

Supplement of

Identifying climate model structural inconsistencies allows for tight constraint of aerosol radiative forcing

Leighton A. Regayre et al.

Correspondence to: Leighton A. Regayre (l.a.regayre@leeds.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

This PDF file includes:

Figures S1 to S30 Tables S1 to S4

Fig. S1. Emulator skill for North Atlantic constraint variables and H_d , and cross-variable effects on average July F_{SW} NAD, which correspond to the shading in Fig. 5 of the main article (where F_{SW} is the constrained constraint variable in the subfigure). Emulator skill is quantified as the ratio of the standard deviation in emulator output across our 1 million model variants, to the mean emulator standard deviation corresponding to each variant (parameter combination). Emulator skill larger than 1 suggests emulated values accurately represent model output.

Fig. S2: Density plots of global, annual mean output from 221 PPE members for ΔF_{aer} , ΔF_{aci} , ΔF_{ari} , and global mean F_{SW} , LWP, N_d , f_c , τ_c and r_e . Diagonal panels show probability density functions for individual variables.

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Fig. S3: Transects from stratocumulus to cumulus cloud dominated regions in a) July and b) November, superimposed on MODIS liquid cloud fraction values for the corresponding month.

Fig. S4: Probability density functions of North Atlantic transect constraint variables.

Gradient Fig. S5: Probability density functions of North Pacific transect constraint variables.

Fig. S6: Probability density functions of South Atlantic transect constraint variables.

Fig. S7: Probability density functions of South Pacific transect constraint variables.

Fig. S8: Pairwise comparisons of North Pacific and H_d constraint variables. Figure features are identical with Fig. 5.

Fig. S9: Pairwise comparisons of South Atlantic and H_d constraint variables. Figure features are identical with Fig. 5.

Fig. S10: Pairwise comparisons of South Pacific and H_d constraint variables. Figure features are identical with Fig. 5.

Fig. S11: Pairwise comparisons of Southern Ocean and H_d constraint variables. Figure features are identical with Fig. 5.

Fig. S12: Probability density functions of model parameters after constraint using our optimal set of constraint variables. In the original sample of 1 million model variants, these pdfs would be uniformly distributed on this scale. Non-shaded sections indicate a proportion of model variants with corresponding parameter values have been ruled out as implausible.

Fig. S13: Probability density functions of model parameters after constraint using our optimal set of constraint variables. Features are identical to SI Fig. S12.

Fig. S14: Constraint of ΔF_{aci} and the effect of varying the number of constraint variables used and the number of model variants retained (percentage of original 1 million) at each stage of the constraint (legend). The constraints achieved by retaining 5000 model variants at each stage is identical to the constraints shown in Fig. 6.

Fig. S15: Median and standard deviations of annual mean ΔF_{aer} , ΔF_{aci} and ΔF_{ari} , across the 221 PPE members. Values were calculated in each model grid box independently.

Fig. S16: Relative importance of model parameters as causes of uncertainty in H_d . Relative importance metrics are calculated for each month (December 2016 to November 2017), for the annual mean (Ann) and the seasonal amplitude (Amp). Relative importance metrics lower than 4% are not shown.

Fig. S17: Relative importance of model parameters as causes of uncertainty in global mean $N_{\rm d}$. Figure features are identical to SI Fig. S16.

Fig. S18: Relative importance of model parameters as causes of uncertainty in global mean F_{SW} . Figure features are identical to SI Fig. S16.

Fig. S19: Relative importance of model parameters as causes of uncertainty in global mean f_c . Figure features are identical to SI Fig. S16.

Global mean LWP

Fig. S20: Relative importance of model parameters as causes of uncertainty in global mean LWP. Figure features are identical to SI Fig. S16.

Global mean τ_c

Fig. S21: Relative importance of model parameters as causes of uncertainty in global mean τ_c . Figure features are identical to SI Fig. S16.

Global mean r_e

Fig. S22: Relative importance of model parameters as causes of uncertainty in global mean r_e . Figure features are identical to SI Fig. S16.

North Atlantic transect

Fig. S23: Relative importance of model parameters as causes of uncertainty in North Atlantic transect constraint variables. Figure features are identical to SI Fig. S16.

North Pacific transect

Fig. S24: Relative importance of model parameters as causes of uncertainty in North Pacific transect constraint variables. Figure features are identical to SI Fig. S16.

South Atlantic transect

Fig. S25: Relative importance of model parameters as causes of uncertainty in South Atlantic transect constraint variables. Figure features are identical to SI Fig. S16.

South Pacific transect

Fig. S26: Relative importance of model parameters as causes of uncertainty in South Pacific transect constraint variables. Figure features are identical to SI Fig. S16.

Fig. S27: Probability distributions of North Pacific regional mean output from our sample of model variants, satellite-derived measurements and the default UKESM1-A model, for individual months spanning December 2016 to November 2017 and the annual mean.

Fig. S28: Probability distributions of South Atlantic regional mean output from our sample of model variants, satellite-derived measurements and the default UKESM1-A model, for individual months spanning December 2016 to November 2017 and the annual mean.

Fig. S29: Probability distributions of South Pacific regional mean output from our sample of model variants, satellite-derived measurements and the default UKESM1-A model, for individual months spanning December 2016 to November 2017 and the annual mean.

Fig. S30: Probability distributions of Southern Ocean regional mean output from our sample of model variants, satellite-derived measurements and the default UKESM1-A model, for individual months spanning December 2016 to November 2017 and the annual mean.

Table S1. Parameters perturbed in our PPE, the ranges they were perturbed over and default values as prescribed in the release version of the model. Parameters highlighted in bold are associated with recent model structural developments. For parameters described as "scale factors", we perturbed values by scaling the default process parameter value up or down over the indicated range. All other parameters are specific values within the corresponding process parametrizations.

Parameter	Minimum	Maximum	Default	Parameter Description	
bl_nuc	0.1	10	1	Boundary layer nucleation rate scale	
				factor	
ait_width	1.2	1.8	1.59	Modal width of Aitken modes (nm)	
cloud_ph	1e-7	2.51e-5	1e-5	Cloud droplet pH	
carb_ff_diam	30	90	60	Emission diameter of carbonaceous	
				aerosol from fossil fuel sources (nm)	
carb_bb_diam	90	300	110	Emission diameter of carbonaceous	
				aerosol from biomass burning sources	
				(nm)	
carb_res_diam	90	500	150	Emission diameter of carbonaceous	
				aerosol from residential sources (nm)	
prim_so4_diam	3	100	150	Emission diameter of 50% of new sub-	
				grid sulfate particles (nm). Remaining	
				50% emitted into the larger coarse	
				mode (nm)	
sea_spray	0.25	4	1	Sea spray emission flux scale factor	
anth_so ₂	0.6	1.5	1	Anthropogenic SO2 emission flux	
				scale factors. Applied independently to	
				European, North American, Chinese,	
				Asian regions and the rest of the world	
volc_so2	0.71	2.38	1	Volcanic SO ₂ emission flux scale	
				factor	
bvoc_soa	0.32	3.68	1	Biogenic monoterpene production rate	
				of secondary organic aerosol scale	
				factor	
dms	0.33	3	1	Dimethyl-sulfide emission flux scale	
				factor	
prim_moc	0.4	6	1	Primary marine organic carbon	
				emission flux scale factor	
dry_dep_ait	0.5	2	1	Dry deposition velocity of Aitken	
	0.1	10		mode aerosol	
dry_dep_acc	0.1	10	1	Dry deposition velocity of	
1 1 2	0.2			accumulation mode aerosol	
dry_dep_so2	0.2	5	1	Dry deposition velocity of SO_2	
карра_ос	0.2	0.65	0.65	Hygroscopicity parameter k for organic	
				aerosol – affects wet diameter and	
	0.05	1.75		clear-sky radiative flux	
s1g_w	0.25	1.75	1	Standard deviation of shallow-cloud	
	0.2	0.7	0.2	updraft velocity scale factor	
rain_frac	0.3	0.7	0.3	Fraction of cloud covered area where	
1. 1	0.1	0.5		rain forms	
cloud_ice_thresh	0.1	0.5	N/A	I hreshold of cloud ice water fraction	
	0	0.5	0.5	lor scavenging	
conv_plume_scav	U	0.5	0.5	Scavenging efficienty (as a fraction of	
				total aerosol removed) of Altken mode	
	0.2	0.9	0565	Imaginary part of the hlash sector	
oc_n	0.2	0.8	0.305	refrective index	
				refractive index	

oxidant_oh	0.7	1.3	1	Offline oxidant OH concentration scale
				factor
oxidants_o3	0.7	1.3	1	Offline oxidant O ₃ concentration scale
				factor
bparam	-0.15	-0.13	-0.14	Coefficient of the spectral shape
				parameter β for effective radius
two_d_fsd_factor	1	2	1.4	Scale factor for the 2D relationship
				between cloud condensate variance,
				cloud cover and convection. Cotrols
				sub-grid cloud heterogeneity
c_r_correl	0	1	0.9	Cloud and rain sub-grid horizontal
				spatial colocation
autoconv_exp_lwp	2.15	3.31	2.47	Exponent of liquid water path in the
				power law for initiating autoconversion
autoconv_exp_nd	-3	-1	-1.79	Exponent of cloud droplet
				concentration (N_d) in the power law for
				initiating autoconversion
dbsdtbd_turb_0	0	1e-3	1.5e-4	Cloud erosion rate (s ⁻¹)
ai	0	5e-2	2.57e-2	Scaling coefficient for the dependence
				of ice mass on diameter
m_ci	0	3	1	Ice fallspeed scale factor
a_ent_1_rp	0	0.5	0.23	Cloud top entrainment rate scale factor

Region	Latitude range	Longitude range
North Atlantic	34.4° to 54.4° N	329.1° to 347.8° E
North Pacific	14.4° to 48.1° N	197.8° to 231.6° E
South Atlantic	30.6° to 10.6° S	347.8° to 2.8° E
South Pacific	30.6° to 15.6° S	254.1° to 284.1° E
Southern Ocean	30.6° to 50.6° S	0° to 360° E

 Table S2. Regions of persistent stratocumulus cloud used to calculate regional mean constraint variables.

Region	Start position	End position
North Atlantic	54.4° N, 336.6° E	45.6° N, 330.9° E
North Pacific	30.6° N, 229.7° E	19.4° N, 227.8° E
South Atlantic	11.9° S, 357.2° E	11.9° S, 345.9° E
South Pacific	20.6° S, 282.2° E	15.6° S, 269.1° E

Table S3. Transects from stratocumulus- to cumulus-dominated regions.

Table S4. Effect of varying the number of model variants retained at each stage of constraint. We show the number of constraint variables needed to optimally constrain ΔF_{aer} and the 90% CI in each case.

Number of model	Number of	Lower, negative ΔF_{aer}	Upper ΔF_{aer} bound
variants retained	measurements used	bound	
1000	27	-1.15	-0.07
2000	31	-1.23	-0.10
5000	13	-1.26	-0.13
10000	29	-1.30	-0.13
20000	15	-1.33	-0.13