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Abstract. Aerosol radiative forcing uncertainty affects estimates of climate sensitivity and limits model skill
in terms of making climate projections. Efforts to improve the representations of physical processes in climate
models, including extensive comparisons with observations, have not significantly constrained the range of pos-
sible aerosol forcing values. A far stronger constraint, in particular for the lower (most-negative) bound, can
be achieved using global mean energy balance arguments based on observed changes in historical temperature.
Here, we show that structural deficiencies in a climate model, revealed as inconsistencies among observationally
constrained cloud properties in the model, limit the effectiveness of observational constraint of the uncertain
physical processes. We sample the uncertainty in 37 model parameters related to aerosols, clouds, and radiation
in a perturbed parameter ensemble of the UK Earth System Model and evaluate 1 million model variants (dif-
ferent parameter settings from Gaussian process emulators) against satellite-derived observations over several
cloudy regions. Our analysis of a very large set of model variants exposes model internal inconsistencies that
would not be apparent in a small set of model simulations, of an order that may be evaluated during model-
tuning efforts. Incorporating observations associated with these inconsistencies weakens any forcing constraint
because they require a wider range of parameter values to accommodate conflicting information. We show that,
by neglecting variables associated with these inconsistencies, it is possible to reduce the parametric uncertainty
in global mean aerosol forcing by more than 50 %, constraining it to a range (around −1.3 to −0.1 Wm−2) in
close agreement with energy balance constraints. Our estimated aerosol forcing range is the maximum feasible
constraint using our structurally imperfect model and the chosen observations. Structural model developments
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targeted at the identified inconsistencies would enable a larger set of observations to be used for constraint, which
would then very likely narrow the uncertainty further and possibly alter the central estimate. Such an approach
provides a rigorous pathway to improved model realism and reduced uncertainty that has so far not been achieved
through the normal model development approach.

1 Introduction

The most uncertain component of human forcing of the cli-
mate system over the industrial period is aerosol effective
radiative forcing (1Faer; Forster et al., 2023). Uncertainty
in historical 1Faer reduces our ability to confidently project
near-term future changes to our climate (Andreae et al., 2005;
Seinfeld et al., 2016; Peace et al., 2020; Fyfe et al., 2021).
The best estimate of 1Faer based on the current understand-
ing of aerosols, clouds, radiation, and their interactions (in-
formed by results from global climate models and analysis
of observations) ranges from −3.2 to −0.4 Wm−2 (Bellouin
et al., 2020). The magnitude of 1Faer has remained uncer-
tain through all Intergovernmental Panel on Climate Change
assessment reports (Forster et al., 2023) despite decades of
research to improve our scientific understanding of the key
processes and abundant observations with which to test mod-
els.

The lower (most negative) bound of 1Faer is more tightly
constrained by global mean energy balance arguments,
which infer the magnitude indirectly based on historical
emissions and changes in global mean surface temperature.
Such studies suggest the lower bound may be around −1.8
to −1.7 Wm−2 (e.g. Aldrin et al., 2012; Skeie et al., 2014,
2018). Evidence for a weaker (less negative) lower bound
of 1Faer comes from energy balance relationships that are
additionally informed by output from global climate model
ensembles. For example, Smith et al. (2021) constrain the
1Faer lower bound to around −1.5 Wm−2, and Albright et
al. (2021) constrain the lower bound to between −1.8 and
−1.3 Wm−2. However, tight constraint of just the magnitude
of historical and future global mean 1Faer does not produce
a climate model that can be used to explore the full range
of regional and global climatic effects. Thus, although en-
ergy balance constraints and emergent constraint methods
(e.g. Watson-Parris et al., 2020) can set the plausible bounds
of the historical global mean 1Faer (and/or its components),
we also need a process-based approach for building reliable
global climate models that can accurately simulate the ob-
served state and behaviour of aerosols, clouds, and radiation
that will determine the regional patterns of aerosol effects on
future climate (Williams et al., 2022).

A process-based constraint of1Faer is a substantial under-
taking, with many steps involved. It relies mainly on using
complex climate models to simulate the underlying physical
processes that affect changes in aerosols, clouds, and radi-
ation (and hence 1Faer) then settling on models that have

been developed and refined to achieve acceptable agreement
with extensive observations of these atmospheric properties
and trends. It is assumed that good agreement of a model
simulation with observations ensures that the model is able
to make trustworthy estimates of historical 1Faer and reli-
able projections of future 1Faer, which cannot themselves
be observed. Yet the process-based uncertainty range has re-
mained far wider than estimates from energy balance ap-
proaches because models simulate a very large number of
complex and regionally varying processes that can affect the
magnitude of global mean 1Faer (Carslaw et al., 2013; Re-
gayre et al., 2015; Qian et al., 2018; Yoshioka et al., 2019).

A further challenge in process-based constraint is that the
range of 1Faer stems from two sources of uncertainty in
climate models: structural uncertainty and parametric un-
certainty. Structural deficiencies in a model are associated
with coding choices related to spatial resolution, numeri-
cal methods, parameterisation schemes, and neglected pro-
cesses. Model developments attempt to reduce these defi-
ciencies and the biases they cause compared to observations,
and multi-model intercomparisons (Gliß et al., 2021; Thorn-
hill et al., 2021) can be used to estimate a range of 1Faer
across sets of structurally different models (structural uncer-
tainty). Within a particular model, the uncertain parameters
in the process equations cause an additional uncertainty in
simulations of 1Faer (parametric uncertainty). Adjustment
of parameter values, or tuning, is performed during and/or
following model development to further improve the good-
ness of fit to observations (e.g. Hourdin et al., 2017), al-
though it is recognised that well-tuned models still have a
large (and usually unquantified) parametric uncertainty (Lee
et al., 2016). Perturbed parameter ensembles (PPEs) of the
kind we use here (see Sect. 2.1.2) are a substantial extension
of normal model tuning; they explore many combinations
of parameter values across their likely uncertainty ranges
and quantify their combined effects on 1Faer (Carslaw et
al., 2013; Regayre et al., 2018; Yoshioka et al., 2019). The
resulting unconstrained uncertainty in 1Faer, from sampling
all the important sources of parametric uncertainty in our
model, is larger than the range based on energy balance con-
straints and is approximately as wide as the multi-model
range (which conflates structural and parametric uncertain-
ties without fully sampling either), suggesting that paramet-
ric uncertainties in1Faer are as important as structural model
differences.

Separation of structural and parametric sources of model
uncertainty is important because they have different reme-
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dies. Structural uncertainties point to model deficiencies
that require model developments, while parametric uncer-
tainties can be reduced by matching the outputs of many
model variants (parameter combinations) to historical obser-
vations through a process called history matching (Craig et
al., 1997a; Williamson et al., 2013; Vernon et al., 2014; John-
son et al., 2020; Regayre et al., 2020). There is currently no
best practice for accounting for and separating the effects of
structural and parametric uncertainties (Sexton et al., 2012;
Brynjarsdóttir and O’Hagan, 2014; McNeall et al., 2016;
Johnson et al., 2020; Rostron et al., 2020). In particular, the
observational constraint of parametric uncertainty cannot be
cleanly separated from the effects of structural uncertainties.
For example, without accounting for potential (usually un-
quantified) structural errors, it may not be possible to find any
parameter combinations that produce a model that is consis-
tent with all target observations. Therefore, it is common to
add a structural error term during model–observation com-
parison (e.g. Sexton et al., 2012), which effectively inflates
the parametric uncertainty and the overall model uncertainty
to accommodate the structural errors. This approach avoids
overfitting and provides an estimate of the uncertainty in
1Faer that broadly accounts for both sources of uncertainty.
However, it does not provide any information about which
processes cause structural model errors nor how they weaken
the constraint of parameter values and the range of 1Faer.

To maximise 1Faer constraint, we need to address three
key challenges. First, we need to densely sample the model
parametric uncertainty related to the multitude of cloud,
aerosol, and physical atmosphere processes that determine
1Faer. Secondly, we need to identify model variables that
share causes of uncertainty with 1Faer to prioritise associ-
ated observations for use in the constraint process (Carslaw
et al., 2013; Regayre et al., 2020). The final challenge is to
ensure that any constraint on 1Faer is consistent across mul-
tiple observation types and/or to quantify the limiting effect
of any internal model inconsistencies on 1Faer constraint.
Here, we tackle these challenges using 1 million variants of
version 1 of the UK Earth System Model (UKESM1; Sellar
et al., 2019) (based on statistical emulators trained on out-
puts from 221 model simulations) that sample 1Faer uncer-
tainty (Sect. 3.1) caused by 37 aerosol, cloud, and physical
atmosphere model parameters (Table S1 in the Supplement).
We evaluate the causes of uncertainty in cloud properties
over stratocumulus-dominated regions (Sect. 3.2) and obser-
vationally constrain1Faer using tens of thousands of combi-
nations of more than 450 satellite-derived values (Sect. 3.3).
This approach exposes previously hidden structural incon-
sistencies related to representations of cloud properties in
the model. We remove variables associated with these in-
consistencies from the constraint process to produce an in-
ternally consistent constraint on 1Faer. This constraint does
not make use of all available observations; therefore, our
central estimate of forcing may not be the final best value,
which would ultimately be achieved in a model with no re-

maining structural deficiencies. However, we argue that, in
a model with fewer structural inconsistencies, our approach
could constrain 1Faer and associated process uncertainties
even further.

2 Methods

Our approach is summarised in Fig. 1.

2.1 Experimental design

2.1.1 Model version

We used the atmosphere-only configuration of version 1 of
the UK Earth System Model (UKESM1; Sellar et al., 2019)
to create our PPEs (Sect. 2.1.2). UKESM1 was the model
version submitted to the 6th Coupled Model Intercompari-
son Project (CMIP6; Eyring et al., 2016). UKESM1 is based
on the HADGEM3-GC3.1 physical climate model (Williams
et al., 2018) with additional coupling to key Earth system
processes (Sellar et al., 2019), including the United King-
dom Chemistry and Aerosol (UKCA) model (Archibald et
al., 2020). The atmosphere-only configuration used here con-
sists of the GA7.1 atmosphere (Walters et al., 2019; Mulc-
ahy et al., 2020), with additional aerosol, cloud, and physical
atmosphere structural updates as implemented in UKESM1
(Mulcahy et al., 2020). GA7.1 includes several structural ad-
vancements to the aerosol component of the model which
significantly affect anthropogenic aerosol radiative forcing
(Mulcahy et al., 2018). We refer to this model version as
UKESM1-A.

We use an N96 horizontal resolution, which is
1.875◦

× 1.25◦ (208 km × 139 km) at the Equator, with
85 vertical levels between the surface and 85 km in altitude.
Model vertical levels use a stretched grid such that the
vertical resolution is around 13 m near the surface and
around 150 to 200 m at the top of the boundary layer. We
chose this resolution since it is the same as that used for long
climate runs in CMIP6.

Horizontal wind fields above around 2 km in our simula-
tions (model vertical level 17) were nudged towards ERA-
Interim values for the period December 2016 to November
2017. Nudging is intended to remove the effects of differ-
ences in large-scale meteorology between our PPE members,
meaning we can attribute differences between model variants
to perturbed parameter values. We do not nudge winds within
the boundary layer as many of our parameters are intended to
affect meteorological conditions, in particular cloud adjust-
ments, in this part of the atmosphere.

The model was forced using anthropogenic SO2 emis-
sions for the years 2014 and 1850, as prescribed in CMIP6
simulations. We separately calculated components of 1Faer
(Forster et al., 2023) caused by aerosol–cloud interactions
(1Faci) and aerosol–radiation interactions (1Fari) using dif-
ferences in top-of-the-atmosphere radiative fluxes between

https://doi.org/10.5194/acp-23-8749-2023 Atmos. Chem. Phys., 23, 8749–8768, 2023



8752 L. A. Regayre et al.: Identifying structural inconsistencies allows tighter constraint of aerosol forcing

Figure 1. Flow chart detailing the procedure to densely sample model parameter uncertainty, evaluate model variants against observations,
identify potential structural inconsistencies, and constrain 1Faer.

these two periods. The separation of these1Faer components
accounts for above-cloud aerosol radiative effects (Ghan et
al., 2016) and multiple cloud adjustments (Grosvenor and
Carslaw, 2020).

Carbonaceous aerosols from fossil fuel and residen-
tial sources match those used in CMIP6 in our early-
industrial simulations. However, in our present-day simu-
lations, we prescribed carbonaceous aerosol from biomass
burning sources using emissions generated using Copernicus
Atmospheric Monitoring Service (CAMS) Information for
December 2016 to November 2017 (CAMS: Global biomass
burning emissions based on fire radiative power (GFAS):
data documentation) and spread these emissions between
the surface and around 3 km. We used emissions for the
same period as prescribed wind fields for the closest possible
comparison to observed values. In our early-industrial sim-
ulations (1850 anthropogenic SO2 emissions) we similarly
spread CMIP6 carbonaceous aerosol from biomass burning
over model levels between the surface and around 3 km.

We also prescribed rather than simulated sea surface tem-
peratures and sea ice fraction to best match the December
2016 to November 2017 period. We prescribed land surface
quantities, ocean surface concentrations of dimethylsulfide
(DMS) and chlorophyll, and atmospheric concentrations of
gas species (including oxidants OH and O3, which we then
perturb) using monthly mean output values from a fully cou-
pled version of the UKESM model, averaged over the 1979 to
2014 period. Additionally, we prescribe volcanic SO2 emis-
sions for continuously emitting and sporadically erupting

volcanoes (Andres and Kasgnoc, 1998) and for explosive
volcanic eruptions (Halmer et al., 2002).

Aerosol number concentrations are treated prognostically
with the GLOMAP multi-modal scheme (Mann et al., 2010,
2012), which uses five log-normal aerosol size modes and
includes sulfate, sea salt, black carbon, and organic carbon
chemical components that are internally mixed within each
size mode. Mineral dust is simulated separately using the
CLASSIC dust scheme (Woodward, 2001). GLOMAP sim-
ulates new particle formation, coagulation, gas-to-particle
transfer, cloud processing, and deposition of gases and
aerosols. The activation of aerosols into cloud droplets is
calculated using distributions of sub-grid vertical veloci-
ties based on available turbulent kinetic energy (West et
al., 2014), and the removal of cloud water by autoconversion
to rain is calculated by the host model using a single-moment
cloud microphysics scheme. Aerosols are also removed by
impaction scavenging of falling raindrops according to the
collocation of clouds and precipitation (Lebsock et al., 2013;
Boutle et al., 2014).

We modified some aspects of UKESM1-A and perturbed
key parameters related to these uncertain processes in the
PPE. Including these structural changes adds complexity
to our model, which we consider to be worthwhile given
their potential to interact with other processes and affect
1Faer. Firstly, we defined an ice mass fraction threshold
(cloud_ice_thresh; Table S1) above which no nucleation
scavenging occurs to allow sufficient aerosol to be trans-
ported to the Arctic (Browse et al., 2012). We assumed that
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the wet scavenging of all aerosol particles (soluble and insol-
uble) is zero in large-scale raining clouds if the simulated ice-
to-total-water mass fraction is higher than this fixed value.
This first structural change replicated the model change we
implemented in Yoshioka et al. (2019), which is not yet in the
released version of the model. We evaluated the climatic im-
portance of this parameter as a cause of 1Faer uncertainty in
Regayre et al. (2018, 2020), Johnson et al. (2020), and Peace
et al. (2020). Secondly, we implemented a version of look-
up tables for aerosol optical properties (Bellouin et al., 2013)
that includes optical properties for mineral dust (Balkanski et
al., 2007) and higher-resolution increments of the imaginary
part of the refractive indices to better resolve the absorption
coefficient of aerosols. Finally, we included an organically
mediated boundary layer aerosol nucleation parameterisation
(Metzger et al., 2010) to enhance remote marine and early-
industrial aerosol concentrations in the model.

2.1.2 Perturbed parameter ensembles

We created a new PPE of 221 model simulations for this
study. Each member of the PPE has a distinct combina-
tion of 37 aerosol and physical atmosphere parameter val-
ues (Table S1). Parameters perturbed in previous PPEs using
older versions of the model (Yoshioka et al., 2019; Sexton et
al., 2021) and identified as important causes of uncertainty
in cloud active aerosol concentrations and/or aerosol forc-
ing (Carslaw et al., 2013; Regayre et al., 2015, 2018) were
perturbed here alongside parameters associated with struc-
tural model developments (Mulcahy et al., 2018, 2020; Wal-
ters et al., 2019). Following Regayre et al. (2015), Yoshioka
et al. (2019), and Sexton et al. (2021), uncertain parameter
ranges were determined by formal expert elicitation using the
approach described in Gosling (2018).

We created the PPE in two stages following history-
matching conventions (Craig et al., 1997b; Williamson et
al., 2013). The main benefit of a multi-stage observational
constraint is that it maximises computational efficiency and
the value of information in the final-stage PPE by ruling
out the most implausible parts of parameter space in earlier
stages. We describe both stages here. However, the second-
stage PPE is the focus of our analysis. The PPEs in both
stages have a ratio of simulations to uncertain parameters of
around 6 to ensure that the ensembles accurately represent
model responses across the 37-dimensional parameter space.

In the first stage, the 221-member ensemble was made by
combining a simulation using median values for each pa-
rameter with 220 additional parameter combinations drawn
from a Latin hypercube optimised to ensure that design
points were distributed as evenly as possible across the pa-
rameter space using the optimumLHS R function (Stocki,
2005). To extend the sample of model simulations from 221
to 1 million model variants, we created statistical Gaussian
process emulators (O’Hagan, 2006) that densely sampled
model parameter uncertainty. We evaluated a single month

of model output (May 2015 to match nudged wind fields for
this stage) and ruled out model variants (parameter combi-
nations) that compared poorly to global and regional mean
observations. At this stage, observations included global
mean shortwave and longwave top-of-the-atmosphere radia-
tive fluxes from the Clouds and the Earth’s Radiant Energy
System (CERES SYN1deg Ed4A obtained from the NASA
Langley Research Center CERES ordering tool at https://
ceres.larc.nasa.gov.data/; last access: 1 August 2023) experi-
ment and global mean precipitation amount from version 2 of
the Global Precipitation Climatology Project (GCPC; Adler
et al., 2003; provided by NOAA PSL, Boulder, Colorado,
USA, from their website https://psl.noaa.gov, last access:
1 August 2023). Additionally, we used North Pacific and
North Atlantic marine-only data between 10 and 60◦ N for
low- and total-cloud fraction from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) and liquid wa-
ter path (LWP) from the Multi-Sensor Advanced Climatol-
ogy of Liquid Water Path data set (available at the God-
dard Earth Sciences Data and Information Services Cen-
ter, https://disc.gsfc.nasa.gov, last access: 3 August 2023).
We assumed model–measurement comparison errors of 8 %,
2 %, 30 %, 20 %, 20 %, and 40 % respectively for these ob-
servations.

For the second (final) stage, we identified the model vari-
ant closest to the centre of the not-ruled-out parameter space
then iteratively identified 220 additional parameter combi-
nations with the greatest Euclidean distance from existing
points until we had a new and diverse set of 221 members
that spanned the uncertain parameter space retained from the
first stage. Thus, second-stage PPE members correspond to
a diverse set of parameter combinations from the not-ruled-
out-yet set of first-stage model variants. As in the first stage,
we created and validated (e.g. Fig. S1 in the Supplement) sta-
tistical emulators of global mean and regional mean variables
and used these emulators to extend the output from 221 sim-
ulations to 1 million model variants.

2.2 Measurements

We evaluated the potential of several types of observations
related to clouds and aerosol–cloud interactions in multiple
locations and at multiple times of the year to serve as global
mean 1Faer constraints, and we refer to them collectively as
“constraint” variables.

2.2.1 Regional mean cloud and radiative properties

We compared physical and radiative properties of clouds de-
rived from MODIS instruments (King et al., 2003) to model
outputs calculated using the Cloud Feedback Model Inter-
comparison MODIS satellite simulator (Bodas-Salcedo et
al., 2011; Saponaro et al., 2020) where available. This simu-
lator minimises errors in model comparisons to MODIS re-
trieval data by recreating as nearly as possible what the satel-
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lite would retrieve given model-simulated atmospheric con-
ditions.

We used MODIS retrievals of LWP, liquid cloud fraction
(fc), cloud optical depth (τc), and cloud droplet effective ra-
dius (re) at 1◦

× 1◦ resolution and used τc and re values to
calculate cloud droplet number concentration (Nd). We as-
sumed constant Nd throughout cloud layers, which is a good
approximation for stratocumulus clouds (Grosvenor and
Carslaw, 2020; Painemal and Zuidema, 2011), and compared
observed Nd to values calculated at model-simulated cloud
tops. Additionally, we used outgoing top-of-the-atmosphere
shortwave radiative flux (FSW) measurements (SYN1deg
Ed4A, obtained from the NASA Langley Research Center
CERES ordering tool at https://ceres.larc.nasa.gov/data/, last
access: 1 August 2023).

All satellite-derived measurements were degraded to
match the model resolution, then averaged over time and
space for each region. We then identified regions with high
cloud fraction across the year (Table S2). We evaluated con-
straint variables at the regional level since there are no clear
relationships between aerosol forcing and observations of
global mean values (Fig. S2). The chosen regions are dom-
inated by stratocumulus cloud, have relatively high multi-
model diversity in terms of cloud amount in CMIP6 models
(Vignesh et al., 2020), and are the most important regions for
understanding the role of aerosol–cloud interactions (Lang-
ton et al., 2021). We only used values corresponding to model
grid boxes with at least 50 % ocean coverage in our area-
weighted regional mean calculations.

These constraint variables are defined as monthly mean,
annual mean, or seasonal amplitude (difference between
maximum and minimum monthly mean values) within each
region. So, for each of our six observation types (FSW,
Nd, fc, LWP, τc, and re), we have 70 constraint variables
(12 months, annual mean, and seasonal amplitude, all over
five regions) for a total of 420 regional cloud and radiative
flux constraint variables.

2.2.2 Hemispheric difference in Nd

The contrast between marine Nd in the polluted Northern
Hemisphere and the relatively pristine Southern Hemisphere
(Hd) can act as a proxy for the difference in Nd between
the early-industrial and present-day atmospheres (McCoy et
al., 2020). We calculatedHd as the difference in hemispheric
mean marine Nd values using MODIS τc and re values and
evaluated 14 constraint variables calculated as annual and
monthly means and the seasonal amplitude.

2.2.3 Transects from stratocumulus- to
cumulus-dominated regions

Cloud physical and radiative properties are sensitive to
changes in aerosol concentrations in regions where stra-
tocumulus clouds transition into cumulus (Christensen et

al., 2020, 2022). We identified transects from stratocumulus
to cumulus cloud (Fig. S3, Table S3) and evaluated changes
in aerosol and cloud along these transects (July or November
for the Northern Hemisphere and the Southern Hemisphere
respectively) as constraint variables. We refer to these collec-
tively as transect variables. These transect variables include
changes in Nd, re, fc, LWP, and aerosol index (AI; the to-
tal MODIS aerosol optical depth at 550 nm multiplied by the
Ångström exponent) along the transects. Additionally, we in-
cluded ratios of Nd to AI, re to Nd, LWP to Nd, and fc to
Nd along each transect as constraint variables. All transect
variables were calculated as gradients of linear relationships
between the variable (or ratio of logarithms following Mc-
Comiskey et al., 2009) and distance (in metres).

Meteorological covariability (changes induced in both
variables by shared meteorological drivers) means that these
transect variables cannot be used to directly infer the strength
of the aerosol effect on clouds (Gryspeerdt et al., 2016), but
this is not what we do here. Rather, in order to constrain
1Faer, it is only required that the transect variables (cal-
culated identically from the observations and model) share
causes of uncertainty and parameter dependencies with un-
certain parameters in the model (see Sect. 2.3). In total, we
evaluated 36 transect variables calculated using four tran-
sects from stratocumulus- to cumulus-dominated regions.

2.3 Relative importance of parameters

One way to prioritise which observations to use for con-
straint is to quantify the overlap in causes of uncertainty
between 1Faer and model variables associated with the ob-
servations (e.g. Regayre et al., 2020). Variance-based sen-
sitivity analyses (Lee et al., 2012) can be used to robustly
quantify the percentage of variance caused by each param-
eter. However, the multi-stage design of the present PPE
(Sect. 2.1.2) potentially leaves gaps in the parameter space
that may limit the interpretability of variance-based meth-
ods. Therefore, we approximated the relative importance of
parameters as causes of uncertainty using Pearson partial cor-
relations (Kim, 2015). Partial correlations control for the ef-
fects of all other perturbed parameters on the variable of in-
terest in the calculation of correlations. A partial correlation
between a constraint variable and a parameter is the correla-
tion between the residuals from (a) linear regression of the
variable on the remaining 36 parameters and (b) linear re-
gression of the parameter on the remaining 36 parameters.
For each of the 37 model parameters, we defined the relative-
importance metric as the proportion of its partial correlation
with the variable to the total of the 37 partial correlations,
multiplied by the sign of the gradient of the linear regres-
sion of the variable on the parameter in question. We in-
cluded the sign of the gradient to define whether increasing
the parameter value increases or decreases the output vari-
able, which helps to develop a process-based understanding.
Relative-importance metrics are used in Sect. 3.2 to guide
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our choice of variables for model constraint and to inform
our understanding of how they relate to 1Faer. The metrics
were calculated using 1 million model variants (from emu-
lators) for 1Faer and its components 1Faci and 1Fari and
using the 221 PPE members for other variables.

2.4 Constraint process

2.4.1 Observationally plausible model variants

In our previous effort to constrain 1Faer, we calculated “im-
plausibility” metrics that quantify the implausibility of each
model variant for all observed values, accounting for emu-
lator uncertainty, observational uncertainty, interannual vari-
ability, and representation errors (Johnson et al., 2020; Re-
gayre et al., 2020). Implausibility metrics were calculated
for 1 million model variants across more than 9000 distinct
measurements, and we used these implausibility values to
rule out model variants as observationally implausible if they
did not compare well to the full set of observations. In prac-
tice, observations associated with relatively large uncertain-
ties had little to no impact on ruling out model variants. Us-
ing this approach, we constrained 1Faer and the parameter
space but could not readily isolate the role of individual con-
straint variables on the resulting 1Faer constraint and could
not quantify how the constraint improved model skill; we
could only quantify how it reduced the 1Faer uncertainty
range.

We did not include (largely unquantified) observational
errors in our constraint here because we compare satellite
data to model output from satellite simulators, which signifi-
cantly reduces the importance of this source of uncertainty in
observation-to-model comparisons. We also neglected the ef-
fects of representation errors (Schutgens et al., 2017) because
they are unquantified for the satellite-derived observations
used here. Instead, we restricted our model–measurement
comparisons to monthly mean values within stratocumulus-
dominated regions to reduce the magnitude of these er-
rors. Neglecting observational and representation errors risks
over-constraining the model. To avoid over-constraint, we re-
tained a proportion of model variants (at least 5000 or 0.5 %)
of the same order of magnitude as earlier constraint efforts
that used constraint variables with more readily quantifiable
sources of model–observation comparison uncertainty (John-
son et al., 2020; Regayre et al., 2020). In this way, our method
avoids over-constraining the model yet allows us to identify
potential model structural inconsistencies.

2.4.2 Model–observation differences

We calculated absolute differences between observed and
simulated values for each of the 1 million model variants and
for each of the 450 constraint variables. For each constraint
variable, we then normalised the 1 million absolute differ-
ence values and ranked model variants according to their nor-
malised absolute difference (NAD) values to identify which

model variants to rule out as least skilful. To further avoid
over-constraint, we set the NAD to zero where the uncer-
tainty in the emulators was large relative to the difference
between observed and emulated values. In this way, individ-
ual constraints are stronger for constraint variables where pa-
rameter perturbations clearly define the response surface of
the associated statistical emulators. For this step, we defined
the emulator uncertainty as the square root of the emulator
variance for that specific combination of model parameters.
Thus, for each constraint, we retained the larger of either
(a) all model variants with errors smaller than the emulator
uncertainty or (b) the 5000 model variants with the lowest
NAD. For combinations of constraint variables, we calcu-
lated the average NAD across all variables for each model
variant prior to ranking and rejecting model variants with the
highest average NAD across variables.

2.4.3 Identifying viable constraint variables

Constraint variables where the emulator uncertainty (aver-
age emulator standard deviation) was larger than the changes
in the emulated response surface (standard deviation of em-
ulated values) were considered to have low emulator skill
and thus were removed from our analysis. This was the case
for a small number of transect constraint variables and for
the seasonal amplitude of fc in the Southern Ocean. Ad-
ditionally, we removed transect measurements from the set
of constraint variables where the observed values were out-
side the 90 % credible interval of corresponding values in the
sample since such discrepancies are indicative of structural
model inadequacies and/or unaccounted for observational er-
rors (Figs. S4–S7). In total, we evaluated 1 million model
variants against the remaining 450 constraint variables.

2.4.4 Internally consistent constraint variables

We identify a subset of the 450 constraint variables that are
“pairwise consistent” with Nd in each region. We defined a
variable as being consistent with Nd when the constraint to
match Nd did not increase the mean NAD calculated across
the remaining model variants in the associated region and
vice versa. We used individual monthly mean Nd values
(September, October, December, and March and the annual
mean for the North Atlantic, North Pacific, South Atlantic,
South Pacific, and Southern oceans respectively) to identify
which constraint variables could be considered to be region-
ally pairwise consistent. These months were chosen based on
the degree of between-month Nd consistency in each region
(see Sect. 3.3.2 and Figs. S8–S11). We assumed constraint
variables that are consistent with Nd in these specific months
in these regions are also consistent with Nd (and other se-
lected constraint variables) in other regions. Our strategy
here is to rule out constraint variables that are clearly incon-
sistent rather than to ensure internal consistency between all
remaining constraint variables. Across all regions, 225 con-
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straint variables were identified as being pairwise consistent
with Nd.

2.4.5 An optimal set of constraint variables

An “optimal” set of constraint variables was identified (us-
ing our specified set of observations and ensemble of model
variants) by first identifying the individual constraint vari-
able (from the 225-memberNd-consistent set) with the great-
est impact on 1Faci uncertainty (our target model variable)
then progressively adding constraint variables that most im-
proved the overall constraint (quantified as a reduction in the
90 % credible interval). That is, we identified the most ef-
fective constraint variable, then quantified the constraint effi-
cacy of the remaining 224 variables in combination with the
first, and repeated this until 1Faci could not be constrained
further. To avoid confusing a local maximum constraint with
an optimal constraint, we continued to add constraint vari-
ables to the optimal set, progressively including constraint
variables that weakened the 1Faci constraint the least. At
each of the more than 20 000 steps in this process, we evalu-
ated the average NAD values for each of the 1 million model
variants for every possible additional constraint.

We tested how the order of introducing constraint vari-
ables affects the results since a stronger constraint may
be achieved using a different set of “optimal” constraint
variables. We could not feasibly calculate NAD values for
1 million model variants across all possible combinations of
225Nd-consistent constraint variables. Instead, we tested the
effect of starting with all 225 consistent constraint variables
and progressively removing one variable at a time. This is the
most distinct test of reordering the constraint variables. This
approach yielded a similar “optimal” constraint on 1Faer as
that achieved by progressively adding constraint variables
(see Sect. 3.3.2) and very similar constraints on marginal pa-
rameter distributions (see Sect. 3.3.3 and Figs. S12 and S13).
Additionally, we tested the impact of our choice to retain
5000 model variants at each step in the constraint process.
The number of model variants retained affects the number
of constraint variables needed to optimally constrain 1Faer,
but not in a consistent manner (Fig. S14 and Table S4), since
changing the efficacy of individual and combined constraint
variables affects the potential for additional observations to
further reduce the 1Faci uncertainty. However, the strength
of constraint and the bounds of constrained 1Faer (to one
decimal place) are insensitive to the number of model vari-
ants retained (Fig. S14 and Table S4).

3 Results

3.1 Sampling uncertainty in ∆Faer

Industrial-period 1Faer ranges from around −3.5 to
3.0 Wm−2 in our set of 1 million UKESM1-A model vari-
ants, with a 90 % credible interval of −1.8 to 0.9 Wm−2

Figure 2. Probability density functions for global, annual mean ef-
fective radiative forcings from 1850 to 2014. (a) 1Faer, (b) 1Faci,
and (c) 1Fari in the original 1-million-member sample and after
optimal constraint (see Sect. 3.3.2). Box plots show the 5th, 25th,
50th, 75th, and 95th percentiles. The 5th and 95th percentiles from
Bellouin et al. (2020) are also shown.

(Fig. 2). This unconstrained 90 % credible range (2.7 Wm−2)
is as wide as the credible range (2.8 Wm−2) based on an
in-depth review of evidence from models and observations
related to aerosol–cloud and aerosol–radiation interactions
(Bellouin et al., 2020) and therefore spans a wide spectrum
of model behaviour. The range includes positive 1Faer val-
ues that stem from positive forcing contributions from 1Faci
and 1Fari (Fig. S15), which the Bellouin review discounts
(Bellouin et al., 2020). These positive1Faci and1Fari values
arise from individually plausible parameter values that pro-
duce seemingly implausible model outputs when combined.
As shown below, the associated model variants are amongst
those ruled out as observationally implausible after optimal
constraint (Sect. 2.4.5).

3.2 Shared causes of uncertainty and the potential for
observational constraint

Our aim is to constrain 1Faer as tightly as possible using
a set of observations that constrain all processes and asso-
ciated model parameters that cause 1Faer uncertainty. Fig-
ure 3 shows that global mean 1Faer is sensitive to around
10 model parameters (see Sect. 2.3 and Table S1). Here, we
prioritise the constraint of global mean 1Faer because it is
the quantity most commonly used to inform policy decisions
(Forster et al., 2023). We are particularly motivated to con-
strain processes that cause uncertainty in 1Faci since it is
the larger and more uncertain component of 1Faer (Fig. 2),
and the 1Fari component can be more readily constrained
using available aerosol observations (Johnson et al., 2020;
Watson-Parris et al., 2020). Thus, we seek model variables
that share causes of uncertainty with global mean 1Faer and
1Faci. Sharing causes of uncertainty (or parameter sensitiv-
ity) with 1Faer is a necessary, but not sufficient, condition
for constraint (Lee et al., 2016). Model variables and 1Faer
must also share parameter dependencies (responses to high-
dimensional parameter combinations). It is highly unlikely
that any one model variable will share exactly the same set
of dependencies on uncertain model parameters with 1Faer
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Figure 3. Relative importance of model parameters as causes of
uncertainty in global mean 1Faer and its components 1Faci and
1Fari. Only parameters with a relative importance of 5 % or larger
are shown. Positive values correspond to parameters where increas-
ing the parameter value causes median values of 1Faer, 1Faci, or
1Fari to become weaker (less negative) across the set of 1 million
model variants.

and 1Faci (Lee et al., 2016; Regayre et al., 2020). Thus, to
constrain model uncertainty, we anticipate needing multiple
observations that share at least some causes of uncertainty
and parameter dependencies with 1Faer and 1Faci.

To find a set of useful constraint variables (i.e. a set that
collectively shares causes of uncertainty and parameter de-
pendencies with 1Faer), we evaluate a diverse set of con-
straint variables. Causes of uncertainty and the dependence
of forcing on these causes are likely to vary regionally and
seasonally (Regayre et al., 2015), so observations of the
same type over multiple regions and months may all in-
form the constraint but with some redundancy where sen-
sitivities and dependencies are similar. In total, we have
more than 450 constraint variables (see Sect. 2.2) spanning
monthly mean, annual mean, and seasonal amplitudes for
the global mean Hd and six observation types (FSW, Nd,
fc, LWP, τc, and re) across five stratocumulus-dominated re-
gions (state variables) along with nine constraint variables
for changes in aerosol and cloud properties and their rela-
tionships, each along four transects from stratocumulus- to
cumulus-dominated regions (transect variables).

First, we evaluate the causes of uncertainty in1Faer and its
components (Fig. 3). There is substantial overlap between the
parametric causes of uncertainty in 1Faer and 1Faci, with
the parameter that controls the diameter of newly formed ac-
cumulation mode sulfate particles (prim_so4_diam) causing
the largest amount of uncertainty. Increasing the value of this
parameter increases the diameter of newly emitted sulfate
particles and thus decreases the number of particles emit-
ted (for fixed emission mass flux), which makes 1Faci more
negative (stronger) on average since larger particles are more

likely to act as cloud condensation nuclei. Any constraint that
rules out the most positive 1Faci values will likely constrain
newly formed sulfate particles towards higher diameters.

Other key causes of1Faer uncertainty include the parame-
ters controlling sub-grid updraft velocities (sig_w), emission
fluxes of sea spray aerosol (sea_spray) and dimethyl sulfide
(dms), the dry deposition removal rate of accumulation mode
aerosol (dry_dep_acc), and the refractive index controlling
carbonaceous aerosol radiative properties (bc_ri). The phys-
ical atmosphere parameter controlling cloud top entrainment
(a_ent_1_rp) affects 1Faci uncertainty, and the parameter
controlling sub-grid cloud heterogeneity (two_d_fsd_factor)
affects1Fari. However, in contrast with previous PPE analy-
ses of this kind (Regayre et al., 2018; Yoshioka et al., 2019),
no physical atmosphere parameters feed through to causes of
global mean 1Faer, likely due to model structural develop-
ments related to clouds and radiation (Walters et al., 2019;
Williams et al., 2018).

We understand how the key causes of uncertainty affect
1Faci in the model. Increasing the value of the updraft pa-
rameter increases Nd, particularly in the present-day atmo-
sphere with relatively high cloud condensation nuclei con-
centrations, where droplet activation is limited by vertical
velocity. Thus, increasing the value of the updraft parameter
makes median 1Faci more negative (stronger) by increasing
cloud albedo, particularly in the relatively polluted present-
day atmosphere. The influence of natural emission flux pa-
rameters on 1Faci uncertainty is well established (Carslaw
et al., 2013). Increasing sea spray or dimethyl sulfide emis-
sion fluxes makes global mean 1Faci less negative (weaker)
on average by increasing the background aerosol concen-
tration and thus reducing the sensitivity of cloud albedo
to anthropogenic aerosol. The removal rate of accumula-
tion mode aerosol similarly affects background aerosol con-
centrations. These three parameters also influence present-
dayNd in relatively low anthropogenic aerosol environments
such as the Southern Ocean (Hamilton et al., 2014), so they
can be collectively constrained using appropriate observa-
tions (Regayre et al., 2020). However, compensating errors
in aerosol emission fluxes and removal rates moderate our
ability to constrain these parameters individually (Regayre et
al., 2020).

The constraint variable that shares most causes of uncer-
tainty with 1Faer and 1Faci is Hd, the hemispheric differ-
ence in marineNd. The key parameters that cause uncertainty
in 1Faci (related to vertical velocities and sea spray emis-
sions) also cause most of the uncertainty in Hd in all months
(Figs. 3 and S16). This suggests that we may extract much of
the potential constraint from this type of observation using
a single representative month (with dependencies on key pa-
rameters most closely aligned to 1Faci parameter dependen-
cies). Other important parameters (newly formed sulfate di-
ameters, DMS emissions, and dry deposition velocities) also
cause Hd uncertainty in some months. Seasonal differences
in causes of Hd uncertainty can be traced to regional causes
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of Nd uncertainty (not shown), so based on shared causes of
uncertainty, both Hd and regional Nd observations have po-
tential to constrain 1Faci.

Several other observable state variables share key causes
of uncertainty with 1Faci (Figs. S17–S22). Vertical veloc-
ities cause uncertainty in re and τc (around 20 % to 30 %),
as do dry deposition velocities and, to a lesser extent, newly
formed sulfate diameters (around 5 % to 10 %). Some tran-
sect variables also share causes of uncertainty with 1Faci
(Figs. S23–26). For example, along the North Atlantic tran-
sect, the diameter of newly formed sulfate particles causes
up to 50 % of the uncertainty in many transect variables, in-
cluding variables associated with the cloud albedo response
(gradient of the relationship between re and Nd for given
LWP) and cloud adjustments (LWP and fc vs. Nd). Verti-
cal velocities cause up to 35 % of the uncertainty in these
cloud-related variables in the South Atlantic, whilst dry de-
position causes up to 30 % in the South Pacific. These re-
gionally distinct causes of uncertainty suggest that obser-
vations from transects in several regions may constrain the
model when combined, even if each transect variable con-
strains just one source of parametric uncertainty. Addition-
ally, the radiative properties of carbonaceous aerosol (an im-
portant cause of1Fari uncertainty) causes around 20 % of the
uncertainty in several variables along transects in the North
Pacific. Thus, North Pacific transect variables have potential
to constrain a process related to 1Faer through 1Fari that is
otherwise unconstrained by our set of satellite-derived obser-
vations. In contrast with model constraint efforts designed to
improve model skill more generally (Sexton et al., 2012), our
evaluation of shared causes of uncertainty provides process-
based insight into the nature of any 1Faer constraint we may
achieve.

Not all state variables share causes of uncertainty with
global mean1Faer and1Faci. Outgoing radiative flux (FSW)
shares a few causes of uncertainty with 1Faci but is largely
controlled by physical atmosphere parameters (in agreement
with Regayre et al., 2018). Similarly, global mean fc and
LWP share only a few minor causes of uncertainty with
1Faci, with values for these variables being predominantly
controlled by physical atmosphere parameters and uncertain-
ties in the autoconversion scheme (that converts cloud drops
to rain drops). Yet at the regional level (not shown), key pa-
rameters like the updraft parameter contribute between 5 %
to 10 % of the fc and LWP uncertainty in most months,
so fc and LWP observations may still influence the 1Faci
constraint. Thus, although some observation types have far
greater potential for 1Faci constraint than others (based on
shared causes of uncertainty), we do not exclude any from
our constraint process at this stage. The overlap in causes of
uncertainty across constraint variables suggests that, in prac-
tice, we may only need a subset to constrain 1Faer, and oth-
ers will be effectively redundant.

3.3 Observational constraint

3.3.1 Detection of potential structural model
inadequacies

Our goal is to constrain parametric uncertainty in1Faci, ide-
ally using all of the available observations but in practice us-
ing a subset of observations for which the model–observation
comparison is not affected by structural model inadequacies.
We use two key indicators to identify potential structural
model inadequacies. Firstly, some observations lie outside
the range of the 1 million model variants or are amongst the
most extreme values. This indicates a discrepancy between
the model and the observations that adjustments to model
parameters cannot overcome (even by adjusting multiple pa-
rameter values simultaneously). That is, the discrepancy is
more likely caused by a structural model deficiency than by
parametric uncertainty. In practice, the discrepancy between
model values and observations may be caused by very large,
unquantified observational uncertainties or their lack of spa-
tiotemporal representativeness (Schutgens et al., 2017). In
such cases, either the model is incorrect due to some struc-
tural error or the observation is unreliable. Variables associ-
ated with this type of indicator are not useful for model con-
straint. Secondly, constraint of the model using observations
related to some constraint variables can degrade model skill
in terms of simulating other variables (Johnson et al., 2020;
McNeall et al., 2016; Sengupta et al., 2021). In such cases,
the model can be constrained towards one set of constraint
variables or another, but not both simultaneously without
systematically weakening the constraint. This suggests struc-
tural inadequacies prevent the model from consistently rep-
resenting all processes associated with these constraint vari-
ables.

We begin by analysing potential structural errors in just
one stratocumulus-dominated region. Figure 4 shows the sea-
sonal cycles of cloud physical and radiative properties in the
North Atlantic (for other regions, see Figs. S27–S30). The
distribution of the 1 million model FSW values is centred on
observed values, which is expected since extensive evalua-
tions of FSW across multiple model configurations feed into
the model development process. Similarly, the distribution of
fc values is centred on the observations, with the exception of
the April observation. This suggests that the fc observation
for April may be corrupted or affected by some atypical event
the model did not simulate, so it should probably not inform
our constraint. Model variants generally overestimate Nd, al-
thoughNd observations are well within the model’s paramet-
ric uncertainty range. For LWP, τc, and to a lesser extent re,
observed values are near the edge of the model parametric
uncertainty range or outside the range by a small margin. We
have accounted for a very wide range of parameter uncer-
tainties but cannot adequately reproduce observed LWP and
τc values in this region (more extreme in other regions and
for some transect variables; Figs. S4–S7 and S27–30), which
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suggests that the model bias is caused by some structural de-
ficiency. We cannot rule out satellite retrieval biases as an
explanation for the model–observation bias with this first
type of indicator, but the distinction between model struc-
tural error and observation error is not important in terms of
model constraint. We therefore refer to such biases as poten-
tial structural inadequacies and remove the associated con-
straint variables from our process. Figure 4 exemplifies how
we can compare observations to a broad range of model out-
puts to identify potential structural inadequacies where only
extreme model behaviour aligns with observations.

We identified instances of the second indicator of potential
structural inadequacy (associated with inconsistent model
process representations) by evaluating how the constraint of
each model variable affects all other variables. We call this
“pairwise” comparison. Figure 4 shows two contrasting sets
of pairwise comparisons, highlighting both consistency and
inconsistency. We constrained the model to match the mean
Nd observation for November in the North Atlantic and, sep-
arately, to match November LWP observations in this region.
November was chosen to exemplify the effect of the second
indicator of potential structural inadequacy because the para-
metric uncertainty in Nd and LWP peaks in this month. In
each case, we ruled out model variants with relatively large
model–observation differences (quantified using NADs) as
observationally implausible and retained the subset of model
variants with values closest to observations (Sect. 2.4.5). In-
dividual constraint variables have a large effect on the uncer-
tainty of the same observation type in other months because
they share common causes of uncertainty in the model. For
example, the constraint to NovemberNd consistently reduces
Nd uncertainty in all other months and brings the remaining
model variants into close agreement with measured Nd val-
ues. This set of model variants also closely matches FSW and
fc observations, with the exception of April fc, which we
have already identified as problematic.

These pairwise comparisons suggest that representations
of Nd, FSW, and fc are internally consistent in the model,
and we may only need a subset of these constraint vari-
ables to reduce uncertainty in 1Faer. However, the set of
Nd-constrained model variants does not span the LWP, τc,
or re observations in most months, suggesting that model Nd
is inconsistent with LWP, τc, and re over the North Atlantic.
In the other constraint shown in Fig. 4, the model variants
that are consistent with November LWP in the North At-
lantic do not span FSW, fc, or re observations. Retrievals
of cloud properties are consistent by design due to depen-
dencies in their calculation. That is, multiple retrieved cloud
properties from the same instrument share causes of observa-
tion bias. Thus, our results suggest structural deficiencies in
the model related to internal inconsistencies in the represen-
tations of physical and radiative cloud properties, which may
be caused by the use of a single-moment cloud microphysics
scheme in UKESM1. For example, in a single-moment mi-
crophysics scheme where Nd is not prognosed, removal of

cloud water in precipitation (affecting LWP and τc) does not
act consistently on Nd, which is prescribed by aerosol ac-
tivation at the cloud base. Using a double-moment micro-
physics scheme, such as the Cloud–AeroSol Interacting Mi-
crophysics (CASIM) scheme (e.g. Grosvenor and Carslaw,
2020; Grosvenor et al., 2017; Hill et al., 2015; Shipway and
Hill, 2012; Gordon et al., 2018), that simulates cloud water
(droplet mass) and droplet number in a more realistic way
could eliminate these internal model inconsistencies. How-
ever, in our ensemble, these inconsistencies may prevent us
from using all available data for the constraint of 1Faci.

To reveal the full extent of internal model consistencies
and inconsistencies, we extended the analysis in Fig. 4 to
all pairwise comparisons of the 88 North Atlantic constraint
variables and the 14 Hd constraint variables (Fig. 5; other re-
gions are shown in Figs. S8–S11). The calculation of each of
these pairwise effects across the full parameter space requires
1 million model-to-observation comparisons for each vari-
able that is constrained and another 1 million for each vari-
able being compared. Two constraint variables are judged to
be pairwise consistent if constraint to one variable improves
the model–observation comparison for the other variable and
vice versa. We quantify the impact on model–observation
comparison as the percentage change in the average NAD
when moving from the unconstrained set of 1 million model
variants to the set of model variants retained by the con-
straint (Sect. 2.4.2). For each pairwise comparison, the green
shading in Fig. 5 indicates that observational constraint of
the variable on the y axis improves the model–observation
agreement (reduces average NAD) for the variable on the
x axis. The pink shading indicates that the average NAD in-
creases, which suggests that the two variables are inconsis-
tent – that is, the set of model variants that best match the
variable on the y axis is, on average, further from observa-
tions related to the variable on the x axis than in the orig-
inal (unconstrained) set. For example, model skill in terms
of simulating April fc declines after constraint of any other
variable, even fc in most other months (vertical pink stripe).
This supports our hypothesis that an observational error is
the cause of the April fc discrepancy and rules out the use
of this constraint variable. These pairwise comparisons of
constraint effects reveal inconsistencies between the model
variables LWP, τc, and re and other variables related to cloud
properties (FSW, Nd, and fc) in the North Atlantic (top-right
quadrant and bottom-right panel of Fig. 5) and other regions
(Figs. S8–S11). The degree of cross-variable consistency is
not dependent on emulator skill (Fig. S1). We have identified
two distinct sets of model variants that can be constrained
independently but not in a consistent manner.

3.3.2 Optimal constraint of aerosol forcing

The pairwise comparisons in Fig. 5 show that it is not appro-
priate to use all observed variables to constrain the model
because, due to potential structural model inconsistencies,
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Figure 4. Seasonal cycles of North Atlantic mean radiative fluxes and cloud properties before and after observational constraint using a
single month of observations. Model output for individual months spanning December 2016 to November 2017 are followed by the annual
mean. Credible intervals for the full set of model variants are shown (grey shading) along with satellite-derived observations and the default
UKESM1-A model values. Each panel also shows the range (shading) of values from the November Nd constraint (green) and the November
LWP constraint (pink). The blue data points show the observed variable and month used for the constraint.

different variables are consistent with different combinations
of model parameters. The set of variants that simultaneously
encompasses as many observed variables as possible is es-
sentially the full initial set of 1 million. However, a smaller
set of variants could be identified that agrees with those
observed variables that are represented consistently in the
model. This is an approach taken either deliberately or in-
advertently in model tuning, in which some variables are de-
prioritised or neglected altogether. For example, FSW is al-
most always treated as a high-priority target when tuning cli-
mate models because of its importance for energy balance,
while Nd is more commonly treated as an adjustment term to
achieve greater agreement with target values, and many other
cloud variables are often neglected completely (e.g. Hourdin
et al., 2017). Model-tuning approaches attempt to minimise
the effect of biases in a well-configured model version rather
than seeking to identify structural systematic biases across
a large number of model variants, as we do here. There is
no agreed best practice for identifying which combinations
of model variables are structurally consistent. To explore the
potential for constraint of 1Faci, we take the approach of
constraining to the most consistent set of observed variables
across our selected regions, then add more variables to un-
derstand the effect of accounting for inconsistencies.

We first identify constraint variables that are pairwise con-
sistent with Nd at the regional level (see Sect. 2.4.4). We
chose the 225 constraint variables that are Nd-pairwise con-
sistent because Nd is one of the most uncertain variables we

evaluate here (Fig. 4), and Nd is a common adjustment vari-
able for1Faer constraint (Hourdin et al., 2017) due to its sen-
sitivity to aerosol and its importance for 1Faci. In practice,
we could use other constraint variables to define an inter-
nally consistent set (top-left corner of Fig. 5). We evaluate the
25 200 combinations of these 225 constraint variables to re-
veal structural inconsistencies (Sect. 2.4.4). First, we identify
the constraint variable with the greatest individual effect on
reducing 1Faci uncertainty, then we progressively add con-
straint variables that are consistent with the existing set of
variables (and Nd at the regional level) and contribute most
to the 1Faci constraint. Figure 6 shows the effect of progres-
sively adding constraint variables in this way (orange points).

The hemispheric contrast in Nd (Hd) in the Northern
Hemisphere’s summer (August) provides the strongest in-
dividual constraint on 1Faci. The constraint towards lower
values of Hd in August reduces the credible 1Faci uncer-
tainty range in the unconstrained set of model variants by
around 44 %. August Hd shares causes of uncertainty with
1Faci and with Hd in all other months, but the nature of
the relationships between the associated parameters (param-
eter dependencies) may be more clearly defined in August,
since in most other months Hd is sensitive to additional pa-
rameters (Fig. S16). In combination with August Hd, ad-
ditional constraint comes from next including South Pa-
cific Nd in September (dependencies on natural emission
flux parameters and dry deposition velocity) followed by
March Hd (carbonaceous aerosol properties). Further con-
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Figure 5. Pairwise comparisons of North Atlantic constraint variables (and hemispheric difference, Hd) showing how constraint of one
variable affects all others. The y-axis labels refer to variables used to constrain the model output, and the x-axis labels refer to variables whose
values have been consequently constrained. For each state variable, the pixels in the first row and/or column are the seasonal amplitude,
followed by individual months from January to December and the annual mean. Transect variables are within the section labelled “T”.
Shading indicates the percentage change in average NAD after constraint. In the bottom-right panel, we exemplify the effect of constraint on
average NAD in two pixels (∗) in terms of probability density functions of July FSW in the unconstrained set of model variants (black), in the
set constrained to match July Nd observations (green), and in the set constrained to match July LWP (pink). Vertical dashed lines represent
the observed FSW value and median values in the unconstrained and constrained sets of model variants.

straint comes from North Pacific fc in August (updraft ve-
locity, autoconversion, and physical atmosphere parameters)
and changes in LWP along the North Pacific transect (car-
bonaceous aerosol radiative properties, autoconversion, and
physical atmosphere parameters). Southern Ocean Nd in De-
cember (natural emission fluxes and dry deposition veloci-
ties) and changes in LWP and Nd along the North Atlantic
transect (updraft velocity and primary sulfate diameter) ad-
ditionally constrain 1Faci.

We only need to include 7 additional constraint variables
in combination with the constraints identified above (13 in
total) to optimally constrain 1Faci (i.e. greatest reduction in
the 1Faci 90 % credible interval, red point in Fig. 6). We
define the optimal constraint to be the greatest reduction in
1Faci achievable using our specified set of observations and
structurally imperfect model. This optimal set of constraint
variables spans the observation types, regions, and seasons
and provides information about the key uncertain parame-
ters associated with these observations (and1Faci dependen-
cies on key model parameters). The optimally constrained set
of model variants reduces 1Faci uncertainty by nearly 70 %
(90 % credible interval of −0.9 to −0.1 Wm−2) and 1Faer
uncertainty by more than 50 % (−1.3 to −0.1 Wm−2; Fig. 2).

This constrained 1Faer range is narrower than previous best
estimates (Bellouin et al., 2020) and purely process-based
constraints (Regayre et al., 2018, 2020; Johnson et al., 2020)
even though the 1Fari component of forcing is effectively
unconstrained here. Additionally, the optimally constrained
lower negative bound is now in close agreement with energy
balance constraints (Table 1).

When applied in combination with the set of the 13 op-
timal constraint variables, any additional variables weaken
the constraint (Fig. 6). This is because the additional vari-
ables are either redundant (no additional benefit in reduc-
ing 1Faci uncertainty range because key parameter depen-
dencies are already constrained), inconsistent with those al-
ready used (expand the parameter space and widen the un-
certainty range), or some combination of these. We retain
at least 5000 model variants for each combined constraint
(Sect. 2.4.1), so the result of adding further observations can
force a compromise in the sense that the existing constraints
of 1Faci dependencies on key parameters need to be relaxed
to accommodate conflicting information introduced by in-
consistent variables. We hypothesise that the nature of this
conflicting information could be revealed by exploring spa-
tially and/or temporally coherent patterns of pairwise incon-
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Table 1. The 90 % credible intervals for 1Faer, 1Faci, and 1Fari from the original 1 million model variants and after constraint using
process-based and energy balance methods. We also include plausible bounds (90 % credible interval) from energy balance constraints.

1Faer (Wm−2) 1Faci (Wm−2) 1Fari (Wm−2)

Unconstrained −1.5 to 1.0 −0.6 to 0.3
All constraint variables (450) −1.5 to 0.2 −1.2 to 0.2 −0.6 to 0.2
Nd-pairwise consistent constraint variables (225) −1.4 to 0.0 −1.1 to 0.1 −0.6 to 0.3
Optimal set of constraint variables (13) −1.3 to −0.1 −0.9 to −0.1 −0.6 to 0.3
Smith et al. (2021); 1750 to 2019 −1.5 to −0.4 −1.2 to −0.1 −0.6 to −0.1
Albright et al. (2021) −1.3 to −0.5 −0.9 to −0.2 −1.0 to 0.0

Figure 6. Constraint of 1Faci and the effect of varying the num-
ber of constraint variables used. We show the effect of progres-
sively adding constraint variables with the greatest influence on
1Faci uncertainty (orange) alongside synthetic examples of how
the constraint might improve with very few or no structural model
inadequacies (purple and blue respectively). In each case, only the
first 125 of 225 Nd-pairwise consistent constraint variables are
shown. Arrows indicate the constraint of 1Faci using the single
strongest constraint variable (44 %), all 225 Nd-pairwise consistent
constraint variables (52 %), and all 450 constraint variables (37 %),
including those associated with identified structural inadequacies at
the regional level (e.g. Figs. 4 and 5).

sistency. Practically, this compromise means that some of the
model variants with low NAD values are no longer retained.
Instead, these model variants are replaced with other variants
that have tolerable (not low) NAD values for the existing set
of constraint variables and tolerable NAD values in relation
to the new variable. Thus, the constraint is no longer optimal
(for our model and these observations). Including all 225 ob-
servations of Nd-pairwise consistent constraint variables re-
duces the 1Faci uncertainty by just over 50 %, and adding
observations of inconsistent variables to the constraint re-
duces the uncertainty by less than 40 %. We expected a de-
cline in constraint efficacy (levelling off when progressively
adding constraint variables; Fig. 6) once hidden structural in-

consistencies started to mitigate the benefits of including ad-
ditional constraint variables. However, we did not anticipate
that the optimal constraint would include so few constraint
variables. These results suggest that, across 1 million vari-
ants, the model is structurally incapable of matching more
than a handful of our chosen observations simultaneously
(Fig. 6 and Table S4).

3.3.3 Constraint of uncertain model parameters

Our approach consistently constrains the values of model pa-
rameters (Figs. S12 and S13). Most parameters that cause
1Faci uncertainty (Fig. 3) are constrained, as are numerous
other parameters that cause uncertainty in variables associ-
ated with our set of optimal observations that are not shared
with1Faci. We entirely rule out some values as observation-
ally implausible for parameters related to vertical velocity
and newly formed sulfate particle diameters. Vertical veloc-
ities are constrained towards lower values, which are con-
sistent with lower Nd concentrations in the relatively pol-
luted Northern Hemisphere, a lower hemispheric contrast in
Nd, and weaker (less negative) median 1Faci. Conversely,
newly formed sulfate particle diameters are constrained to-
wards higher values, consistent with higher concentrations
of cloud active aerosol concentrations and stronger (more
negative) median 1Faci. Low sulfate emission diameters
likely contributed to the spurious positive 1Faci values in
Fig. 2. Dry deposition removal rates are also constrained
towards higher values. This constraint reduces background
aerosol concentration (consistent with lower Nd) and causes
stronger (more negative) median 1Faci (increased sensitiv-
ity to anthropogenic aerosol). These key parameters are con-
strained concurrently, so they have the effect of ruling out
the strongest and weakest 1Faci (and 1Faer) values in our
original set of model variants.

There is little evidence to support altering the current
model representations of natural emission fluxes. Two key
causes of 1Faci uncertainty, the emission fluxes of sea spray
aerosol and DMS, are constrained towards central values.
However, the constraints on these parameters are relatively
modest given their importance as causes of uncertainty. Ad-
ditional constraint using in situ observations in relatively un-
polluted regions (Hamilton et al., 2014; Schmale et al., 2019)
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could further constrain these parameters and the 1Faci un-
certainty (Regayre et al., 2020). Also, additional 1Faer con-
straint could be achieved using in situ observations that target
processes related to the 1Fari component of 1Faer (John-
son et al., 2020; Watson-Parris et al., 2020), which is ef-
fectively unconstrained by the satellite-derived observations
used here.

4 Discussion

We illustrate some of the benefits of a climate model eval-
uation that accounts for parametric uncertainty. In addition
to constraining the lower bound on 1Faer to −1.3 Wm−2, a
value in close agreement with energy balance constraints, we
have shown how this type of model evaluation can reveal po-
tential structural model inadequacies. In our case, prioritising
structural improvements to address model inconsistencies re-
lated to the representations of cloud variables would increase
the number and type of observations that could be used to
further reduce 1Faci and 1Faer uncertainty in the model.

Structural inconsistencies weaken model observational
constraint because, to achieve tolerable agreement with more
variables than in the optimal set, the inconsistencies demand
a compromise in the tightness of constraint achieved (Fig. 7).
In UKESM1-A, the set of optimal constraint variables is sur-
prisingly small, containing only around 3 % of the constraint
variables we explored. At present, the remaining 97 % of
variables weaken the constraint. If we could make these vari-
ables consistent with other model variables already used for
constraint, for example by altering the structure of the model,
then they would instead potentially strengthen the constraint
by further defining parameter relationships that were not con-
strained by the 3 %. The hypothetical lines in Fig. 6 (pur-
ple and blue) describe what might be achieved if some or
all of the structural model inadequacies were identified and
improved – moving the peak to the right (more constraint
variables used consistently in a structurally different model)
and raising the peak (tighter parametric constraint of 1Faci
and 1Faer). The values used to create these lines are cho-
sen to exemplify our point and do not correspond to actual
constraints of the model. Ultimately, in a model without any
structural inadequacies, the constraint versus number of vari-
ables would be an asymptote – additional variables would
further constrain parameter relationships that were already
partially constrained. The magnitude of constraint at this hy-
pothetical asymptote is currently unknown. It will be de-
termined in part by the effects of observational uncertainty
and model–observation representation errors (Schutgens et
al., 2017). Thus, we consider our optimal constraint to be
the minimum level of process-based constraint that we might
achieve with this set of observations if we could eliminate
structural model inadequacies.

We suggest that modelling groups may benefit from re-
placing existing model-tuning strategies with a new approach

Figure 7. Schematic of how the addition of constraint variables
affects the constrained parameter space. This is a 2-dimensional
schematic of what is here a 37-dimensional problem. Initially,
adding constraint variables leads to a reduction in the amount of
parameter space that corresponds to a relatively good match to the
observations (rising branch of Fig. 6). Each new variable constrains
the parameter space more than the previous set. An optimum con-
straint is reached (grey-shaded region; peak in Fig. 6). Beyond this
point, each new constraint variable is no longer consistent with the
existing set already used because the model has structural deficien-
cies. Thus the parameter space must be expanded (and the 1Faer
constraint weakened) to accommodate these inconsistencies.

to model evaluation and development that accounts for para-
metric uncertainty and strategically identifies the causes of
model inconsistencies as well as ways of overcoming their
effects. In practice, the magnitude and distribution of ob-
servationally constrained 1Faer values in a structurally im-
proved model may differ from the original model values
(even with an identical set of parameter combinations). Thus,
coherent progress in improving model skill in terms simulat-
ing aerosol–cloud interactions may require several cycles of
uncertainty quantification, constraint, structural error iden-
tification, and model development. Open-source tools and
code can help simplify some aspects of model evaluation
within an uncertainty framework (Watson-Parris et al., 2021)
and thus streamline some aspects of this cycle.

Identifying optimal replacements for inconsistent process
representations will require additional insight into the causes
of uncertainty within and across climate models, although
the knowledge of inconsistencies between variables pro-
vided by our approach will provide a strong steer. This
valuable insight could be achieved by extending model in-
tercomparisons, such as the 6th Coupled Model Intercom-
parison Project (CMIP6; Eyring et al., 2016), to include
a cross-model perturbed parameter component. Constraint
of perturbed parameter uncertainty across multiple models
will help close the gap between constrained model values
of aerosol forcing and the real-world value. The breadth
of model behaviour sampled in enhanced intercomparisons
would help to identify optimal combinations of process rep-
resentations and parameter values that minimise important
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shared biases in climate models. Additionally, data from such
ensembles would be invaluable for training relatively simple
climate models (Albright et al., 2021; Smith et al., 2021) and
would contribute to efforts to identify robust emergent con-
straints (Carslaw et al., 2018). Experiments that sample para-
metric uncertainty and structural model differences could
help deliver a step change in model skill in terms of making
climate projections beyond the advances we have achieved
here using a single climate model.
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