

Supplement of

Large differences of highly oxygenated organic molecules (HOMs) and low-volatile species in secondary organic aerosols (SOAs) formed from ozonolysis of β -pinene and limonene

Dandan Liu et al.

Correspondence to: Haijie Tong (haijie.tong@hereon.de) and Pingqing Fu (fupingqing@tju.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

SOA formation

Figure S1 indicates that at 565 ppb O₃ condition, the peak concentration of limonene SOA (1484 μ g m⁻³ for 626 nm particles) is much higher than β -pinene SOA (1152 μ g m⁻³ for 684 nm particles), partially reflecting the higher SOA yield of limonene ozonolysis. The SOA concentration difference is not as high as ten times, which may be due to the exact concentration of limonene in the flow tube is lower than β -pinene. The evidence is that we observed substantial large particles (diameter > 600 nm) during the β -pinene SOA formation process (Figure S1a). The mass-size distribution of these particles does not change significantly and rapidly when the UV lights are turned off. We infer these large particles (Figure S1a) are β -pinene microdroplets produced during the precursor evaporation or due to condensation. In contrast, negligible number of big particles were observed during the limonene SOA formation process (Figure S1b).

VOC	Date	[O ₃]	[SOA] _{number}	[SOA] _{mass} Sampling time		Collected SOA	
	-	ppb	cm ⁻³	μg m ⁻³	Beginning	Ending	μg
β-pinene	13/08/2019	315	1.61E+06	2085.16	15:24	15:57	130
β-pinene	13/08/2019	315	1.81E+06	1767.30	16:00	16:31	110
β-pinene	13/08/2019	565	2.08E+06	693.11	19:01	19:37	190
β-pinene	13/08/2019	565	1.80E+06	646.12	19:39	20:25	220
β-pinene	13/08/2019	50	8.05E+05	3966.64	22:50	23:15	70
β-pinene	13/08/2019	50	8.04E+05	4696.83	23:17	23:40	60
β-pinene	14/08/2019	50	8.15E+05	5557.75	7:38	8:42	90
Limonene	09/09/2019	50	3.06E+05	24.99	12:52	13:56	30
Limonene	09/09/2019	50	3.32E+05	28.57	13:56	15:52	30
Limonene	09/09/2019	50	3.54E+05	43.20	15:53	17:52	30
Limonene	10/09/2019	565	1.90E+06	599.65	17:12	17:46	130
Limonene	10/09/2019	565	1.89E+06	603.14	17:48	18:45	230
Limonene	10/09/2019	565	1.84E+06	603.34	18:46	19:46	260
Limonene	11/09/2019	315	1.22E+06	293.89	12:27	13:37	220
Limonene	11/09/2019	315	1.20E+06	298.18	13:38	14:44	150
Limonene	11/09/2019	315	1.16E+06	300.47	14:46	15:48	210

Table S1. The experimental conditions, the collected SOA particles quality of β -pinene and limonene SOA. The concentration of gas phase β -pinene and limonene are estimated to be 2-4 ppm and 1-3 ppm, respectively. The number concentration ([SOA]_{number}) and mass concentrations of SOA ([SOA]_{mass}) are for particles with sizes ranging from 10 to 1093 nm.

	Molecular	Molecular	Relative abundance (%)					
Classified	formula	weight		β-pinene SOA limonene SOA			A	
			50 ppb O ₃	315 ppb O ₃	565 ppb O ₃	50 ppb O ₃	315 ppb O ₃	565 ppb O ₃
Monomer	$C_8H_{12}O_4$	172	3	18	17	5	2	2
	$C_9H_{18}O_2$	158	11	7	1	15	< 0.5	< 0.5
	C9H16O3	172	7	48	21	11	1	1
	$C_9H_{14}O_3$	170	19	39	17	53	41	55
	$C_9H_{14}O_4$	186	10	78	57	37	29	22
	$C_{10}H_{16}O_2$	168	9	3	< 0.5	14	< 0.5	< 0.5
	$C_{10}H_{16}O_{3}$	184	86	95	35	88	52	66
	$C_{10}H_{16}O_{4}$	200	9	32	19	100	100	100
Dimer	$C_{17}H_{26}O_3$	278	2	1	< 0.5	42	2	2
	$C_{17}H_{26}O_4$	294	100	44	8	13	1	2
	$C_{17}H_{26}O_{7}$	342	4	28	17	20	22	15
	$C_{17}H_{26}O_8$	358	2	21	43	10	15	12
	$C_{18}H_{22}O_4$	302	4	2	1	1	< 0.5	< 0.5
	$C_{18}H_{26}O_5$	322	2	25	10	5	2	2
	$C_{18}H_{28}O_6$	340	2	34	31	19	16	15
	$C_{18}H_{28}O_{7}$	356	1	10	15	27	26	22
	$C_{18}H_{30}O_{7}$	358	1	31	25	7	6	6
	$C_{18}H_{26}O_8$	370	< 0.5	1	0	13	19	13
	$C_{18}H_{28}O_8$	372	1	3	5	25	25	19
	$C_{18}H_{30}O_{9}$	390	2	18	14	3	4	3
	$C_{19}H_{28}O_{4}$	320	9	12	2	17	7	6
	$C_{19}H_{32}O_{4}$	324	5	3	1	5	1	< 0.5
	$C_{19}H_{30}O_5$	338	3	100	100	74	73	69
	$C_{19}H_{28}O_{6}$	352	1	15	14	51	36	32
	$C_{19}H_{30}O_{6}$	354	2	39	32	48	36	28
	$C_{19}H_{28}O_7$	368	< 0.5	5	7	48	62	47
	$C_{19}H_{30}O_7$	370	4	78	52	85	35	27
	$C_{19}H_{28}O_8$	384	1	2	2	30	23	18
	$C_{19}H_{30}O_8$	386	1	4	7	21	18	15
	$C_{19}H_{28}O_{9}$	400	< 0.5	< 0.5	< 0.5	17	24	16
Unclassified	$C_{16}H_{24}O_{6}$	312	2	26	8	5	5	4
	$C_{23}H_{30}O_3$	354	4	2	1	2	0	< 0.5
	C32H42O3	474	12	0	0	0	0	0

Table S2. Summary of the top fifteen molecules in relative abundance in β -pinene and limonene SOA that formed at 50, 315, and 565 ppb ozone, respectively.

Dimer ID	Observed m/z (-)	Molecular formula	Proposed molecular structure	Reference				
	β-Pinene SOA							
MW 358	357.155	$C_{17}H_{26}O_8$	HO COH OH	Kahnt et al. (2018) Kristensen et al. (2017)				
				Müller et al. (2009) Mohr et al. (2017)				
				Mohr et al. (2017)				
			HO O HO HO O HO O HO	Mohr et al. (2017)				
MW 372	371.171	$C_{18}H_{28}O_8$		Kristensen et al. (2017)				
MW 388	387.166	$C_{18}H_{28}O_9$		Kristensen et al. (2017) Kristensen et al. (2016)				
MW 406	405.177	$C_{18}H_{30}O_{10}$		Kenseth et al. (2018)				
MW 400	399.166	$C_{19}H_{28}O_9$	HO O OOH O OH	Kristensen et al. (2017)				
MW 386	385.187	$C_{19}H_{30}O_8$		Kristensen et al. (2017)				
MW 400	399.202	$C_{20}H_{32}O_8$		Kahnt et al. (2018)				
Limonene SOA								
MW 372	371.171	$C_{18}H_{28}O_8$	OOH O OOH O OOH O OOH O OOH O	Hammes et al. (2019)				

Table S3. Dimer HOMs identified by FT-ICR MS analysis of collected particle samples along with observed m/z, proposed molecular formula and molecular structure in SOA produced from ozonolysis of β -pinene and limonene.

Figure S1. Particle size and mass concentration distributions of β -pinene SOA (a) and limonene SOA (b) from SMPS measurement.

Figure S2. The intensity (a) and formula number (b) of molecular weight distributions for β -pinene and limonene SOA at 50 ppb, 315 ppb and 565 ppb ozone concentrations.

Figure S3. Average saturation mass concentration (C_0) (a, c) and carbon oxidation state (OS_C) (b, d) for organic compounds from β -pinene SOA (green square) and limonene SOA (red circle) and the corresponding HOMs at different ozone concentrations.

References

Hammes, J., Lutz, A., Mentel, T., Faxon, C., and Hallquist, M.: Carboxylic acids from limonene oxidation by ozone and hydroxyl radicals: insights into mechanisms derived using a FIGAERO-CIMS, Atmos. Chem. Phys., 19, 13037-13052, https://doi.org/10.5194/acp-19-13037-2019, 2019.

Kahnt, A., Vermeylen, R., Iinuma, Y., Safi Shalamzari, M., Maenhaut, W., and Claeys, M.: High-molecular-weight esters in αpinene ozonolysis secondary organic aerosol: structural characterization and mechanistic proposal for their formation from highly oxygenated molecules, Atmos. Chem. Phys., 18, 8453-8467, <u>https://doi.org/10.5194/acp-18-8453-2018</u>, 2018.

Kenseth, C. M., Huang, Y., Zhao, R., Dalleska, N. F., Hethcox, J. C., Stoltz, B. M., and Seinfeld, J. H.: Synergistic O_3 + OH oxidation pathway to extremely low-volatility dimers revealed in β -pinene secondary organic aerosol, P. Natl. Acad. Sci., 115, 8301-8306, <u>https://doi.org/10.1073/pnas.1804671115</u>, 2018.

Kristensen, K., Jensen, L. N., Glasius, M., and Bilde, M.: The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene, Environ. Sci.-Proc. Imp., 19, 1220-1234, https://doi.org/10.1039/c7em00231a, 2017.

Kristensen, K., Watne, Å. K., Hammes, J., Lutz, A., Petäjä, T., Hallquist, M., Bilde, M., and Glasius, M.: High-molecular weight dimer esters are major products in aerosols from α-pinene ozonolysis and the boreal forest, Environ. Sci. Technol. Lett., 3, 280-285, <u>https://doi.org/10.1021/acs.estlett.6b00152</u>, 2016.

Kundu, S., Fisseha, R., Putman, A. L., Rahn, T. A., and Mazzoleni, L. R.: High molecular weight SOA formation during limonene ozonolysis: Insights from ultrahigh-resolution FT-ICR mass spectrometry characterization, Atmos. Chem. Phys., 12, 5523-5536, <u>https://doi.org/10.5194/acp-12-5523-2012</u>, 2012.

Mohr, C., Lopez-Hilfiker, F. D., Yli-Juuti, T., Heitto, A., Lutz, A., Hallquist, M., D'Ambro, E. L., Rissanen, M. P., Hao, L., Schobesberger, S., Kulmala, M., Mauldin III, R. L., Makkonen, U., Sipilä, M., Petäjä, T., and Thornton, J. A.: Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth, Geophys. Res. Lett., 44, 2958-2966, <u>https://doi.org/10.1002/2017GL072718</u>, 2017.

Müller, L., Reinnig, M.-C., Hayen, H., and Hoffmann, T.: Characterization of oligomeric compounds in secondary organic aerosol using liquid chromatography coupled to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, Rapid Commun. Mass Sp., 23, 971-979, <u>https://doi.org/10.1002/rcm.3957</u>, 2009.