



### Supplement of

# An analysis of CMAQ gas-phase dry deposition over North America through grid-scale and land-use-specific diagnostics in the context of AQMEII4

Christian Hogrefe et al.

*Correspondence to:* Christian Hogrefe (hogrefe.christian@epa.gov)

The copyright of individual parts of the supplement might differ from the article licence.

### **Table of Contents**

40

Table S2. Model performance statistics for all daily maximum 8-hr average  $O_3$  (MDA8  $O_3$ ), hourly NO<sub>x</sub> and SO<sub>2</sub>, and 24-hr average total and speciated (SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, organic carbon (OC) and elemental carbon (EC)) PM<sub>2.5</sub> mass samples collected at AQS monitors in 2016, including a comparison to the simulations used in Appel et al. (2021). The standard

Table S3. Model performance statistics for all weekly total precipitation and  $SO_4^{2-}$ ,  $NO_3^{-}$ , and  $NH_4^+$  wet deposition samples collected at NADP NTN monitors in 2016, including a comparison to the simulations used in Appel et al. (2021). The standard deviation over all samples is denoted as  $\sigma$  while NMB, MB, and RMSE represent the percentage

Figure S8: Maps of fractional coverage of the 16 AQMEII4 LU categories (Galmarini et al., 2021) in the 50 M3DRY\_2016 simulations using MODIS LU. As noted in Section 2.3.1, the M3Dry simulations were performed using the 20 native MODIS LU categories and the mapping to the AQMEII4 categories was performed during postprocessing. None of the 20 MODIS LU categories correspond to the AQMEII4 herbaceous category......17 Figure S9: Domainwide fractional coverage of the 16 AQMEII4 LU categories (Galmarini et al., 2021) in the M3DRY 2016 and STAGE 2016 simulations. As noted in Section 2.3.1, the M3Dry simulations were performed 55 using the 20 native MODIS LU categories and the mapping to the AQMEII4 categories was performed during postprocessing while the STAGE simulations were performed using the AQMEII4 categories. None of the 20 MODIS LU categories correspond to the AQMEII4 herbaceous category. See discussion in the text on the small differences in Figure S10. Domain average summer and winter diurnal cycles of LU-specific O<sub>3</sub> inverted stomatal resistances for 60 Figure S11. Domain average summer and winter diurnal cycles of LU-specific O<sub>3</sub> inverted cuticular resistances for 

65 Figure S13. Domain average summer and winter diurnal cycles of LU-specific O<sub>3</sub> inverted canopy quasi-laminar sublayer resistances for M3DRY\_2016 and STAGE\_2016. Note that in M3Dry, the quasi-laminar sublayer resistance is pathway independent while in STAGE it differs between the canopy (cuticular and stomatal) and ground (vegetated and bare soil) pathways.

Figure S14. Domain average summer and winter diurnal cycles of LU-specific O<sub>3</sub> inverted ground quasi-laminar
 sublayer resistances for M3DRY\_2016 and STAGE\_2016. Note that in M3Dry, the quasi-laminar sublayer resistance
 is pathway independent while in STAGE it differs between the canopy (cuticular and stomatal) and ground (vegetated and bare soil) pathways.

75 Figure S16. Left column: annual mean WRF PX grid-scale (top row) and LU-weighted sum of LU-specific u \* values for M3DRY\_2016 (second row), STAGE\_2016 (third row), and STAGE\_REF\_2016 (fourth row). Center column: absolute differences between annual mean LU-weighted sum of LU-specific and WRF PX grid-scale u \* values. Right

- 85 Figure S18: Maps of differences in the fractional coverage of the 16 AQMEII4 LU categories (Galmarini et al., 2021) between the M3Dry simulations using WRF PX LSM configured with MODIS and NLCD LU (i.e. M3DRY\_2016 and M3DRY\_NLCD40\_2016), respectively. Differences are shown as M3DRY\_2016 -M3DRY\_NLCD40\_2016. As noted in Section 2.3.1, the CMAQ M3Dry calculations and post-processor estimates of LU specific and aggregated diagnostic variables were performed using native LU categories from the MODIS and NLCD schemes. Aggregation

#### 95 Comparison of 2016 model performance results to Appel et al. (2021)

To provide context for the evaluation results of the CMAQ simulations performed for this study that are presented in Section 3.1, this section provides a comparison to the performance results of 2016 CMAQv5.3.1 simulations from a recent comprehensive evaluation study (Appel et al., 2021) and quantifies how differences in model configurations drive differences in model performance.

- 100 Table S1 and Figures S1 S2 show model performance results for MDA8 O<sub>3</sub>, SO<sub>2</sub>, NO<sub>x</sub>, PM<sub>2.5</sub>, SO<sub>4<sup>2-</sup></sub>, NO<sub>3<sup>-</sup></sub>, OC, and EC for the M3DRY\_2016 and STAGE\_2016 base case simulations as well as the corresponding 2016 CMAQ531\_WRF411\_M3Dry\_BiDi and CMAQ531\_WRF411\_STAGE\_BiDi simulations from Appel et al. (2021). For MDA8 O<sub>3</sub>, a comparison of the AQMEII4 simulations to the Appel et al. (2021) simulations shows a positive instead of a negative bias, a larger absolute bias, a similar or lower RMSE, and a higher correlation coefficient. The
- 105 AQMEII4 simulations are closer to the observations for February July while the Appel et al. (2021) are closer for the remaining months. For NO<sub>x</sub>, the AQMEII4 simulations show slightly lower concentrations and hence a slightly more pronounced negative bias and higher RMSE compared to the Appel et al (2021) simulations but the time series indicate that all simulations deviate substantially from observations, especially during winter. For SO<sub>2</sub>, model performance is similar for all four simulations. For PM<sub>2.5</sub> mass, the AQMEII4 simulations show higher concentrations
- especially during summer, a positive instead of a negative bias, a larger absolute bias, a higher RMSE, and lower correlations than the corresponding Appel et al. (2021) simulations. For PM<sub>2.5</sub> species, the AQMEII4 simulations have a lower absolute bias than Appel et al. (2021) for SO<sub>4</sub><sup>2-</sup> and NO<sub>3</sub><sup>-</sup> and higher absolute bias for OC and EC. The AQMEII4 simulations also have a higher RMSE and lower correlation for all species except NO<sub>3</sub><sup>-</sup>. A comparison of the spatial patterns of MDA8 O<sub>3</sub> and PM<sub>2.5</sub> biases in Figure S1 shows that the overall higher concentrations of both
- pollutants in the 2016 AQMEII4 simulations resulted in a higher positive bias in the eastern U.S. compared to Appel et al. (2021) while the general underestimation in the western U.S. seen in the Appel et al. (2021) results was reduced for PM<sub>2.5</sub> and turned into a general overestimation for MDA8 O<sub>3</sub>.

Table S2 and Figure S3 show model performance results for weekly precipitation and wet deposition at NADP NTN monitors in 2016. Precipitation has a smaller dry bias than Appel et al. (2021) but also lower correlation coefficients

- 120 and higher RMSE. This suggests that the benefit of using lightning assimilation in the WRF meteorological model predominantly is an improved representation of the temporal and spatial variability in precipitation (Heath et al., 2016). The statistics for the AQMEII4 SO4<sup>2-</sup> and NO3<sup>-</sup>, and NH4<sup>+</sup> deposition fluxes also show lower correlations and higher RMSE compared to the Appel et al. (2021) simulations. Consistent with the negative precipitation bias, simulated wet deposition flux biases also are negative for all pollutants, though the difference between the AQMEII4
- and Appel et al. (2021) simulations varies between  $SO_4^{2-}$  and  $NO_3^{-}$ , likely also influenced by other differences in model setup, particularly boundary conditions and lightning NO emissions. Overall, these results confirm that model performance for precipitation is a key driver for wet deposition model performance. However, despite the noticeable degradation in precipitation model performance relative to the WRF simulations described in Appel et al. (2021) that used lightning assimilation, the NMB results presented here fall within the range of retrospective long-term
- 130 simulations over North America (Zhang et al., 2019).

To quantify the impacts of several differences in model inputs compared to Appel et al. (2021) on these evaluation results, Figures S4 – S7 present maps of annual mean differences between the M3DRY\_2016 base case and several of the sensitivity simulations listed in Table 1. Figure S4 shows the results of a comparison of M3DRY\_2016 against M3DRY\_LTNGNO\_BASE\_2016. The only difference between these two CMAQ simulations is the input meteorology, with M3DRY\_LTNGNO\_BASE\_2016 using the WRFv4.1.1 fields from Appel et al. summarized in Section 2.1.1. For the meteorological variables, the M3DRY\_2016 simulations show a tendency for generally lower temperatures and higher precipitation while wind speed and solar radiation show both positive and negative differences. Concentrations over land either showed small changes or decreases. Therefore, the overall higher ozone (O<sub>3</sub>) and PM<sub>2.5</sub> concentrations in M3DRY\_2016 compared to Appel et al. (2021) cannot be explained by the

- 140 differences in meteorological fields. Figure S5 shows the difference in annual mean concentrations between the M3DRY\_2016 and M3DRY\_HCMAQ\_2016 simulations that differ only in their boundary conditions. Results show substantially higher MDA8 O3 concentrations when using CAMS rather than H-CMAQ to generate lateral boundary conditions, with annual mean differences ranging from more than 10 ppb near the boundaries to 3-5 ppb for most of the eastern U.S. The CAMS-derived boundary conditions used in the current study also yield higher annual average
- PM<sub>2.5</sub> concentrations, with most of the increase caused by organic aerosols and crustal components associated with long-range transport of dust. Figure S6 shows the difference in annual mean concentrations between the M3DRY\_2010 and M3DRY\_APPEL\_EMIS\_2016 simulations that differ in their anthropogenic and wildland fire emission inputs. Use of the AQMEII4 emissions resulted in localized higher concentrations of total PM<sub>2.5</sub> compared to using the Appel et al. (2016) emissions, with partially compensating effects for different PM<sub>2.5</sub> components. Figure
- 150 S7 shows the percentage difference in May September mean surface O<sub>3</sub> and NO<sub>2</sub> concentrations, total dry and wet N deposition, and column NO<sub>2</sub> between M3DRY\_LTNGNO\_BASE\_2016 and M3DRY\_LTNGNO\_NLDN\_2016 to quantify the impact of using lightning NO emissions based on GEIA climatology in AQMEII4 rather than NLDN lighting flash data in Appel et al. (2021). The results indicate that this choice of input data has only a relatively minor impact on the surface concentrations considered in the model performance analysis but has a significant impact on
- 155 modeled NO<sub>2</sub> columns which in turn impacts total nitrogen deposition, mostly through wet deposition. The noticeable impact of different datasets to represent lightning NO emissions on wet deposition of nitrogen is consistent with a recent study by Kang et al. (2022). The analysis of these sensitivity simulations indicates that the choice of lateral boundary conditions was the largest driver of differences in mean model concentrations and biases compared to the corresponding CMAQv5.3.1 simulations analyzed in Appel et al. (2021).

160

# Table S1: Mapping of MODIS and NLCD LU categories to AQMEII4 LU categories (see Sections 2.3.1 and 2.3.2 for further details on different approaches between M3Dry and STAGE)

| AQMEII4 LU Category            | MODIS LU Category                         | NLCD LU Category                               |  |  |
|--------------------------------|-------------------------------------------|------------------------------------------------|--|--|
| 1: Water                       | 17: Water                                 | 17: Water                                      |  |  |
|                                |                                           | 13: Urban and Built-up                         |  |  |
|                                |                                           | 23: Developed open space                       |  |  |
| 2: Developed / Urban           | 13: Urban and Built-up                    | 24: Developed Low Intensity                    |  |  |
|                                |                                           | 25: Developed Medium Intensity                 |  |  |
|                                |                                           | 26: Developed High Intensity                   |  |  |
| 2. Dorron                      | 16: Parran or Sparady Vacatatad           | 16: Barren or Sparsely Vegetated               |  |  |
| 5. Darren                      | 10. Barren of Sparsery Vegetated          | 27: Barren Land                                |  |  |
| 4. Evenement modulatef format  | 1. Evenement Needleleef Forest            | 1: Evergreen Needleleaf Forest                 |  |  |
| 4. Evergreen needlelear forest | 1. Evergreen Needlelear Forest            | 29: Evergreen Forest                           |  |  |
| 5: Deciduous needleleaf forest | 3: Deciduous Needleleaf Forest            | 3: Deciduous Needleleaf Forest                 |  |  |
| 6: Evergreen broadleaf forest  | 2: Evergreen Broadleaf Forest             | 2: Evergreen Broadleaf Forest                  |  |  |
|                                |                                           | 4: Deciduous Broadleaf Forest                  |  |  |
| 7: Deciduous broadleaf forest  | 4: Deciduous Broadleaf Forest             | 28: Deciduous Forest                           |  |  |
|                                |                                           | 5: Mixed Forest                                |  |  |
| 8: Mixed forest                | 5: Mixed Forest                           | 30: Mixed Forest                               |  |  |
|                                | 6: Closed Shrublands                      | 6: Closed Shrublands                           |  |  |
| 9: Shrubland                   | 7. On on Shrohlanda                       | 7: Open Shrublands                             |  |  |
|                                | /: Open Shrublands                        | 32: Shrub/Scrub                                |  |  |
| 10: Herbaceous                 |                                           | 34: Sedge/Herbaceous (not present in domain)   |  |  |
|                                | 12: Croplands                             | 12: Croplands                                  |  |  |
| 11. Planted/Cultivated         |                                           | 14: Cropland-Natural Vegetation Mosaic         |  |  |
|                                | 14: Cropland-Natural Vegetation Mosaic    | 37: Pasture/Hay                                |  |  |
|                                |                                           | 38: Cultivated Crops                           |  |  |
| 12: Grassland                  | 10: Grasslands                            | 10: Grasslands                                 |  |  |
|                                |                                           | 33: Grassland/Herbaceous                       |  |  |
| 12. Source                     | 8: Woody Savanna                          | 8: Woody Savanna                               |  |  |
| 15: Savanna                    | 9: Savanna                                | 9: Savanna                                     |  |  |
|                                |                                           | 11: Permanent Wetlands                         |  |  |
| 14: Wetlands                   | 11: Permanent Wetlands                    | 39: Woody Wetland                              |  |  |
|                                |                                           | 40: Emergent Herbaceous Wetland                |  |  |
|                                | 18: Wooded Tundra                         | 31: Dwarf Scrub (not present in domain)        |  |  |
| 15: Tundra                     | 19: Mixed Tundra                          | 35: Lichens (not present in domain)            |  |  |
|                                | 20: Barren Tundra (not present in domain) | 36: Moss (not present in domain)               |  |  |
| 16.0 11                        |                                           | 15: Snow and Ice                               |  |  |
| 16: Snow and Ice               | 15: Snow and Ice                          | 22: Perennial Ice/snow (not present in domain) |  |  |

Table S2. Model performance statistics for all daily maximum 8-hr average O<sub>3</sub> (MDA8 O<sub>3</sub>), hourly NO<sub>x</sub> and SO<sub>2</sub>, and 24-hr average total and speciated (SO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, organic carbon (OC) and elemental carbon (EC)) PM<sub>2.5</sub> mass samples collected at AQS monitors in 2016, including a comparison to the simulations used in Appel et al. (2021). The standard deviation over all samples is denoted as  $\sigma$  while NMB, MB, and RMSE represent the percentage normalized mean bias, mean bias, and root mean square error computed over all samples.

| 1 | 15 |  |
|---|----|--|
| L | 65 |  |

| Species                                                                                                                                                                                                                                                                               | Simulation                 | Observed                                               | Model | Observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Model | NMB    | MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Correlation |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| species                                                                                                                                                                                                                                                                               | Sindation                  | Mean                                                   | Mean  | σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | σ     | INND   | WID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RMBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conclation  |
| MDA8 O                                                                                                                                                                                                                                                                                | M3DRY_BASE_2016            |                                                        | 45.42 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.78  | 8.34   | 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.81        |
| (nnh)                                                                                                                                                                                                                                                                                 | M3Dry (Appel et al., 2021) | 41.03                                                  | 40.22 | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.63  | -4.06  | -1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.76        |
| (ppo)                                                                                                                                                                                                                                                                                 | STAGE BASE 2016            | 41.95                                                  | 45.24 | 12.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.10 | 7.89   | 3.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80        |
|                                                                                                                                                                                                                                                                                       | STAGE (Appel et al., 2021) |                                                        | 39.43 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.10 | -5.96  | -2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.74        |
|                                                                                                                                                                                                                                                                                       | M3DRY_BASE_2016            |                                                        | 8.41  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.80 | -37.10 | -4.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RMSE           7.91           7.93           7.91           8.50           18.60           18.50           18.60           18.60           18.60           18.60           18.60           18.60           18.60           18.60           18.60           18.60           18.60           18.60           18.40           2.86           2.86           5.08           0.55           0.53           1.00           1.00           1.00           1.00           1.71           1.51           1.80           1.57           0.40           0.33           0.40           0.33 | 0.53        |
| NO <sub>X</sub> (ppb)<br>SO <sub>2</sub> (ppb)<br>Total PM <sub>2.5</sub><br>(µg/m <sup>3</sup> )<br>SO <sub>4</sub> <sup>2-</sup>                                                                                                                                                    | M3Dry (Appel et al., 2021) | 12.26                                                  | 8.96  | 21.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.40 | -33.00 | -4.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.54        |
| NO <sub>X</sub> (ppb)                                                                                                                                                                                                                                                                 | STAGE BASE 2016            | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 8.42  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.80 | -37.00 | -4.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.53        |
|                                                                                                                                                                                                                                                                                       | STAGE (Appel et al., 2021) |                                                        | 9.03  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.50 | -32.40 | -4.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.54        |
|                                                                                                                                                                                                                                                                                       | M3DRY_BASE_2016            |                                                        | 0.79  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.10  | -11.20 | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.16        |
| Species<br>MDA8 O <sub>3</sub><br>(ppb)<br>NO <sub>x</sub> (ppb)<br>SO <sub>2</sub> (ppb)<br>Total PM <sub>2.5</sub><br>(µg/m <sup>3</sup> )<br>SO <sub>4</sub> <sup>2-</sup><br>(µg/m <sup>3</sup> )<br>NO <sub>3</sub> <sup>-</sup> (µg/m <sup>3</sup> )<br>OC (µg/m <sup>3</sup> ) | M3Dry (Appel et al., 2021) | 0.80                                                   | 0.81  | 2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.12  | -8.72  | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.16        |
| 50 <sub>2</sub> (ppb)                                                                                                                                                                                                                                                                 | STAGE BASE 2016            | 0.89                                                   | 0.80  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.09  | -10.10 | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.16        |
| SO <sub>2</sub> (ppb)<br>Total PM <sub>2.5</sub><br>(μg/m <sup>3</sup> )                                                                                                                                                                                                              | STAGE (Appel et al., 2021) |                                                        | 0.80  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.10  | -9.78  | -0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.16        |
|                                                                                                                                                                                                                                                                                       | M3DRY_BASE_2016            |                                                        | 7.90  | 5.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.87  | 4.39   | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.42        |
| Total PM <sub>2.5</sub>                                                                                                                                                                                                                                                               | M3Dry (Appel et al., 2021) | 7.57                                                   | 6.97  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.04  | -7.96  | -0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.53        |
| $(\mu g/m^3)$                                                                                                                                                                                                                                                                         | STAGE BASE 2016            |                                                        | 8.47  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.16  | 11.90  | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.43        |
| (µg/m)                                                                                                                                                                                                                                                                                | STAGE (Appel et al., 2021) |                                                        | 7.47  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.32  | -1.37  | -0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.53        |
| SO4 <sup>2-</sup>                                                                                                                                                                                                                                                                     | M3DRY_BASE_2016            | 0.78                                                   | 0.79  | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.61  | 1.07   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.67        |
|                                                                                                                                                                                                                                                                                       | M3Dry (Appel et al., 2021) |                                                        | 0.84  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.55  | 8.11   | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.69        |
| $(\mu g/m^3)$                                                                                                                                                                                                                                                                         | STAGE BASE 2016            |                                                        | 0.83  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.64  | 6.60   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.67        |
|                                                                                                                                                                                                                                                                                       | STAGE (Appel et al., 2021) |                                                        | 0.87  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.56  | 11.90  | MB         RMSE           3.50         7.91           -1.70         7.93           3.31         7.91           -2.50         8.50           -4.95         18.60           -4.95         18.60           -4.95         18.60           -4.94         18.60           -4.93         18.40           -0.10         2.86           -0.08         2.86           -0.09         2.86           -0.09         2.86           -0.09         2.86           -0.09         2.86           -0.09         6.86           -0.10         5.08           0.01         0.55           0.06         0.53           0.05         0.56           0.09         0.53           -0.08         1.00           -0.05         1.00           -0.08         1.00           0.52         1.71           0.12         1.51           0.68         1.80           0.24         1.57           0.07         0.40           0.00         0.33           0.08         0.40 | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
|                                                                                                                                                                                                                                                                                       | M3DRY_BASE_2016            |                                                        | 0.46  | 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.97  | -21.30 | -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.62        |
| SO <sub>2</sub> (ppb)<br>Total PM <sub>2.5</sub><br>(μg/m <sup>3</sup> )<br>SO <sub>4</sub> <sup>2-</sup><br>(μg/m <sup>3</sup> )<br>NO <sub>3</sub> <sup>-</sup> (μg/m <sup>3</sup> )<br>OC (μg/m <sup>3</sup> )                                                                     | M3Dry (Appel et al., 2021) | 0.50                                                   | 0.41  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.87  | -31.00 | -0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.60        |
| $NO_3 (\mu g/m^2)$                                                                                                                                                                                                                                                                    | STAGE BASE 2016            | 0.39                                                   | 0.53  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.07  | -8.89  | -0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.63        |
|                                                                                                                                                                                                                                                                                       | STAGE (Appel et al., 2021) |                                                        | 0.51  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00  | -13.30 | -0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.62        |
|                                                                                                                                                                                                                                                                                       | M3DRY_BASE_2016            |                                                        | 1.83  | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.68  | 39.90  | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50        |
| $OC(u a/m^3)$                                                                                                                                                                                                                                                                         | M3Dry (Appel et al., 2021) | 1.31                                                   | 1.43  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.57  | 9.22   | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.54        |
| OC (μg/m <sup>-</sup> )                                                                                                                                                                                                                                                               | STAGE BASE 2016            |                                                        | 1.98  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.77  | 51.90  | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.51        |
|                                                                                                                                                                                                                                                                                       | STAGE (Appel et al., 2021) |                                                        | 1.54  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.67  | 18.30  | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.54        |
|                                                                                                                                                                                                                                                                                       | M3DRY_BASE_2016            |                                                        | 0.39  | $ \begin{array}{c}     n & \sigma \\     2 \\     2 \\     2 \\     4 \\     3 \\   \end{array} $ 12.00 $ \begin{array}{c}     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\     2 \\$ | 0.46  | 23.50  | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.61        |
| EC (µg/m <sup>3</sup> )                                                                                                                                                                                                                                                               | M3Dry (Appel et al., 2021) |                                                        | 0.32  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.41  | 1.20   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.68        |
|                                                                                                                                                                                                                                                                                       | STAGE_BASE_2016            | 0.51                                                   | 0.39  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.47  | 25.20  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.61        |
|                                                                                                                                                                                                                                                                                       | STAGE (Appel et al., 2021) |                                                        | 0.32  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.41  | 2.83   | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.68        |

Table S3. Model performance statistics for all weekly total precipitation and  $SO_4^{2-}$ ,  $NO_3^{-}$ , and  $NH_4^+$  wet deposition samples collected at NADP NTN monitors in 2016, including a comparison to the simulations used in Appel et al. (2021). The standard deviation over all samples is denoted as  $\sigma$  while NMB, MB, and RMSE represent the percentage normalized mean bias, mean bias, and root mean square error computed over all samples.

| Species                                                                                                               | Simulation                 | Observed | Model | Observed | Model | NMB     | MB     | RMSE 19.30 17.00 19.30 17.00 0.115 0.097 0.115 0.096 0.126 0.115 0.127 0.115 0.079 0.074 0.076 0.070 | Correlation |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-------|----------|-------|---------|--------|------------------------------------------------------------------------------------------------------|-------------|
| -1                                                                                                                    |                            | Mean     | Mean  | σ        | σ     |         |        |                                                                                                      | _           |
|                                                                                                                       | M3DRY_BASE_2016            |          | 19.52 | 26.40    | 25.00 | -1.84   | -0.37  | 19.30                                                                                                | 0.72        |
| Precipitation                                                                                                         | M3Dry (Appel et al., 2021) | 19.89    | 18.11 |          | 23.80 | -8.94   | -1.78  | 17.00                                                                                                | 0.78        |
| (mm)                                                                                                                  | STAGE BASE 2016            |          | 19.52 |          | 25.00 | -1.84   | -0.37  | 19.30                                                                                                | 0.72        |
|                                                                                                                       | STAGE (Appel et al., 2021) |          | 18.11 |          | 23.80 | -8.94   | -1.78  | 17.00                                                                                                | 0.78        |
| Species<br>Precipitation<br>(mm)<br>SO4 <sup>2-</sup> (kg/ha)<br>NO3 <sup>-</sup> (kg/ha)<br>NH4 <sup>+</sup> (kg/ha) | M3DRY BASE 2016            | 0.088    | 0.078 | 0.130    | 0.130 | -11.600 | -0.010 | 0.115                                                                                                | 0.61        |
|                                                                                                                       | M3Dry (Appel et al., 2021) |          | 0.071 |          | 0.101 | -18.900 | -0.017 | 0.097                                                                                                | 0.68        |
|                                                                                                                       | STAGE BASE 2016            |          | 0.080 |          | 0.131 | -9.050  | -0.008 | 0.115                                                                                                | 0.61        |
|                                                                                                                       | STAGE (Appel et al., 2021) |          | 0.070 |          | 0.096 | -20.700 | -0.018 | 0.096                                                                                                | 0.69        |
| Species<br>Precipitation<br>(mm)<br>SO4 <sup>2-</sup> (kg/ha)<br>NO3 <sup>-</sup> (kg/ha)<br>NH4 <sup>+</sup> (kg/ha) | M3DRY BASE 2016            |          | 0.101 | 0.150    | 0.125 | -14.200 | -0.017 | 0.126                                                                                                | 0.6         |
|                                                                                                                       | M3Dry (Appel et al., 2021) | 0.118    | 0.109 |          | 0.143 | -7.580  | -0.009 | 0.115                                                                                                | 0.69        |
| NO <sub>3</sub> (kg/na)                                                                                               | STAGE BASE 2016            |          | 0.103 |          | 0.127 | -12.700 | -0.015 | 0.127                                                                                                | 0.6         |
| Species<br>Precipitation<br>(mm)<br>SO4 <sup>2-</sup> (kg/ha)<br>NO3 <sup>-</sup> (kg/ha)<br>NH4 <sup>+</sup> (kg/ha) | STAGE (Appel et al., 2021) |          | 0.110 |          | 0.144 | -6.490  | -0.008 | 0.115                                                                                                | 0.7         |
| NH4 <sup>+</sup> (kg/ha)                                                                                              | M3DRY BASE 2016            | 0.055    | 0.027 | 0.085    | 0.046 | -50.200 | -0.027 | 0.079                                                                                                | 0.49        |
|                                                                                                                       | M3Dry (Appel et al., 2021) |          | 0.029 |          | 0.047 | -47.700 | -0.026 | 0.074                                                                                                | 0.58        |
|                                                                                                                       | STAGE BASE 2016            |          | 0.031 |          | 0.051 | -43.000 | -0.024 | 0.076                                                                                                | 0.52        |
|                                                                                                                       | STAGE (Appel et al., 2021) |          | 0.033 |          | 0.051 | -39.800 | -0.022 | 0.070                                                                                                | 0.62        |



Figure S1: Annual MDA8 O<sub>3</sub> and PM<sub>2.5</sub> mean biases for the M3DRY\_2016 and STAGE\_2016 base case simulations analyzed in this study this study and the corresponding "CMAQ531\_WRF411\_M3Dry\_BiDi" and "CMAQ531\_WRF411\_STAGE\_BiDi" 2016 CMAQv5.3.1 simulations analyzed in Appel et al. (2021).

2016 Monthly Mean



Figure S2. 2016 monthly mean observed and modeled concentrations at AQS sites for MDA O<sub>3</sub>, SO<sub>2</sub>, NO<sub>x</sub>, and total and speciated PM<sub>2.5</sub>. Appel\_M3DRY and Appel\_STAGE refers to the "CMAQ531\_WRF411\_M3Dry\_BiDi" and "CMAQ531\_WRF411\_STAGE\_BiDi" 2016 CMAQv5.3.1 simulations analyzed in Appel et al. (2021).



195 Figure S3: Monthly mean observed and modeled precipitation and wet deposition at NADP NTN sites. Appel\_M3DRY and Appel\_STAGE refers to the "CMAQ531\_WRF411\_M3Dry\_BiDi" and "CMAQ531\_WRF411\_STAGE\_BiDi" 2016 CMAQv5.3.1 simulations analyzed in Appel et al. (2021).



200 Figure S4: Impact of different WRF configuration options used in this study vs. Appel et al. (2021) on annual mean surface values of several meteorological fields, O<sub>3</sub>, and aerosol species. The maps show absolute differences calculated as M3DRY\_2016 minus M3DRY\_LTNGNO\_BASE\_2016.



205 Figure S5: Impact of different lateral boundary conditions used in this study vs. Appel et al. (2021) on annual mean surface values of several gas phase and aerosol species. The maps show absolute differences calculated as M3DRY\_2016 minus M3DRY\_HCMAQ\_2016.



210 Figure S6: Impact of different anthropogenic and fire emission files used in this study vs. Appel et al. (2021) on annual mean surface values of several gas phase and aerosol species. The maps show absolute differences calculated as M3DRY\_2016 minus M3DRY\_APPEL\_EMIS\_2016. "Soil" fine aerosol concentrations are estimated from simulated crustal elements as 2.20\*Al + 2.49\*Si + 1.63\*Ca + 2.42\*Fe + 1.94\*Ti.



Figure S7: Impact of different lightning NO emission representation on May – September surface mixing ratios of O<sub>3</sub> and NO<sub>2</sub>, column NO<sub>2</sub>, and dry and wet deposition of total nitrogen. The maps show percentage differences calculated as M3DRY\_LTNGNO\_BASE\_2016 minus M3DRY\_LTNGNO\_NLDN\_2016 relative to M3DRY\_LTNGNO\_BASE\_2016.



Figure S8: Maps of fractional coverage of the 16 AQMEII4 LU categories (Galmarini et al., 2021) in the M3DRY\_2016 simulations using MODIS LU. As noted in Section 2.3.1, the M3Dry simulations were performed using the 20 native MODIS LU categories and the mapping to the AQMEII4 categories was performed during post-processing. None of the 20 MODIS LU categories correspond to the AQMEII4 herbaceous category.



Figure S9: Domainwide fractional coverage of the 16 AQMEII4 LU categories (Galmarini et al., 2021) in the M3DRY\_2016 and STAGE\_2016 simulations. As noted in Section 2.3.1, the M3Dry simulations were performed using the 20 native MODIS LU categories and the mapping to the AQMEII4 categories was performed during post-processing while the STAGE simulations were performed using the AQMEII4 categories. None of the 20 MODIS LU categories correspond to the AQMEII4 herbaceous category. See discussion in the text on the small differences in fractional coverage between M3DRY 2016 and STAGE 2016.



Figure S10. Domain average summer and winter diurnal cycles of LU-specific O<sub>3</sub> inverted stomatal resistances for M3DRY\_2016 and STAGE\_2016.



 $1/R_{cut}\,O_3$ 

Figure S11. Domain average summer and winter diurnal cycles of LU-specific O<sub>3</sub> inverted cuticular resistances for M3DRY 2016 and STAGE 2016.



## Figure S12. Domain average summer and winter diurnal cycles of LU-specific O<sub>3</sub> inverted in-canopy convective resistances for M3DRY\_2016 and STAGE\_2016.

\*Values for the barren and snow and ice LU categories were divided by 10 and 30, respectively, to fit on the same yaxis as values for all other LU categories





Figure S13. Domain average summer and winter diurnal cycles of LU-specific  $O_3$  inverted canopy quasilaminar sublayer resistances for M3DRY\_2016 and STAGE\_2016. Note that in M3Dry, the quasi-laminar sublayer resistance is pathway independent while in STAGE it differs between the canopy (cuticular and stomatal) and ground (vegetated and bare soil) pathways.



Figure S14. Domain average summer and winter diurnal cycles of LU-specific  $O_3$  inverted ground quasilaminar sublayer resistances for M3DRY\_2016 and STAGE\_2016. Note that in M3Dry, the quasi-laminar sublayer resistance is pathway independent while in STAGE it differs between the canopy (cuticular and stomatal) and ground (vegetated and bare soil) pathways.





Figure S15. Domain average summer and winter diurnal cycles of LU-specific O<sub>3</sub> inverted aerodynamic resistances for M3DRY\_2016 and STAGE\_2016.



Figure S16. Left column: annual mean WRF PX grid-scale (top row) and LU-weighted sum of LU-specific  $u_*$  values for M3DRY\_2016 (second row), STAGE\_2016 (third row), and STAGE\_REF\_2016 (fourth row). Center column: absolute differences between annual mean LU-weighted sum of LU-specific and WRF PX grid-scale  $u_*$  values. Right columns: percentage differences between annual mean LU-weighted sum of LU-specific and WRF PX grid-scale  $u_*$  values.



Figure S17. Left column: annual mean WRF PX grid-scale (top row) and LU-weighted sum of LU-specific inverted R<sub>a</sub> values for M3DRY\_2016 (second row), STAGE\_2016 (third row), and STAGE\_REF\_2016 (fourth row). Center column: absolute differences between annual mean LU-weighted sum of LU-specific and WRF PX grid-scale inverted R<sub>a</sub> values. Right columns: percentage differences between annual mean LU-weighted sum of LU-specific and WRF PX grid-scale inverted R<sub>a</sub> values.



Figure S18: Maps of differences in the fractional coverage of the 16 AQMEII4 LU categories (Galmarini et al., 2021) between the M3Dry simulations using WRF PX LSM configured with MODIS and NLCD LU (i.e. M3DRY\_2016 and M3DRY\_NLCD40\_2016), respectively. Differences are shown as M3DRY\_2016 - M3DRY\_NLCD40\_2016. As noted in Section 2.3.1, the CMAQ M3Dry calculations and post-processor estimates of LU specific and aggregated diagnostic variables were performed using native LU categories from the MODIS and NLCD schemes. Aggregation to the 16 category AQMEII4 LU scheme was performed through mapping and LU weighted averaging of equivalent categories (Table S3). None of the MODIS LU categories correspond to the AQMEII4 herbaceous category.

#### 290 References

295

300

Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G. A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G., Schwede, D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation, Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021

Heath, N., Pleim, J., Gilliam, R. and Kang, D.: A simple lightning assimilation technique for improving retrospective WRF simulations. J. Adv. Model Earth Syst., 8, doi:10.1002/2016MS000735, 2016

Kang, D.; Hogrefe, C.; Sarwar, G.; East, J.D.; Madden, J.M.; Mathur, R.; Henderson, B.H. Assessing the Impact of Lightning NOx Emissions in CMAQ Using Lightning Flash Data from WWLLN over the Contiguous United States. Atmosphere, 13, 1248. https://doi.org/10.3390/atmos13081248, 2022

Zhang, Y., Foley, K. M., Schwede, D. B., Bash, J. O., Pinto, J. P., & Dennis, R. L.: A measurement-model fusion approach for improved wet deposition maps and trends. Journal of Geophysical Research: Atmospheres, 124, 4237–4251. https://doi.org/10.1029/2018JD029051, 2019