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Section S1 - Model Validation Plots
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Figure S1. Modelled steady-state ko and knosz values at a wider range of NOy and O3 mixing ratios.
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Figure S2. Modelled steady-state mixing ratios of NO and NO; at NOy and Oz mixing ratios representative of those observed
during the Beijing 2017 campaign.
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Figure S3. Modelled steady-state concentrations of NOs, OH, and HO; at NOy and O3 mixing ratios representative of those
observed during the Beijing 2017 campaign.

Section S2 - Sensitivity Tests

Figure S5 and Figure S6 show the isopleths for each organonitrate group investigated in this work
under a lower isoprene mixing ratio of 0.5 ppb and a higher isoprene mixing ratio of 3 ppb.
Increasing the isoprene mixing ratio has three effects: the absolute concentration of isoprene
oxidation products increases for a given model run; the peak concentrations of IHN and other OH-
initiated products occurs under higher NOyx conditions; the transition from NOy-sensitive to Os-
sensitive regions in NOs-initiated species occurs more gradually over a broader range of NOx mixing
ratios. These effects are explained later in this section. The shape of the isopleths, and hence the
conclusions drawn regarding changes in O; and NOx concentrations, are consistent despite changing
isoprene concentrations, and a discussion of the impact of changing isoprene concentrations on
organonitrate concentrations will be included where necessary throughout the paper.

Methane was added to the model in order to account for additional reactivity which would be
provided by other VOCs under ambient conditions. The mixing ratio of methane in the models was
halved and doubled in two tests (41 ppm and 164 ppm respectively), and the results are shown in
Figure S7 and Figure S8. The effect of increasing methane in the models on the shape of the
concentration profiles is similar to the effect of increasing isoprene concentrations, though the
absolute peak concentrations of the isoprene oxidation products does not change significantly.
Higher methane concentrations result in the peak concentrations of OH-initiated products occurring
at higher NOx mixing ratios and also the broadening of the transition between NOy-sensitive and Os-
sensitive regions in NOs-initiated products.

For OH, the higher VOC concentrations mean that more NOy is required to produce the same
amount of OH at a given O3 to compensate for the increased conversion of OH to HO; (Figure S4).

Similarly, for a given pair of O3 and NOyx concentrations, the NO; concentrations will be higher at a
higher NO,/NO ratio due to higher formation from the NO,+0s reaction as well as lower loss from
the NO3+NO reaction. In these models, the NO,/NO ratio is largely dictated by HO, and O3
concentrations. Since Os is held constant and HO; concentrations are low at high NO, concentrations
(Figure 6c), the NO,/NO ratio is constant for a given O; concentration at high NO (Figure S9). There
is an increase in NO; at low-NOx where HO, concentrations are important for converting NO to NO..
The NOs profile corresponds to this NO,/NO ratio profile, with the added decrease in NO;
concentrations at low NOx due to the availability of NO, for NOs; formation (Figure 6a). Therefore,
when HO;, concentrations increase due to higher VOC concentrations, the NO,/NO ratio will increase
allowing greater concentrations of NOs.
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Figure S4. The chemical cycles controlling NO3 and OH. Some reaction pathways have been omitted for clarity.
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Figure S5. Modelled steady state organonitrate concentrations at the lower isoprene mixing ratio of 0.5 ppb.
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3 ppb of Isoprene
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Figure S6. Modelled steady state organonitrate concentrati



41 ppm of Methane
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Figure S7. Modelled steady state organonitrate concentrations at the lower methane mixing ratio of 41 ppm.



164 ppm of Methane

(c) IPN

405

36.0

(1dd) oney Burxiw ae3s-Apeais
W e n o n

31
2
2
bt
1

2 0 °
R

< &
(qdd) "on

(3dd) oney Bupxip eis-Apeats
s o g
& 3 8
8 & r
& & =

30
15

(qdd) "on

05 (ppb)

03 (ppb)
(e) INPE

(3dd) oney buxiy 33e3s-Apears (qdd) oney Buixiy areis-Apeas
N2

€ v 3 N~ g © @ T o

S 8§ 3 R B8 % 8 3

05 (ppb)
(i) Sum of All Organonitrates

2 0 2 w
R a

< N
(qdd) "on

(1dd) oney Buixiy a3e15-Apears

144

05 (ppb)

w ° w
] 2

o 2
R

{qdd) “on (qdd) “oN

as
4
3
3
2

(3dd) oney Buixip 3eis-Apears {add) oney Buixi ajes-Apears

T @
3 a ) e ) e s 2 o
< N 4 © 2 =T @ o @ 9 2 8 2 g 28 2 & 2 2
= 8 A e & 6 ¢ m H o = B R R R = = 3 g
e

14

(d) INHE
0; (ppb)

0 ° w o o
] a

< Y &
(qdd) "oNn (qdd) *on

03 (ppb)

05 (ppb)

05 (ppb)

Figure S8. Modelled steady state organonitrate concentrations at the higher methane mixing ratio of 164 ppm.



45 T 13.95
4
40 5 f% - 12.45
313
33
35 0 - 10.95
3
O
30 3 9.45
3
3
i) ) @)
2 25 3 7.95 Q
S 3 S
=2 20 : 6.45 =
15 4.95
1 3.45
5 1.95
0.45

20 40 60 80 100 120 140
O3 (ppb)

Figure S9. Modelled steady-state NO,/NO ratios at a range of NOy and O3 mixing ratios.

The dilution rate included in the models of 2.31x10 st was chosen to give a lifetime with respect to
dilution of 12 hours. To test the sensitivity of the results to this decision, additional models were run
with dilution lifetimes of 1 hour, 6 hours, and 24 hours. When halving the dilution rate such that the
lifetime with respect to dilution is 24 hours (Figure S10), the absolute concentrations of the
organonitrates increase due to the reduction in losses. However, the profile of the isopleths does
not change. Similarly, doubling the dilution rate decreases species concentrations but does not alter
the isopleth profiles (Figure S11). Increasing the dilution rate further, resulting in a dilution lifetime
of 1 hour, does skew the isopleth profiles compared to the longer lifetime models, particularly
impacting OH and OH-initiated products like IHN (Figure S12). Despite the difference made by this
extreme change, many of the conclusions made in this work would hold true with regards to the
NO,«-0Os regimes favoured by different organonitrate groups.
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Figure S10. Modelled steady state organonitrate concentrat



(3dd) oney Buixi aeis-Apesis (qdd) oney Buiip sjeis-Apeas
< ~ o o

& e (10d) oney Bupxi aweis-Apeais s o 2 92 © 92 @ o g9
o ~ v m - o ° s N = %) o ) =3 n o n =) i - ] a e
2 = 89 o4 4 3 8 § N~ o 2 8 B4 B & 8 2 2 4, o s o

6 hour Mixing Lifetime

(c) IPN

-
~

1.56

0 9

< S
(qdd) "oN

(3dd) oney Buxip aeis-Apeas
@ © o % @

(qdd) "oN

)
=

05 (ppb)

03 (ppb)

O3 (ppb)

n 9
2 8

(qdd) "on

o °

0 Q
< &

(qdd) "on

05 (ppb)

w
1
g
c
S
c
&
2
o
<
k]
€
S
@

0s (ppb)

0; (ppb)

0 °

< ]
(qdd) “on

{3dd) oney Bupxip aers-Apeais
™)

3 2 ~ <
2 & ~ A

o ° n
< ] a
(qdd) *on

05 (ppb)

0; (ppb)

03 (ppb)

f 6 hours.

Ime o

Figure S11. Modelled steady state organonitrate concentrations at the shorter dilution lifet
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Figure S12. Modelled steady state organonitrate concentrations at the shorter dilution lifetime of 1 hour.

Although these models focus on the afternoon-period in Beijing, two separate sets of models were
run under differing photolysis conditions corresponding to different times in the afternoon in
Beijing, 2 hours before and after the chosen time of 16:00 local time (Figure S13 and Figure S14). The
earlier time of 14:00 results in higher absolute concentrations of OH-initiated species such as IHN
and slightly lower absolute concentrations of NOs initiated species as a result of increased NOs
photolysis and higher NO concentrations. Despite the absolute differences in concentration, the
profile of the NO«-Os isopleth for each organonitrate group does not change significantly, though the
impact of the NOs-initiated organonitrates at high O3 mixing ratios in the total organonitrate isopleth
is lessened. The later time of 18:00 is entering dusk in the summer of Beijing, so the role of NO;
chemistry is amplified and the OH chemistry is reduced. This is clear from the IHN profile which
shows that the peak concentration occurs at high O3 and NOy, since the NOs-initiated pathway
becomes the dominant formation route. This change means that the total organonitrate isopleth
shape is very different in the 18:00 model, with the highest concentrations occurring under high-0s-
high-NO conditions, where NOs is the highest. These time-of-day sensitivity tests illustrate that the
conclusions made in this work are applicable during daytime photolysis conditions.



2pm Local Time Photolysis Parameters

(c) IPN

(b) ICN

(a) IHN

8160

7280

0 ]
< ]

(qdd) "on

(1dd) opey Bujxi e1s-Apeals

0 (ppb)

03 (ppb)

05 (ppb)

(3dd) oney Buixi aieis-Apears

T 8 ¢ 5 8

as

40

0 Q 0
< R =

(qdd) "on

0 9

0 o n
< R B
(qdd) "on

-1

03 (ppb)

@
2
g
&
S
c
&
2
o
<
k]
€
3
@

~ "y “ < ~

180.0

(qdd) *on

(100) opey Bupa 3exs-Apeais
w o =

~ 8 & 2 wu
5 B 3 g =

03 (ppb)

03 (ppb)

270

2 @ o
R

kY ]
(qdd) "oN

2 - = &

n °

< ]
(qdd) *on

0 (ppb)

05 (ppb)

05 (ppb)

Figure S13. Modelled steady state organonitrate concentrations with photolysis conditions corresponding to the earlier
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Figure S14. Modelled steady state organonitrate concentrations with photolysis conditions corresponding to the later model
time of 18:00 local time.

Section S3 - Saturation Concentration

As an alternative to the compound vapour pressures used in Section 4.6 of the main text, the
saturation concentration (expressed as a log value, logio(Csat))) was estimated in order to assess the
impact of changes in NOx and O; on SOA. The method for estimating logio(Csat) is taken from Mohr et
al. 2019, and uses Equation 1 to estimate logio(Csat) based on the molecular formula of each
compound. nc, ny, and ng are the number of carbon, nitrogen, and oxygen atoms respectively. bc, bo,
bco and by are 0.475, 0.2, 0.9, 2.5 respectively. (Mohr et al., 2019; Donahue et al., 2011)
(ng —3ny) n¢ ,
log10(Ssqt) = (25 —ne)be — (ng —3ny)bg — 2—————bco — nyby Equation 1
Nne +ng — 3ny
This method does not account for the structure of each individual compound, hence the use of
UManSysProp in the main text, but is presented here as an alternative method due to the different
profile in Figure S15 compared to Figure 13. Figure S15 shows two peaks in normalised



concentration, one at low O3 and one at high Os, in a similar fashion to the total organonitrate plot in
Figure 12. However, due to the lower volatilities of the species formed under high O3, the two
normalised concentration peaks are of a similar magnitude in Figure S15. This means that,
depending on the initial position in NOx-Os space, reductions in either NOx or O3 may result in
increases in organonitrate SOA.
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Figure S15. Modelled steady-state concentrations of the total organonitrates normalised to each compound’s estimated
saturation concentration at different NOx and O3 mixing ratios.



Section S4 - Additional Vapour Pressure Plots
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Figure S16. Modelled steady-state concentrations of the total organonitrates normalised to each compound’s estimated
vapour pressure at different NOx and O3 mixing ratios using each combination of vapour pressure and boiling point methods
available through the UManSysProp API.
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Figure S17. Modelled steady state concentrations of the 15 lowest volatility compounds at different NOy and O3 mixing

ratios.
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Section S5 - Amazon Models
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Figure S18. Modelled steady-state concentrations of NOs, OH, and HO; in the Amazon models (lower NOy and O3
concentrations and higher VOC concentrations than the Beijing models).
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Figure $19. Modelled steady state organonitrate concentrations for the Amazon models (lower NO, and O3 concentrations

and higher VOC concentrations than the Beijing models).
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