaseous DMA and NH3 concentrations are $0.006 \mu \mathrm{~g} \mathrm{~cm}^{-3}$ and $0.5300 \mu \mathrm{~g} \mathrm{~cm}^{-3}$, of which 16% and 34% come from continental transport, respectively. Hence we can obtain the marine-originated DMA $\left(0.0050 \mu \mathrm{~g} \mathrm{~cm}^{-}\right.$ $\left.{ }^{3}\right)$ and $\mathrm{NH}_{3}\left(0.34980 ~ \mu \mathrm{~g} \mathrm{~cm}^{-3}\right)$ concentrations and an approximate DMA/ NH_{3} emission ratio of 0.0144 .

Table S2. Key parameters in simulating atmospheric sinks of dimethylamine

6

Figure S2. Simulated Evolution of PNSDs and Timeseries of CS (violet line) from scenario DMA1.4_Mech8.

5 Comparisons of simulations between DMA1.4_Mech8 and the scenario with a previous parameterization

Figure S3. Comparison of observed and simulated averaged particle number size distribution from scenarios with parameterizations from Dunne et al., 2016 (CLOUD) the original scenario (DMA1.4_Mech8).

Figure S4. Comparison of observed and simulated DMA (a) and SA (b) concentrations from scenarios with parameterizations from Dunne et al., 2016 (CLOUD) the original scenario (DMA1.4_Mech8).

Figure S5. Comparison of observed and simulated averaged particle number size distribution from scenarios with parameterizations from Dunne et al., 2016 (CLOUD) the original scenario (DMA1.4_Mech8).

82 Figure S6. Comparison of observed and simulated [SA] ${ }^{4} /$ CS 2 to show the combined effect of simulated input parameters in DMA1.4_Mech8.

Figure S7. Comparison of observed $J_{1.4}$ and simulated nucleation rates from scenarios with parameterizations from Dunne et al., 2016 (CLOUD).

Figure S8. Comparison of observed and simulated averaged particle number size distribution (from DMA1.4_Mech8 scenario) for 25 NPF days.

95 Figure S9. Variation of parameterized J1.4 with DMA concentrations at 281 K with different $\Delta \mathrm{G}$ values applied of 96 15.40, $\mathbf{- 1 4 . 0 0}, \mathbf{- 1 3 . 5 4}$, and $\mathbf{- 1 1 . 0 2} \mathbf{k c a l}$ mol-1, respectively.

Figure S10. Comparison of observed and simulated DMA concentrations from sensitivity scenarios of halving

101 Figure S11. Comparison of observed and simulated particle number size distribution from sensitivity scenarios of halving (SenDMA0.5) and doubling (SenDMA2) the DMA emission and the original scenario (DMA1.4_Mech8).

Figure S12. Comparison of observed and simulated averaged particle number size distribution from sensitivity scenarios of halving (SenDMA0.5) and doubling (SenDMA2) the DMA emission and the original scenario (DMA1.4_Mech8).

Figure S13. Comparison of observed $J_{1.4}$ and simulated nucleation rate from sensitivity scenarios of halving (SenDMA0.5) (a) and doubling (SenDMA2) (b) the DMA emission.

111 Figure S14. Comparison of observed and simulated DMA concentrations from sensitivity scenarios using lowest 112 (SenUpt5.9E-4) and highest (SenUpt4.4E-2) aerosol uptake coefficient of DMA and the original scenario 113 (DMA1.4_Mech8).

Figure S15. Comparison of observed and simulated particle number size distribution from sensitivity scenarios using lowest (SenUpt5.9E-4) and highest (SenUpt4.4E-2) aerosol uptake coefficient of DMA and the original scenario (DMA1.4_Mech8).

Figure S16. Comparison of observed and simulated averaged particle number size distribution from sensitivity scenarios using lowest (SenUpt5.9E-4) and highest (SenUpt4.4E-2) aerosol uptake coefficient of DMA and the original scenario (DMA1.4_Mech8).

Figure S17. Comparison of observed $J_{1.4}$ and simulated nucleation rate from sensitivity scenarios using lowest (SenUpt5.9E-4) (a) and highest (SenUpt4.4E-2) (b) aerosol uptake coefficient of DMA and the original scenario (DMA1.4_Mech8).

Figure S18. Comparison of observed and simulated DMA concentrations from sensitivity scenarios using $\boldsymbol{\Delta G}=\mathbf{- 1 5 . 4}$ $128 \mathrm{kcal} \mathrm{mol}^{-1}$ (SenDeltaG15.4) and the original scenario (DMA1.4_Mech8).

130 Figure S19. Comparison of observed and simulated particle number size distribution from sensitivity scenario using $\Delta G=-15.4 \mathrm{kcal} \mathrm{mol}^{-1}$ (SenDeltaG15.4) and the original scenario (DMA1.4_Mech8).

Figure S20. Comparison of observed and simulated averaged particle number size distribution from sensitivity scenarios using $\Delta G=-15.4 \mathrm{kcal} \mathrm{mol}^{-1}$ (SenDeltaG15.4) and the original scenario (DMA1.4_Mech8).

Figure S21. Comparison of observed $J_{1.4}$ and simulated nucleation rates from sensitivity scenarios using $\Delta \mathbf{G}=\mathbf{- 1 5 . 4}$ kcal mol^{-1} (SenDeltaG15.4).

References:
Cai, R. L., Yan, C., Yang, D. S., Yin, R. J., Lu, Y. Q., Deng, C. J., Fu, Y. Y., Ruan, J. X., Li, X. X., Kontkanen, J., Zhang, Q., Kangasluoma, J., Ma, Y., Hao, J. M., Worsnop, D. R., Bianchi, F., Paasonen, P., Kerminen, V. M., Liu, Y. C., Wang, L., Zheng, J., Kulmala, M., and Jiang, J. K.: Sulfuric acid-amine nucleation in urban Beijing, Atmos Chem Phys, 21, 2457-2468, 2021.
Carl, S. A. and Crowley, J. N.: Sequential Two (Blue) Photon Absorption by NO_{2} in the Presence of H_{2} as a Source of OH in Pulsed Photolysis Kinetic Studies: Rate Constants for Reaction of OH with $\mathrm{CH}_{3} \mathrm{NH}_{2}$, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$, and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$ at 295 K, The Journal of Physical Chemistry A, 102, 8131-8141, 10.1021/jp9821937, 1998.
Chen, D., Shen, Y., Wang, J., Gao, Y., Gao, H., and Yao, X.: Mapping gaseous dimethylamine, trimethylamine, ammonia, and their particulate counterparts in marine atmospheres of China's marginal seas - Part 1: Differentiating marine emission from continental transport, Atmos Chem Phys, 21, 16413-16425, 10.5194/acp-21-16413-2021, 2021.
Qiu, C., Wang, L., Lal, V., Khalizov, A. F., and Zhang, R.: Heterogeneous reactions of alkylamines with ammonium sulfate and ammonium bisulfate, Environ Sci Technol, 45, 4748-4755, 10.1021/es1043112, 2011.
Sander, R.: Compilation of Henry's law constants (version 4.0) for water as solvent, Atmos Chem Phys, 15, 4399-4981, 10.5194/acp-15-4399-2015, 2015.

Wang, L., Lal, V., Khalizov, A. F., and Zhang, R.: Heterogeneous Chemistry of Alkylamines with Sulfuric Acid: Implications for Atmospheric Formation of Alkylaminium Sulfates, Environmental Science \& Technology, 44, 24612465, 10.1021/es9036868, 2010.

