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Abstract. Nitrogen oxides (NOx = NO+NO2) emissions are estimated in three regions in the Northern Hemi-
sphere, generally located in North America, Europe, and East Asia, by calculating the directional derivatives of
NO2 column amounts observed by the TROPOspheric Monitoring Instrument (TROPOMI) with respect to the
horizontal wind vectors. We present monthly averaged emissions from 1 May 2018 to 31 January 2023 to capture
variations before and after the COVID-19 pandemic. We focus on a diverse collection of 54 cities, 18 in each
region. A spatial resolution of 0.04◦ resolves intracity emission variations and reveals NOx emission hotspots
at city cores, industrial areas, and sea ports. For each selected city, post-COVID-19 changes in NOx emissions
are estimated by comparing monthly and annually averaged values to the pre-COVID-19 year of 2019. While
emission reductions are initially found during the first outbreak of COVID-19 in early 2020 in most cities, the
cities’ paths diverge afterwards. We group the selected cities into four clusters according to their normalized an-
nual NOx emissions in 2019–2022 using an unsupervised learning algorithm. All but one of the selected North
American cities fall into cluster 1 characterized by weak emission reduction in 2020 (−7 % relative to 2019)
and an increase in 2022 by +5 %. Cluster 2 contains mostly European cities and is characterized by the largest
reduction in 2020 (−31 %), whereas the selected East Asian cities generally fall into clusters 3 and 4, with
the largest impacts in 2022 (−25 % and −37 %). This directional derivative approach has been implemented
in object-oriented, open-source Python and is available publicly for high-resolution and low-latency emission
estimation for different regions, atmospheric species, and satellite instruments.

1 Introduction

The COVID-19 pandemic, which was caused by the SARS-
CoV-2 virus that emerged in 2019 and its still evolving vari-
ants as of writing in 2023, has resulted in unprecedented
shifts in human activities and anthropogenic emissions into
the Earth’s atmosphere. One of the most effective and im-
portant indicators of post-COVID-19 emission perturbations
is the emission of nitrogen oxides (NOx = NO+NO2) (Lev-
elt et al., 2022, and references therein). The dominant NOx
emission source is anthropogenic fossil fuel combustion. Be-

cause of its relatively short chemical lifetime, hotspots of
NOx abundance can be readily identified near the emission
sources. Due to its adverse health effects, NOx is a regulated
primary pollutant with significant implications for secondary
ozone and PM2.5 formation and reactive nitrogen deposition
(Seinfeld and Pandis, 2016; Zhang et al., 2012). Accurate
and timely quantification of NOx emission is thus essential
for environmental regulation, air quality forecasting, and im-
proved understanding of atmospheric chemistry processes.

Bottom-up NOx emission inventories have been exten-
sively used in atmospheric composition, climate change, and
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human health studies from regional to global scales (Streets
et al., 2003; Crippa et al., 2018; McDuffie et al., 2020; Zheng
et al., 2021). However, the bottom-up emission estimates are
subject to significant and often under-characterized uncer-
tainties that originate from the lack of knowledge of emis-
sion factors, chemical processes, and spatiotemporal prox-
ies as well as the inconsistencies among different geograph-
ical datasets. Moreover, bottom-up emission inventories re-
quire significant effort and time to compile, often leading to
years of lag time before producing results. It is especially
challenging for the bottom-up approaches to represent post-
COVID-19 emission changes, as both the spread of variants
and the policy responses of governments worldwide have
been rapidly changing.

Alternatively, satellite observations can assess NOx emis-
sions from a top-down perspective and in a more timely man-
ner. Substantial efforts in the research community were de-
voted to characterizing the NOx emission responses in the
early phase of the pandemic (Gkatzelis et al., 2021, and ref-
erences therein). Satellite-observed NO2 tropospheric col-
umn amounts have been used to infer post-COVID-19 NOx
emission perturbations through chemical transport models
(CTMs) (Miyazaki et al., 2020; Ding et al., 2020; Riess et
al., 2022; Kang et al., 2022), fitting of plume dispersion or
box models (Sun et al., 2021; Lange et al., 2022; Dammers
et al., 2022; Xue et al., 2022; Godłowska et al., 2023; Zhang
et al., 2023), and calculation of the divergence of horizon-
tal NO2 fluxes (the flux divergence approach hereafter; de
Foy and Schauer, 2022; Dix et al., 2022; Rey-Pommier et
al., 2022; Chen et al., 2023). Each approach comes with
its own strengths and limitations. The CTM-based approach
usually resolves emissions spatiotemporally and incorporates
meteorological and chemical processes but requires signif-
icant computation and auxiliary datasets, which hinders its
agility. Analytical plume or box models are generally ap-
plied to a single source region and do not resolve the spatial
distribution of emissions. The flux divergence approach has
the potential to rapidly map emissions over extensive areas,
whereas only annual averaged emissions have been reported
in specific regions.

Inspired by the flux divergence approach, Sun (2022) pro-
posed a unified framework capable of rapidly imaging NOx
emissions using only TROPOspheric Monitoring Instrument
(TROPOMI) level-2 products and the ERA5 global reanal-
ysis, both of which are available within a few days of lag
time. Here we coin this framework the directional derivative
approach, as the flux divergence is not explicitly calculated.
Instead, the emission signal originates from the directional
derivative of the satellite-observed column amount with re-
spect to the horizontal wind vector. The impact of topogra-
phy on emission estimation, which was neglected in the flux
divergence literature, is accounted for through a similar di-
rectional derivative of the surface altitude. In this work, we
apply the directional derivative approach to map NOx emis-
sions at a 0.04◦ grid size over extensive regions in North

America, Europe, and East Asia. We focus on 18 selected
cities in each region (54 cities in total) and quantify monthly
NOx emissions from 1 May 2018 to 31 January 2023. We
systematically compare the emissions in 2019 as the pre-
COVID-19 year with those in 2020–2022 as post-COVID-19
years. The large spatiotemporal variations of NOx emissions
after 2020 in comparison with 2019 highlight the complexity
of post-COVID-19 emission changes and the importance of
timely and persistent observation-based constraints. The nor-
malized annual NOx emissions from all the selected cities
are grouped into four clusters using an unsupervised learn-
ing algorithm. While the initial emission reductions during
the onset of the pandemic in 2020 are ubiquitous in all the
clusters, the 2021 and 2022 emissions diverge significantly.
The directional derivative approach has been implemented in
object-oriented, open-source Python (Sun, 2023) and is avail-
able publicly for future applications in different regions, time
periods, and other satellite instruments beyond TROPOMI.

2 Data

2.1 Data for emission calculation

Following Sun (2022), we use the TROPOMI Products Al-
gorithm Laboratory (PAL) level-2 NO2 product from 1 May
2018 to 14 November 2021. The operational offline prod-
uct is then merged, resulting in a seamless and consistent
product generated by a single retrieval processor (version
2.3.1) (van Geffen et al., 2022a). The nadir TROPOMI level-
2 pixel size was 3.5 km× 7 km before 6 August 2019 and
updated to 3.5 km× 5.5 km thereafter. The Equator cross-
ing of TROPOMI is at around 13:30 local time, but due to
its ground swath width of 2600 km, the measurement’s lo-
cal time at the swath edges may differ by ±1 h from the
nadir. We use only the level-2 pixels with quality-assurance
values above 0.75 according to the recommendation from
the product Algorithm Theoretical Basis Document (ATBD)
(van Geffen et al., 2022b).

In addition to the NO2 tropospheric vertical column den-
sity, the TROPOMI product also provides surface altitude at
each level-2 pixel sampled from the GMTED2010 digital el-
evation model and horizontal wind at 10 m above the surface
sampled from ECMWF meteorology (Eskes et al., 2022). In
addition, we sample horizontal winds at 100 and 10 m above
the surface from the ERA5 reanalysis (Hersbach et al., 2020)
spatiotemporally at TROPOMI level-2 observations.

2.2 Data for urban area coverage

Although the NOx emissions derived from TROPOMI-
observed NO2 column amounts cover all the regions, it is
the urban areas that dominate the NOx emission budget and
respond most to the post-COVID-19 perturbations. Cities in
different countries and continents underwent drastically dif-
ferent scenarios after the onset of the pandemic. The defi-
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nition of each city boundary is often ambiguous and incon-
sistent among geographical regions and urban datasets. To
consistently identify cities globally, we use the Global Hu-
man Built-up And Settlement Extent (HBASE) dataset from
Landsat as the indicator of urban area coverage (Wang et al.,
2017). The HBASE dataset has a native resolution of 30 m
for the target year 2010, whereas we use the aggregated ver-
sion at 1 km resolution.

Cities in this study are selected from a world city list with
population and city center coordinate information (Hernán-
dez, 2022). In each region of North America, Europe, and
East Asia, we focus on two subregions in the north and south,
based on the latitude, climate, and proximity of city clusters.
Within each subregion, we select nine cities with the con-
sideration of population and location. The bounds of each
region and subregion and the names of all the selected cities
are shown in Figs. 2, 7, and 12.

For each city, we consider the urban area coverage given
by the HBASE dataset within ±50 km in the zonal and
meridional directions from the city center coordinate as the
extent of the city. This 100 km× 100 km window covers
most of the selected cities sufficiently, with frequent inclu-
sion of the surrounding satellite cities (see Figs. 5, 6, 10, 11,
15, and 16 for the extents of individual cities). Large cities
that are close together may be enveloped by the same win-
dow. For example, the Washington, DC, window includes
most of the area covered by Baltimore (Fig. 6e), and the Wuxi
window includes two similarly sized cities, Changzhou and
Suzhou (Fig. 15g). Without attempting to separate them, we
treat these cities in the same window as a single metropolitan
area. However, we separate the adjacent cities at the USA–
Mexico border, i.e., San Diego and Tijuana as well as El Paso
and Juarez, because of significantly different NOx emission
patterns across the country border. Additionally, the windows
for Los Angeles and Dallas are extended to cover the en-
tire Los Angeles basin and the Dallas–Fort Worth–Arlington
metropolitan area, and the windows for Wuxi, Tianjin, and
Busan are slightly nudged to avoid cutting off significant
emission sources near the defined city edge.

3 Methods

3.1 NOx : NO2 ratio

As TROPOMI only observes NO2 column amounts, a molar
ratio between NOx and NO2 is needed to derive NOx col-
umn amounts and NOx emissions. Here we use a constant
NOx : NO2 ratio of 1.32 as suggested in many NOx emission
estimation studies (Beirle et al., 2011; Goldberg et al., 2019;
Beirle et al., 2019; Dix et al., 2022; Goldberg et al., 2022;
Sun, 2022; Dammers et al., 2022) for all cities. More sophis-
ticated considerations exist that are based on the photosta-
tionary steady-state assumption and model-simulated ozone
concentration (Beirle et al., 2021; Lange et al., 2022) or di-
rectly from model-simulated NO and NO2 (Lorente et al.,

2019; Zhang et al., 2023). As the main focus of this work is
the relative emission changes in the pre- and post-COVID-19
years, the impact of the variable NOx : NO2 ratio will largely
cancel out. Additionally, the tropospheric mean NOx : NO2
ratio estimated by Beirle et al. (2021) does not show exces-
sive variations over the three regions included in this study.
Moreover, the NOx : NO2 ratio can be readily updated by di-
viding the emissions from this study by 1.32 and then multi-
plying by any city- and/or season-specific value.

3.2 NOx emission estimation

The derivation of emissions (E) from satellite-observed col-
umn amounts (�) is based on the principle of mass conser-
vation as in the following:

〈E〉 = 〈u · (∇�)〉+X〈�u0 · (∇z0)〉+
〈�〉

τ
. (1)

Here 〈 〉 is the spatiotemporal averaging operator already
implemented in the physical oversampling framework (Sun
et al., 2018; Sun, 2023), z0 is the surface altitude from level-2
files, and u and u0 are horizontal wind vectors in the plane-
tary boundary layer (PBL) and near the surface, respectively,
represented by 100 and 10 m winds sampled from ERA5.
X and τ represent the inverse scale height and vertically inte-
grated chemical lifetime and can be inferred as linear regres-
sion coefficients using monthly or further aggregated images.
The full derivation of Eq. (1) can be found in Sun (2022). De-
spite the similarity between Eq. (1) and its counterpart in the
flux divergence literature (Beirle et al., 2019, 2021; Liu et
al., 2021; Dix et al., 2022; de Foy and Schauer, 2022; Rey-
Pommier et al., 2022; Veefkind et al., 2023), Eq. (1) accounts
for the impacts from the horizontal divergence of wind and
topography on the estimated emission, both of which are not
included in the flux divergence equation and scale linearly
with column amounts (�). The first and second terms on the
right-hand side of Eq. (1) are based on the directional deriva-
tives of the column amount (�) and surface altitude (z0) with
respect to the horizontal wind vectors (u and u0). Therefore,
we refer to emission estimation using this equation as the di-
rectional derivative approach.

The most important difference between the flux diver-
gence and directional derivative approaches is, at a flat sur-
face and without chemical loss, whether the emissions equal
the divergence of horizontal flux (〈∇ · (�u)〉) or a directional
derivative of the column amount (〈u · (∇�)〉). The mathe-
matical and physical justifications of using the directional
derivative instead of the flux divergence to estimate emis-
sions are provided in detail by Sun (2022), and we further
list the key assumptions made by the flux divergence and
directional derivative approaches in Appendix A. Briefly,
we assume an altitude z1 that divides the lower troposphere
where emissions are mixed within and the upper troposphere
where emissions are not “felt” at the satellite pixel scale, and
horizontal variability is much smaller than the lower part.
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Together with the incompressible flow assumption (Smits,
2000), these enable us to cancel out the wind divergence term
from the surface to z1 (�b(∇ ·u), where�b is the subcolumn
from the surface to z1), with the vertical flux at z1. Conceptu-
ally, the upward flux of the observed species at z1 would not
be due to emissions, as z1 is chosen not to feel the emission
impact; the only cause of this flux is the convergence of air
in the column below that squeezes air upwards or the diver-
gence of air below that draws air downwards. Ultimately, this
leads to the only appearance of the directional derivative term
in Eq. (1) instead of the flux divergence term that can be de-
composed into the sum of the directional derivative term and
a wind divergence term (see Eq. A1). Moreover, this study
generally includes more advanced considerations of atmo-
spheric physical and chemical processes in comparison with
previous studies, which we summarize in Appendix B.

The inverse scale height (X) and chemical lifetime (τ ) re-
main key unknowns and can be estimated from observational
data. At locations where the emission 〈E〉 is small, Eq. (1)
can be rewritten as a multilinear regression model by neglect-
ing the emission term:

〈u · (∇�)〉 = β0+β1〈�u0 · (∇z0)〉+β2〈�〉+ ε. (2)

Here β0 and ε represent the offset and random error in the
predicted variable (i.e., 〈u · (∇�)〉) that cannot be explained
by the linear combination of predictors (i.e., 〈�u0 · (∇z0)〉
and 〈�〉). β1 is an estimate of the negative inverse of scale
height, and β2 is an estimate of the negative of the first-order
rate constant or equivalently the inverse of chemical lifetime.

For each region, terms 〈u · (∇�)〉, 〈�u0 · (∇z0)〉, and 〈�〉
are calculated and saved at a 0.04◦ grid size and monthly res-
olution. Then regressions as in Eq. (2) are conducted on a
subset of grid cells for each subregion. We first focus on fit-
ting β1 over relatively rough terrains where NOx emissions
are generally much smaller than the observational error and
hence negligible. This fit can be made at a relatively high
time resolution (monthly) given the high signal-to-noise ra-
tio. β2 is also included in this fitting, although the results are
usually very noisy. This first round of fitting is limited to grid
cells with 0.001m s−1 < 〈u0 ·(∇z0)〉< 0.1ms−1, which rep-
resent moderately rough terrains that are abundant in all the
regions and subregions. In the second round, the monthly fit-
ted β1 in the previous round is fixed, and only β2 is fitted
in flat terrains (〈u0 · (∇z0)〉< 0.001ms−1) that are free of
strong NOx emission sources (〈u · (∇�)〉< 1nmol m−2 s−1)
and meanwhile characterized by a moderate NO2 column
amount (〈�〉> 2.5×10−5 molm−2). To address the issue of
a low signal-to-noise ratio, this second round of fitting is con-
ducted over climatological months: i.e., the same months for
all years are aggregated before fitting. This two-round fitting
procedure is generally consistent with the study over the con-
tiguous USA (CONUS) by Sun (2022). The main improve-
ments here are that the fittings are conducted in smaller sub-
regions and that the seasonal variations of lifetimes are re-
solved.

Figure 1 shows the fitted NOx scale heights (top) and
chemical lifetimes (bottom) for each month, although the
monthly lifetime is from climatology and hence the same
for different years. We caution here that the resultant scale
heights and lifetimes are fundamentally fitting parameters in
a multilinear regression model (Eq. 2) that minimize the im-
pacts of topography and chemical loss on the estimated emis-
sion. Qualitatively, the seasonality of NOx scale heights is
consistent with higher PBL heights in the summer than win-
ter, and the fact that the southern subregion in North Amer-
ica shows a significantly higher scale height than the other
subregions is consistent with the high PBL height over the
southwestern USA and northern Mexico (Ding et al., 2021;
Ayazpour et al., 2023). The low scale heights in East Asia
may be explained by higher levels of pollution and thus more
NOx distributed near the surface. The chemical lifetimes in
all the subregions span a broad range and are generally longer
in winter than summer. The seasonal variation of lifetimes in
the southern subregion in East Asia is comparable to previous
lifetime estimates (Mijling and Van Der A, 2012; Shah et al.,
2020), whereas the lifetimes in the other subregions are sig-
nificantly longer. The most plausible explanation is that the
lifetimes as in Eqs. (1) and (2) are integrated through the ver-
tical column, so the free tropospheric NOx contributes more
in relatively clean regions. The lifetime results in the north-
ern subregion in Europe become unreliable in winter due to
low data coverage as shown by occasional negative values.
We keep using these results without modification as they do
not have significant impacts on the estimated emissions.

Once the monthly NOx emissions 〈E〉 are obtained us-
ing the monthly fitted X and τ , NOx emissions from each
selected city are calculated by averaging NOx emission
grid cells under the geographical coverage of the city (see
Sect. 2.2 for the determination of city coverage). The NOx
emission grid cells are weighted by the fraction of urban area
coverage during the averaging.

3.3 Algorithms for city clustering based on annual
emissions

The monthly NOx emissions from each city (9 cities per sub-
region and 54 cities in total) are aggregated annually for clus-
ter analysis in Sect. 4.4. The normalized emissions in 2019–
2022 by the 4-year mean are considered the feature for each
city and clustered using the k-means clustering algorithm
(Likas et al., 2003). The k-means algorithm partitions a set of
data points in n-dimensional space (n= 4 here, correspond-
ing to annual emissions in 2019–2022) into k clusters, where
each data point belongs to the cluster with the nearest mean.
The mean or centroid of each cluster is representative of the
general pattern of data points in the cluster. A total number of
four clusters are used by locating the elbow point of the sum
of squared errors as a function of the number of clusters. Ad-
ditionally, we reduce the feature dimension of four to two
using principal component analysis, such that each city can
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Figure 1. (a) Monthly scale heights fitted using Eq. (2). NA, EU, and AS represent the regions of North America, Europe, and East Asia. S
and N after the underscore denote the southern and northern subregions in each region. (b) Chemical lifetimes fitted for these six subregions.
Each monthly data point is from the climatology, so all the years have the same seasonality.

be projected to a two-dimensional scatterplot as shown by
Fig. 17.

4 Results

This section dives into the regions in North America, Europe,
and East Asia, each with two subregions in the north and
south and nine selected cities in each subregion. Section 4.4
synthesizes the annual NOx emissions from all selected cities
through the cluster analysis.

4.1 North America

Figure 2 provides an overview of the region in North Amer-
ica, its two subregions delineated by red rectangles, and se-
lected cities with locations indicated by black arrows. The
spatial distributions of NOx emissions shown by the central
map are estimated following Sect. 3.2 in 2019–2022, except
that the scale height and chemical lifetime are fitted using the
entire region instead of a specific subregion. The southern
subregion covers the southwestern USA and northern Mex-
ico, and the northern subregion covers the midwestern and
northeastern USA and part of Canada. The annual NOx emis-
sions in 2019–2022 averaged spatially over each selected city
are illustrated as pie charts around the edges of the plot. The
sizes of the pies scale with the average city emissions over
the 4 years. One may compare the size of slices for 2020–
2022 to 2019 as an indication of post-COVID-19 emission
changes. Note that the emissions in 2021 and 2022 are gen-
erally higher than 2019 for the selected cities in the southern
subregion. The slices of 2019 are not larger than one-fourth
of the pie in all the cities in the southern subregion: i.e.,
despite the impacts of COVID-19, the post-COVID annual
emissions in these cities are not lower than the pre-COVID
year of 2019. The cities in Mexico (Tijuana, Juarez, and Chi-
huahua) show faster growth of NOx emissions year to year
and stronger emissions compared with neighboring cities in
the USA. The northern subregion is quite different in that the

NOx emissions in 2019 are all higher than the 4-year aver-
age; i.e., the 2019 slices are larger than one-fourth of the pies.
This indicates decreased emissions after COVID-19 that may
be attributed to the direct and indirect impacts of pandemic-
control measures.

Figures 3 and 4 show the monthly NOx emissions that
are averaged to obtain the annual emissions for cities in
the southern and northern subregions in North America (see
Fig. 2). In these plots, each city corresponds to one panel,
and the panels are ordered by population as provided by the
city list (same for all the following nine-panel and one-panel
per-city figures). For each panel, the top subpanel shows the
absolute monthly NOx emissions, and the bottom subpanel
shows the relative emissions for the same months in 2019.
For both subpanels, the values in 2019 are also repeated in
the same months for the other years (2018 and 2020–2022)
as a baseline for comparison. Higher monthly emissions rel-
ative to the same months in 2019 are indicated by red shade,
and blue shade is used otherwise. We remove the monthly
data with a city-wide average level-2 data coverage lower
than 2; i.e., the entire city area has to be on average covered
at least twice in the month by TROPOMI observations. This
threshold is determined using all the selected cities in this
study, and monthly emissions with coverage lower than this
value tend to be unreliable. To make consistent interannual
comparisons, if one month is removed for a particular year,
the same months for all the other years are also removed for a
given city. This results in loss of some winter months in high-
latitude cities due to high solar zenith angle and snow cover-
age and wet-season months in some cities due to frequent
cloud coverage. Although the monthly emissions are sub-
ject to significant variability, NOx emissions for most cities
dropped in early 2020 relative to the same months in 2019,
coincident with the initial wave of COVID-19. The relative
decrease is more significant in the northern subregion than in
the southern subregion. The emissions, relative to 2019, di-
verge more in 2021 and 2022 among these cities. Some cities
in the northeastern USA show comparable or even higher
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Figure 2. Geographical locations of the 18 cities, 9 in each of the two subregions, in the region of North America. The subregions are
outlined by dashed red rectangles. The annual NOx emissions in 2019–2022 for each city are displayed as pie charts. The emission values
for each year are labeled on or near the corresponding slice of the pie (nmolm−2 s−1). The 4-year average emissions are labeled beside the
city names. The central map shows 4-year average NOx emissions throughout the region. The grid is coarsened from the native size of 0.04
to 0.12◦ for visualization purposes.

emission reduction in 2022 than in 2020 (e.g., Chicago and
Philadelphia), whereas strong growth can be identified in the
southern and southwestern USA (e.g., Dallas, Houston, San
Diego, and Phoenix) and in Mexico.

Strong seasonal variations with higher emissions in win-
ter months are observed in some cites (e.g., all cities in the
northern subregion, Dallas, Houston, San Diego, and Juarez),
which is inconsistent with flatter seasonalities often given
by bottom-up emission inventories (Sun et al., 2021). These
observed seasonal variations might be caused by seasonally
varying artifacts, such as retrieval biases, vertical sensitiv-
ity of the retrieval at the surface, and the uncertainties in the
wind vectors. In addition, because we use a global constant
NOx : NO2 ratio, its seasonality that is unaccounted for will
propagate to the NOx emission seasonality. One would ex-
pect a higher PBL NOx : NO2 ratio in winter than summer,
but in the summer relatively more NOx is in the free tropo-
sphere, where the NOx : NO2 ratio is higher than the PBL
(Seinfeld and Pandis, 2016). As a result, the exact impact of
the NOx : NO2 ratio on each city is inconclusive. However,
we note that no clear seasonality can be identified in Tijuana,
whereas the adjacent San Diego shows a much more promi-
nent seasonal pattern. This is inconsistent with the potential
impacts by the aforementioned factors, because they should
have impacted the estimated city emissions similarly at such

a close distance. Moreover, similar seasonalities are not as
common in the regions of Europe and East Asia to be shown
in the following sections. Further validation of the emission
values and seasonality will be the subject of future studies.

The geographical urban area coverage and spatial distri-
bution of NOx emissions for each city are shown by Fig. 5
(southern subregion) and Fig. 6 (northern subregion). The
averaged NOx emissions in 2019–2022 are displayed at a
native grid size of 0.04◦ as a colored map. The city extent
is illustrated as a mask where non-urban area is in black
with 95 % transparency, resulting in a gray hue. The city-
covered area is fully transparent. The urban sprawl is signifi-
cant in the USA (Barrington-Leigh and Millard-Ball, 2015),
as the city areas in the USA are generally larger than simi-
larly sized cities in other countries. Emission hotspots are of-
ten collocated with the downtown areas, but industrial areas
and seaports show higher emissions, e.g., the port of Long
Beach in Los Angeles (Fig. 5a) and the Houston ship channel
(Fig. 5c). The emissions within the city window of Washing-
ton, DC, are actually dominated by Baltimore to the northeast
(Fig. 6e). Emissions in Tijuana and Juarez are clearly higher
than the adjacent American cities San Diego and El Paso,
presumably due to different emission regulations.
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Figure 3. The red dots and lines show monthly NOx emissions from cities in the southern subregion in North America. For each panel, the
top subpanel shows the absolute emissions, and the bottom subpanel shows the relative emissions for the corresponding months in 2019. The
blue dashed lines show the 2019 values repeated in the same months for the other years (2018 and 2020–2022). Red and blue shades indicate
higher and lower monthly emissions relative to the months in 2019.

Figure 4. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the northern subregion in North
America. This figure is similar to Fig. 3.
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Figure 5. Maps of NOx emissions and urban area coverage for the nine selected cities in the southern subregion in North America.

Figure 6. Maps of NOx emissions and urban area coverage for the nine selected cities in the northern subregion in North America.
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Figure 7. Geographical locations of the 18 cities in the region of Europe. The subregions are outlined by dashed red rectangles. The
annual NOx emissions in 2019–2022 in each city are displayed as pie charts. The emission values for each year are labeled on or near the
corresponding slice of the pie (nmolm−2 s−1). The 4-year average emissions are labeled beside the city names. The central map shows
4-year average NOx emissions throughout the region. The grid is coarsened from the native size of 0.04 to 0.12◦ for visualization purposes.

4.2 Europe

Figure 7 is a similar overview for the region of Europe,
where the southern and northern subregions are delineated
by red dashed rectangles. The NOx emissions from ship-
ping lanes over the Atlantic Ocean and the Mediterranean
Sea are prominent. The annual NOx emissions in 2019–2022
are shown similarly as pie charts for each city. Note that the
southern subregion includes an African city, Algiers in Al-
geria, due to the rectangular shape of the subregion. Algiers
also stands out among other cities in this region in that its
2019 emission is lower than the 4-year average: the 2019
slice is smaller than one-fourth of the pie, and its 2020 emis-
sion is higher than 2019. All the other cities show emission
reductions in 2020 relative to 2019, which often extend to
the following years. Two large cities in developing countries,
Algiers and Istanbul, are characterized by larger emissions
overall and a stronger rebound of emissions after 2020.

Figures 8 and 9 show the monthly NOx emissions that
are averaged to obtain the annual emissions for cities in the
southern and northern subregions in the region of Europe
(see Fig. 7). Compared with cities in North America, cities
in the European region generally had much larger emission
decreases during the initial COVID-19 wave, as indicated by

the larger blue-shaded areas. In some cases, most noticeably
Madrid, Lisbon, and London, the emission reductions extend
almost throughout 2020–2022. Some of the post-COVID-19
reductions relative to 2019 may extend from a pre-existing
decreasing trend, as indicated by consistently higher 2018
emissions than 2019 in some cities in the northern subregion
(Fig. 9). In contrast, the emissions quickly rebounded after
the initial impact in some central and eastern European cities,
such as Bucharest, Warsaw, and Prague, as well as in Istanbul
and Algiers as mentioned earlier. Some cities in the northern
subregion are also subject to significant loss of winter-month
coverage due to high solar zenith angle and cloud coverage.

The geographical urban area coverage and spatial distri-
bution of NOx emissions for each city are shown by Fig. 10
(southern subregion) and Fig. 11 (northern subregion), simi-
lar to city maps in the North American region (Figs. 5 and 6).
Unlike the American cities that tend to sprawl into a large
continuum, the selected European cities tend to be more con-
centrated, with smaller satellite cities and towns scattered in
the surrounding area. The most prominent emission features
are generally located at the city centers, with Rotterdam as an
exception, where most observed emissions concentrate along
the port of Rotterdam, the world’s largest seaport outside of
East Asia (Fig. 11i).
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Figure 8. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the southern subregion in Europe.
This figure is similar to Fig. 3.

Figure 9. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the northern subregion in Europe.
This figure is similar to Fig. 3.
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Figure 10. Maps of NOx emissions and urban area coverage for the nine selected cities in the southern subregion in Europe.

Figure 11. Maps of NOx emissions and urban area coverage for the nine selected cities in the northern subregion in Europe.
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Figure 12. Geographical locations of the 18 cities, 9 in each of the two subregions, in the region of East Asia. The subregions are outlined
by dashed red rectangles. The annual NOx emissions in 2019–2022 in each city are displayed as pie charts. The emission values for each
year are labeled on or near the corresponding pie slice (nmolm−2 s−1). The 4-year average emissions are labeled beside the city names.
The central map shows 4-year average NOx emissions throughout the region. The grid is coarsened from the native size of 0.04 to 0.08◦ for
visualization purposes.

4.3 East Asia

Figure 12 is a similar overview for the region of East Asia,
where the southern and northern subregions are delineated by
red dashed rectangles. Note that the overall emission back-
ground and emissions from individual cities are significantly
higher than the regions of North America and Europe, as in-
dicated by the enhanced scale of the color map and pie chart
sizes. Selected cities in this region ubiquitously show lower
mean annual emissions after COVID-19; i.e., the 2019 pie
slices are all larger than one-fourth. Unlike the regions of
North America and Europe, the selected cities here all show
lower emissions in 2022 than the 4-year average, and in many
cases, the 2022 emissions are lower than 2021 and 2020. Out
of the 18 selected in this region, 16 are in China, which un-
derwent widespread and stringent measures in 2022 to con-
trol the spread of the Omicron variant.

The temporal evolution of NOx emissions and their rel-
ative changes from 2019 are shown in more detail in the
monthly plotted Figs. 13 and 14, with one of the strongest ex-
amples of this shown in the megacity of Shanghai in Fig. 13a.
Shanghai is one of the largest cities studied here, with higher
NOx emissions than all the other selected cities except Seoul.
The data coverage for Shanghai is also complete without any
missing months. The well-documented NOx emission reduc-
tions during the spring festival in January and/or February
are evident in 2019–2021, although the 2020 spring festival
coincided with the initial control measures at the beginning
of the COVID-19 outbreak (Liu et al., 2020; Huang and Sun,
2020). Emissions were back to 2019 levels during the second
half of 2021. March 2022 marked the start of an unprece-
dented lockdown in Shanghai in response to the spread of the
Omicron variant, and the resultant NOx emission reductions
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Figure 13. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the southern subregion in East
Asia. This figure is similar to Fig. 3.

Figure 14. Absolute (top subpanels) and relative (bottom subpanels) monthly NOx emissions from cities in the northern subregion in East
Asia. This figure is similar to Fig. 3.
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overshadow those of early 2020. Emission levels largely re-
covered in August–October 2022 before plunging again due
to a nation-wide spread of the Omicron variant, which ulti-
mately led to a termination of most control measures in China
in December 2022. The full effect of this policy change on
NOx emissions is not yet clear from the current data.

Figure 13b shows the monthly NOx emissions in Wuhan,
where COVID-19 first drew public attention in January 2020.
Data in January and February of all the years are not included
due to insufficient TROPOMI coverage, resulting in missing
peak lockdown months. Therefore, the relative reduction in
2020 is likely underestimated. Another noteworthy feature in
Wuhan is that the October emissions in 2018 and 2020–2022
are all higher than October 2019. One likely cause is the
emission reduction measures conducted to ensure good air
quality during the 7th Military World Games held in Wuhan
in October 2019 (Zhang et al., 2022). As a result, October
2019 emission in Wuhan was likely lower than the business-
as-usual condition, leading to spurious enhancements in Oc-
tober of all the other years. The other selected cities similarly
show emission reductions in early 2020 during the onset of
the pandemic and more extensive reductions in 2022 due to
direct and indirect impacts of the Omicron variant spread.
Some cities show consecutive months of recovery or increase
in emissions in between, e.g., Hangzhou, Ningbo, and Jinan,
for the summer and fall of 2020.

Similar to the regions of North America and Europe, the
geographical urban area coverage and spatial distribution of
NOx emissions for each city in the region of East Asia are
shown by Fig. 15 (southern subregion) and Fig. 16 (north-
ern subregion). Unlike most cities in North America and
Europe, the strongest emissions in the selected Asian cities
are often not located at the city centers but in industrial ar-
eas or seaports. Here we try to identify the most prominent
emission hotspots on the city maps. The strongest emissions
in Shanghai occur in the highly industrialized Baoshan and
Pudong districts along the Yangtze River shore (Fig. 15a).
For Wuhan, the strongest emissions occur in the district of
Qingshan, where Wuhan Iron & Steel is located (Fig. 15b).
The emission hotspot in the southwest of Nanjing (Fig. 15d)
is the city of Maanshan, home of Maanshan Iron & Steel. The
emission hotspot in the northeast of Wuxi (Fig. 15g) is part of
Zhangjiagang, a county-level city (in contrast to prefecture-
level cities) under the administration of Suzhou. The emis-
sion hotspot to the east of Ningbo (Fig. 15i) appears to be
part of the port of Ningbo and Zhoushan, the world’s largest
cargo-handling port.

The city window around Seoul (Fig. 16a) includes most
of the Seoul metropolitan area, which was mapped for high-
resolution NO2 column amounts during the Korea–United
States Air Quality (KORUS-AQ) campaign (Choo et al.,
2023). The west–east extended hotspot in the west of the city
window is associated with the Incheon industrial complex,
while the more south–north extended hotspot at the center
of the city window is located over the city of Seoul. The

emission hotspot in the south is located near Suwon, which
is also industrialized. The emission hotspot to the southwest
of Tianjin (Fig. 16c) collocates with the port of Tianjin, the
largest port in northern China and the main maritime gate-
way to Beijing, and the adjacent industrial area in the Binhai
New Area. The emission hotspot to the northeast of Tang-
shan (Fig. 16g) appears to be Qian’an, a county-level city
under the administration of Tangshan, and is the location of
Yanshan Iron & Steel. The emission hotspot to the southwest
of Qingdao (Fig. 16h) appears to be the port of Qindao. The
emission hotspot to the northeast of Busan (Fig. 16i) appears
to be the port of Ulsan, the largest industrial port in South
Korea.

4.4 Clustering of city emissions

The monthly NOx emissions calculated for each of the 54 se-
lected cities contain a large amount of information that is
challenging to digest. These monthly values are often subject
to a low signal-to-noise ratio, especially for the cold-season
months in high-latitude cities. As such, we aggregate to an-
nual emissions for the years of 2019–2022 to obtain more
insights into how different cities’ emissions responded after
the onset of COVID-19. For each city, the same months are
included for all these years to enhance the interannual con-
sistency. The resultant annual emissions are already shown
in Figs. 2, 7, and 12. These annual emissions (four values
for each city) are normalized by the 4-year mean and then
grouped into four clusters using the k-means algorithm. The
normalized annual emission for each city corresponds to a
point in the four-dimensional space. To visualize the clus-
tering results, we reduce the dimension of the normalized
annual emissions by calculating two principal components,
which effectively projects the data to a two-dimensional sub-
space.

Figure 17a shows the distributions of cities in the projected
two-dimensional subspace, where each city is a point marked
differently according to the cluster it belongs to. The annual
emissions for cities in the same cluster are shown as val-
ues relative to the 2019 emission in Fig. 17b–e, where the
bars indicate the cluster average and the error bars indicate
the interquartile range within the cluster. All the cities in the
North American region, with Chicago as the only exception,
are included in cluster 1 (Fig. 17b), which is characterized
by the lowest emission reduction in 2020 (−7 % relative to
2019), with emissions recovering to the 2019 level in 2021
and increased emissions in 2022 (+5 % relative to 2019).
Bucharest, Warsaw, Prague, Algiers, and Istanbul in the Eu-
ropean region are also included in this cluster. The overall
characteristic of cluster 1 is a minor reduction in 2020 rela-
tive to 2019 and a steady increase afterwards.

Cluster 2 (Fig. 17c) features the most significant emission
reduction in 2020 (−31 % relative to 2019), with a moderate
rebound in 2021 (−15 %) and a drop again in 2022 (−21 %).
Cities in this cluster are all in the European region, except
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Figure 15. Maps of NOx emissions and urban area coverage for the nine selected cities in the southern subregion in East Asia.

Figure 16. Maps of NOx emissions and urban area coverage for the nine selected cities in the northern subregion in East Asia.
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Figure 17. (a) Clustering results using 54 cities selected in this study. The normalized annual emissions in 2019–2022 for each city are
projected to two-dimensional space using principal component analysis. The locations of Tianjin and Milan, defined as the two principal
components, are nudged downward and right, respectively, to enhance the visualization quality. (b–e) The bars indicate the cluster center,
and the error bars indicate the interquartile range within the cluster. The values are all relative to 2019.

Shanghai. Cluster 3 (Fig. 17d) differs from cluster 2 in that
the emission reduction in 2020 is not as large (−8 %), while
the reduction in 2022 is very significant (−25 %), especially
in comparison with its value in 2021 (−8.5 %). Cluster 3
mainly includes cities in China, with a few exceptions in
Europe (Lisbon, Hamburg, and Berlin) and North America
(Chicago). This is consistent with the general evolution pat-
tern of COVID-19 in China: quick recovery of emissions in
late 2020 due to effective COVID-19 control measures, spo-
radic lockdowns in 2021, and much larger-scale lockdowns
in 2022.

Cluster 4 (Fig. 17e) is characterized by the largest and sus-
tained decrease in emissions from 2019 to 2022. The average
emission reduction in 2022 in this cluster is −37 % relative
to 2019, the lowest for all the years in all the clusters. The
reduction in 2021 is −35 %, also substantially more than all
the other clusters. Cities in this cluster are located in northern
China and South Korea, with London as the only exception.
Additionally, Tangshan, Seoul, and Busan in cluster 4 have
large contributions from industrial NOx sources (see Fig. 16),

suggesting influences from economic factors in addition to
direct COVID-19-control impacts.

5 Conclusions and discussion

We apply the directional derivative approach developed by
Sun (2022) to estimate NOx emissions in three North-
ern Hemisphere regions: North America, Europe, and East
Asia. For each region, the NOx scale heights and chemi-
cal lifetimes, which are necessary in the emission calcula-
tion, are estimated separately in two subregions. We focus on
emissions from 9 selected cities per subregion and present
monthly averages and 4-year averaged emission maps at a
0.04◦ grid size for a total number of 54 cities. The NOx emis-
sion maps reveal unprecedented levels of detail for a large
and diverse collection of cities. NOx emission hotspots are
consistently found at large city cores, while some cities fea-
ture significantly higher emissions than others, most notably
at the USA–Mexico border (San Diego vs. Tijuana and El
Paso vs. Juarez). The spatial windows of some cities encom-
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pass much more prominent emission hotspots than the city
cores, which generally correspond to large seaports and in-
dustrial areas. The average emissions in 2019–2022 are gen-
erally larger in East Asian cities, as 13 out of 18 cities in this
region are higher than 10 nmolm−2 s−1. In contrast, only one
city in the North American region (Tijuana) and two cities in
the European region (Algiers and Istanbul) are higher than
this value.

With respect to the temporal variation of NOx emissions,
we choose the year of 2019 as the pre-COVID-19 base-
line year, so the relative emission changes in 2020–2022 to
2019 indicate the post-COVID-19 perturbations to each city.
We caution that the relative differences between the post-
COVID-19 months in 2020–2023 and the corresponding
months in 2019 may exist even without COVID-19. These
non-COVID-19 factors include the Military World Games
impact in Wuhan and a pre-existing long-term decreasing
trend in many cities in the northern European subregion, as
indicated by the higher emission in 2018 than 2019 (Fig. 9).
The initial impact during the first outbreak of COVID-19 in
early 2020 can be found in most cities, but their paths diverge
afterwards. We average the monthly emissions for each city
to annual mean emissions in 2019–2022 and group the nor-
malized annual mean emissions into four clusters. All but
one city in the North American region are grouped in cluster
1, which is characterized by the smallest emission reduction
in 2020 (−7 %) and a steady increase afterwards, resulting
in a +5 % increase in 2022. Limited representations of Latin
America (Tijuana, Juarez, and Chihuahua), Africa (Algiers),
and the Middle East (Istanbul) are all located in cluster 1.
Future studies might be meaningful for testing whether the
emission-changing pattern of cluster 1 is common in these
regions. The other clusters (2–4) feature much larger emis-
sion reductions than cluster 1 and differ by how these re-
ductions are distributed in 2020–2022. The European cities
are generally in cluster 2, with the largest impact in 2020
(−31 %), whereas the East Asian cities are generally in clus-
ters 3 and 4, with the largest impacts in 2022 (−25 % and
−37 %).

In this study, we fit scale heights at monthly resolution and
fit chemical lifetimes for each climatological month to strike
a balance between the quality of the fitting results and the
temporal resolution. However, we assume spatially homoge-
neous scale heights and chemical lifetimes within each sub-
region. Considering that the fitting is conducted over cleaner
locations where the free tropospheric NO2 subcolumn is ex-
pected to take a larger fraction of the tropospheric column,
the fitted scale heights and chemical lifetimes are likely over-
estimated for urban areas. Additionally, the NOx chemical
lifetime is highly nonlinear with respect to the NOx con-
centration (Valin et al., 2013; Laughner and Cohen, 2019).
Therefore, although some aspects of the fitted results are
consistent with the expected spatial and temporal variation
of the PBL height and NOx chemical lifetime, we caution
that the inverses of scale heights and chemical lifetimes are

fundamentally linear fitting parameters and caution against
over-interpretation of the results. Future investigations might
be helpful for achieving higher spatial granularity and/or
considering the dependencies of scale height and chemi-
cal lifetime on the column amount. We choose a constant
NOx : NO2 ratio, given the emphasis of this study on rela-
tive emission changes and the timeliness of emission estima-
tion. An improved understanding of the global NOx : NO2
ratio over the atmospheric columns through which satellite
sensors integrate will likely enhance the quality of estimated
NOx emissions.

This work presents observation-based NOx emission esti-
mations over large areas (covering three major continents),
with fine spatial resolution (0.04◦, resolving intracity emis-
sion variations), high temporal resolution (monthly), and
timely results (until 31 January 2023). The main focus of
this work is the relative emission changes for each city in
the pre- and post-COVID-19 years. The absolute emission
values of one city compared with another and absolute es-
timates of emissions month by month would be subject to
larger uncertainties than the relative values, given the as-
sumptions and simplifications discussed above. We expect
future evaluations of spatiotemporal variations of derived
emissions against known emission rates of point sources and
bottom-up emission inventories. The current workflow re-
quires only TROPOMI level-2 data and the ERA5 reanalysis,
both publicly available with global coverage, and the open-
source Python algorithm (Sun, 2023). It is our hope that this
tool will benefit future studies that cover more regions in the
world and use additional remote-sensing instruments.

Appendix A: Key assumptions in flux divergence vs.
the directional derivative approach

The flux divergence approach (e.g., Beirle et al., 2019, 2021;
de Foy and Schauer, 2022; Dix et al., 2022) is based on
the following equation, expressed in terms defined in this
work.

〈E〉 = 〈∇ · (�u)〉+
〈�〉

τ

= 〈u · (∇�)〉+ 〈�(∇ ·u)〉+
〈�〉

τ
(A1)

Here the second step makes it clearer to compare with
the counterpart of the directional derivative approach (i.e.,
Eq. 1). The key implicit assumptions of the flux divergence
approach are discussed below.

1. The emission includes the divergence of horizontal flux
and chemical loss. Without the chemical loss, the emis-
sion equals the horizontal flux divergence, as shown by
studies applying flux divergence to methane (Liu et al.,
2021; Veefkind et al., 2023). The problem is that the
divergence of horizontal flux is also driven by the di-
vergence of wind (∇ ·u), which can have positive or
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negative values climatologically for different locations.
This leads to spurious emission values seen in the flux
divergence literature that often need empirical correc-
tion (Liu et al., 2021; Dix et al., 2022; Veefkind et al.,
2023).

2. The topography does not contribute to the flux diver-
gence. In reality, the wind vector usually partially aligns
with the gradient of surface altitude even over a long-
term average, resulting in terrain-dependent artifacts.

The directional derivative approach (Sun, 2022, this work)
addresses these assumptions by explicitly considering the
wind divergence and topography effects. The assumptions
that lead to the directional derivative approach are detailed
in Sun (2022) and discussed below.

1. There exists an altitude z1 where emissions, as observed
by satellites, are confined within. We equate z1 as the
PBL height for ease of conceptualization, but it does
not have to be explicitly defined to derive Eq. (1).

2. The horizontal gradient of subcolumn amounts above z1
is negligible compared with that below z1 at the spatial
scale of adjacent satellite observations.

3. The vertical flux of observed species at z1 is only due to
divergence or convergence of wind below z1 and is thus
not sensitive to emissions. This assumption is a conse-
quence of assumption 1 and the assumption that air flow
is incompressible.

4. The scale height of the observed species is a constant
through the domain. This is necessary for relating the
surface concentration to the column amount in the to-
pography term.

5. The column-integrated chemical lifetime of the ob-
served species is a constant through the domain. This
is necessary to simplify the chemical loss term, and it is
the same for the flux divergence approach.

Assumptions 1–3 are from reasoning. We encourage fu-
ture testing of these assumptions, presumably through high-
quality model simulations. Assumptions 4–5 are apparently
significant simplifications. The following two paragraphs
discuss their implications.

The scale height is expected to be lower over polluted re-
gions than clean regions. We fit the scale height over rough
terrains in each subregion, which are inherently cleaner
than the urban areas. Therefore, the scale height applied
to urban areas is likely overestimated, and the topogra-
phy term is hence underestimated as it scales with the in-
verse of scale height. Fortuitously, the urban areas are gen-
erally situated over flat terrains. The median value of the
monthly term |〈�u0 · (∇z0)〉| for all 54 cities averaged in
each city is 1.3× 10−7 molm−1 s−1. This means that ne-
glecting the topography effect resulting from a 1000 m

scale height would only give rise to an emission error of
1.3× 10−10 molm−2 s−1, which is below the noise floor.
However, there are two caveats. First, this does not mean that
the topography term is unimportant. It might be small over
the flat city, but it is large over rough terrains that are close to
many cities. Second, some emission sources do appear over
rough terrains.

The column-integrated chemical lifetime is a complicated
and challenging parameter to obtain. A wide range of values
and strategies exists in the literature. Two main factors deter-
mine its value: the chemical lifetime within the PBL and the
partition of column amounts in the PBL vs. in the free tro-
posphere. The PBL chemical lifetime is highly nonlinear. In
the “NOx-limited” regime, it decreases with increasing NOx ,
whereas in the “NOx-suppressed” regime, the relationship is
reversed. The range of variation is within a factor of 2 (Valin
et al., 2013; Laughner and Cohen, 2019). The PBL vs. free
troposphere partition may have a larger impact given the high
urban–rural column amount contrast and the significant free
tropospheric contribution in the clean regions (Silvern et al.,
2019). Overall, we expect the column-integrated lifetime de-
termined over relatively clean regions to be higher than the
true value over urban areas. This is also consistent with the
longer lifetimes shown by Fig. 1 than literature values of the
urban PBL NOx lifetime. Consequently, the chemical loss
term is likely underestimated in polluted regions.

As such, both topography and chemical loss terms are ex-
pected to be underestimated for NOx over urban areas. This
undercorrection is preferred to overcorrection. Directions of
future improvements include using model simulations to in-
form the spatiotemporal variations of scale height and life-
time and fitting more complex functions (e.g., as polynomial
functions of the column amount) of the scale height and life-
time. The current constant scale height and lifetime are just
the special case of a zeroth-order polynomial. This will re-
quire an even higher signal-to-noise ratio, more observations,
and/or a finer spatial resolution than TROPOMI.
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Appendix B: Comparisons between this work and its
precursors

Table B1. Considerations of physical and chemical processes by this work and previous studies. The flux divergence and directional deriva-
tive approaches are distinguished by whether wind divergence is included or excluded.

Study Wind divergence Topography Lifetime NOx : NO2

Beirle et al. (2019) Included None 4 h 1.32

Beirle et al. (2021) Included None None Photo-stationary state

Dix et al. (2022) Included Empirical background Calculated based on OH 1.32
correctiona

de Foy and Schauer (2022) Included None 9 h 1.32

Goldberg et al. (2022) Included None Fitted using EMGb 1.32

Chen et al. (2023) Included None Calculated using surface 1.32
measurements

Sun (2022) Excluded Fitted monthly over Fitted over the CONUS after 1.32
the CONUS aggregating 2018–2022

This work Excluded Fitted monthly over Fitted over subregions 1.32
subregions with with a similar climate for
a similar climate each climatological month

a This may compensate for both topography and chemical loss effects. b EMG: exponentially modified Gaussian function.
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