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Abstract. We apply atmospheric methane column retrievals from two different satellite instruments (Green-
house gases Observing SATellite – GOSAT; TROPOspheric Monitoring Instrument – TROPOMI) to a regional
inversion framework to quantify East Asian methane emissions for 2019 at 0.5◦× 0.625◦ horizontal resolution.
The goal is to assess if GOSAT (relatively mature but sparse) and TROPOMI (new and dense) observations
inform consistent methane emissions from East Asia with identically configured inversions. Comparison of the
results from the two inversions shows similar correction patterns to the prior inventory in central northern China,
central southern China, northeastern China, and Bangladesh, with less than 2.6 Tg a−1 differences in regional
posterior emissions. The two inversions, however, disagree over some important regions, particularly in northern
India and eastern China. The methane emissions inferred from GOSAT observations are 7.7 Tg a−1 higher than
those from TROPOMI observations over northern India but 6.4 Tg a−1 lower over eastern China. The discrep-
ancies between the two inversions are robust against varied inversion configurations (i.e., assimilation window
and error specifications). We find that the lower methane emissions from eastern China inferred by the GOSAT
inversion are more consistent with independent ground-based in situ and total column (TCCON) observations,
indicating that the TROPOMI retrievals may have high XCH4 biases in this region. We also evaluate inversion
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results against tropospheric aircraft observations over India during 2012–2014 by using a consistent GOSAT in-
version of earlier years as an intercomparison platform. This indirect evaluation favors lower methane emissions
from northern India inferred by the TROPOMI inversion. We find that in this case the discrepancy in emission
inference is contributed by differences in data coverage (almost no observations by GOSAT vs. good spatial cov-
erage by TROPOMI) over the Indo-Gangetic Plain. The two inversions also differ substantially in their posterior
estimates for northwestern China and neighboring Kazakhstan, which is mainly due to seasonally varying biases
between GOSAT and TROPOMI XCH4 data that correlate with changes in surface albedo.

1 Introduction

Methane (CH4) is a powerful greenhouse gas, with a global
warming potential ∼ 80 times that of carbon dioxide (CO2)
on a 20-year timescale and ∼ 30 times on a 100-year
timescale (Forster et al., 2021). In 2020, the atmospheric
methane concentration increased to 1889± 2 ppbv, 262 % of
pre-industrial levels in 1750, driven primarily by increasing
anthropogenic emissions (WMO, 2021). The last decade has
seen rapid growth of atmospheric methane (∼ 8.6 ppbv a−1),
after a brief period of stabilization in the early 2000s (Dlu-
gokencky et al., 2011; Fletcher and Schaefer, 2019; Rigby
et al., 2008; Yin et al., 2021; Zhang et al., 2021). Rising
methane concentrations, if continued at current rates in com-
ing decades, may negate benefits of CO2 emission reduction,
and therefore curbing methane emissions in the 2020s is vital
for the success of the Paris Agreement (Ganesan et al., 2019;
Nisbet et al., 2019).

Information on methane emissions is required at global,
national, and regional levels to guide climate actions on
methane. Current bottom-up inventories are often inadequate
for this purpose because of their large uncertainties in emis-
sion factors and lack of information on emission activities
(Saunois et al., 2020). Independent measurements of atmo-
spheric methane, including those from satellite remote sens-
ing, are thus used to evaluate and improve these bottom-
up inventories (Jacob et al., 2016). This is generally done
through an inversion of atmospheric observations with a
chemical transport model (CTM) to characterize the rela-
tionship between emissions and concentrations. Atmospheric
methane is measured by two classes of satellite instruments,
point source imagers and area flux mappers. While point
sources imagers (e.g., Sentinel-2, Landsat, GHGSat) spe-
cialize in detecting large emissions from point sources, area
flux mappers provide high-precision measurements that can
be used to constrain methane fluxes on regional and global
scales (Jacob et al., 2022). Area flux mappers that are cur-
rently in operation include the TANSO-FTS instrument on
board the Greenhouse gases Observing SATellite (GOSAT)
launched in 2009 (Kuze et al., 2016) and the more re-
cent TROPOspheric Monitoring Instrument (TROPOMI) on
board the Sentinel-5 Precursor (S5P) satellite launched in
2017 (Hu et al., 2016; Lorente et al., 2021a; Veefkind et al.,
2012). Satellite observations made by these area flux map-

pers are especially valuable in constraining methane emis-
sions over regions with no or only sparse ground networks,
including Africa, South America, and East and South Asia
(Lu et al., 2021).

Both GOSAT and TROPOMI operate in sun-synchronous
orbits and retrieve column-averaged dry-air methane mole
fractions (XCH4) from backscattered solar shortwave in-
frared radiation. TROPOMI continuously images the land
surface at a pixel resolution of 7 km× 7 km (5.5 km× 7 km
after August 2019) with daily global coverage (Hu et al.,
2018; Lorente et al., 2021a; Sha et al., 2021), while GOSAT
in its standard viewing mode measures with a 3 d return
time in 10 km diameter circular footprints that are typically
spaced ∼ 250 km apart (Butz et al., 2011; Kuze et al., 2009,
2016; Yokota et al., 2009). As a result of differing sam-
pling strategies, TROPOMI generates much higher observa-
tion density than GOSAT, which in principle should benefit
fine-resolution inversions. The two instruments also measure
at different wavelengths: GOSAT at the 1.65 µm band and
TROPOMI at the 2.3 µm band. This affects the algorithm
that can be applied to retrieve XCH4. Operational TROPOMI
retrievals use the RemoTeC full-physics method (Hu et al.,
2018). The method is prone to spatially and temporally vari-
able biases owing to scattering artifacts (Hu et al., 2018;
Lorente et al., 2021a; Sha et al., 2021). These biases in gen-
eral are not reducible with more observations and, if not cor-
rected, can translate into biases in emission estimates in an
inversion. Because of spectrally adjacent CO2 and CH4 ab-
sorption in the 1.65 µm band, GOSAT retrievals can alterna-
tively use the CO2 proxy method, in which XCH4 is derived
from directly retrieved CH4 to CO2 column ratios and inde-
pendently specified (simulated or assimilated) CO2 columns
(Alexe et al., 2015; Frankenberg et al., 2005, 2006; Parker et
al., 2015, 2020). The proxy method usually results in reduced
variable biases, as scattering artifacts largely cancel out in re-
trieving CH4 to CO2 column ratios. It is, however, subject to
any errors in specified CO2 columns. The proxy method also
leads to a better retrieval success rate over regions with high
aerosol loadings or thin clouds, as the method is less sensitive
to this interference compared to the full-physics approach.

A number of studies have applied GOSAT data in inver-
sions on a range of scales (Alexe et al., 2015; Cressot et al.,
2014; Feng et al., 2022; Lu et al., 2021; Maasakkers et al.,
2019; Monteil et al., 2013; Pandey et al., 2016; Turner et al.,
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2015; Zhang et al., 2021). TROPOMI data have also been ap-
plied in several regional inversion studies (Chen et al., 2022;
McNorton et al., 2022; Shen et al., 2021, 2022; Zhang et
al., 2020), often with the focus on resolving fine-scale emis-
sion hotspots. Qu et al. (2021) performed global inversions
of GOSAT and TROPOMI observations at 2◦× 2.5◦ resolu-
tion in a comparative analysis, and they showed that methane
emissions inferred from the two inversions are generally con-
sistent on the global scale but with significant regional dis-
crepancies including over China.

Here we present high-resolution (0.5◦× 0.625◦) inver-
sions of GOSAT and TROPOMI observations over East Asia.
The main objective is to assess the consistency of methane
fluxes inferred from the two sets of satellite data that differ in
their data coverage and regional bias (Qu et al., 2021), adding
information to the uncertainty characterization of satellite-
based methane emission accounting. We perform the analy-
ses with identically configured inversions to isolate the ef-
fects of observation data, and we further use independent
ground-based observations to evaluate the discrepancies be-
tween the two inversions and discuss the cause of differ-
ences. This study focuses on East Asia (including China and
northern India), which is one of the world’s major methane-
emitting regions and accounts for more than 20 % of global
emissions (UNFCCC, 2020). The region has been an impor-
tant contributor to global increases in methane emissions, but
the magnitude of the trend and its sectoral attributions are de-
bated (Ganesan et al., 2017; Gao et al., 2021; Liu et al., 2021;
Miller et al., 2019; Sheng et al., 2021; Zhang et al., 2021).

2 Observation data

2.1 Satellite observations

We used XCH4 observations from GOSAT and TROPOMI
for 2019 in regional inversions over East Asia. For GOSAT,
we use the University of Leicester Proxy XCH4 v9.0
retrievals (Parker and Boesch, 2020). Our inversion as-
similates only high-quality GOSAT retrievals flagged as
“xch4_quality_flag= 0” over both land and ocean (glint
mode). This GOSAT product is based on the CO2 proxy
method, which use the ratio between simulated (XCOmodel

2 )
and retrieved (XCOraw

2 ) CO2 columns to correct for retrieved
methane columns (XCHraw

4 ) that are sensitive to aerosol and
surface interference:

XCH4 =
XCHraw

4
XCOraw

2
×XCOmodel

2 . (1)

This limits variable biases because both XCHraw
4 and XCOraw

2
are similarly affected by scattering artifacts, but the method
is subject to any biases in specified CO2 columns (Parker et
al., 2015).

The University of Leicester Proxy XCH4 v9.0 retrieval
takes the median CO2 columns from three atmospheric
chemistry transport models as XCOmodel

2 , and the range of

the three models characterizes the XCOmodel
2 uncertainty

(Fig. S1). The disagreement among these three models is
∼ 1 ppm over remote regions, ∼ 2 ppm over eastern China,
and 2–4 ppm in India, Bangladesh, and southwestern China,
which roughly translates to uncertainties of 0.3, 0.4, and
0.5 %–1.0 %, respectively, in retrieved XCH4.

For TROPOMI, we use the SRON RemoTeC-S5P XCH4
scientific product from Lorente et al. (2021a). The im-
proved algorithm by Lorente et al. (2021a) was later im-
plemented in the official operational product (v2.02.00) in
July 2021 (Lorente et al., 2022). They derived an em-
pirical correction formula to improve surface-reflectance-
dependent biases identified in TROPOMI full-physics re-
trievals. The correction in general improves data quality over
scenes with low (e.g., snow cover) and high surface albedo
(e.g., deserts), which are challenging for a full-physics al-
gorithm. Large corrections are made in eastern China, Xin-
jiang (China), Southeast Asia, and Siberia (Fig. S2). Bias-
corrected TROPOMI retrievals flagged with “qa_value= 1”
are used for inversion. This version of the TROPOMI product
does not provide glint-mode ocean retrievals.

Figure 1 shows the spatial distributions of XCH4 mea-
sured by GOSAT and TROPOMI, annually averaged on the
0.625◦× 0.5◦ grid. Both datasets show high XCH4 in eastern
China and northern India and low XCH4 over the Mongolian
and Tibetan plateaus, although TROPOMI provides much
better spatial coverage than GOSAT over most regions. There
are in total 45 018 observations for GOSAT and 8 860 722 for
TROPOMI. We take averages when multiple measurements
fall within a 0.625◦× 0.5◦ grid cell on any individual day
(this procedure affects primarily dense TROPOMI data), and
the resulting gridded daily observations are used in the in-
version. The spatial distribution of gridded daily observation
numbers is shown in Fig. S3.

We refer to the XCH4 retrieval products used in this study
as GOSAT or TROPOMI observations and corresponding in-
versions as GOSAT or TROPOMI inversions for simplicity.
There are other operational and scientific retrieval products
available from both GOSAT and TROPOMI measurements
(e.g., the operational GOSAT XCH4 retrieval, Yoshida et
al., 2013; the scientific TROPOMI/WFMD XCH4 retrieval,
Schneising et al., 2019). Our analyses and conclusions are
specific to the two retrieval products used here, though we
expect that some of them can also apply to other retrievals.

2.2 Independent evaluation data

We use a suite of independent high-quality methane ob-
servations to evaluate the posterior emissions inferred from
satellite observations, including surface in situ observations,
ground-based remote sensing observations, and tropospheric
in situ measurements from commercial airlines. Table S1
provides a descriptive list of these surface sites, and Fig. 2
shows the locations of surface sites and a representative flight
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Figure 1. The 2019 annual average methane column mole fractions over the East Asia domain for GOSAT (University of Leicester Proxy
v9.0 retrieval) and TROPOMI (Lorente et al., 2021a, full-physics retrieval), presented on the 0.5◦× 0.625◦ GEOS-Chem grid.

path. These suborbital observations are of good accuracy and
precision compared to satellite observations.

Surface in situ observations are available through World
Data Centre for Greenhouse Gases (WDCGG) or the CH4
GLOBALVIEWplus v4.0 ObsPack (Schuldt et al., 2021).
The five sites are Anmyeon-do (AMY), Pha Din (PDI), Lulin
(LLN), Ulaan Uul (UUM), and Waliguan (WLG) (Dlugo-
kencky et al., 1994, 2021; Lee et al., 2019; Nguyen and Stein-
bacher, 2021). Observations are done with either continuous
(hourly) online instruments or weekly collected flasks (Ta-
ble S1). Daytime measurements are used for evaluating sim-
ulations. Most of these sites are continental or subcontinen-
tal background sites (PDI, LLN, UUM, and WLG), and their
observations are insensitive to local methane emissions. An
exception is AMY, which is affected by local Korean emis-
sions as well as upwind eastern China emissions.

Total methane column observations by ground-based
Fourier transform infrared (FTIR) spectrometers are avail-
able at two TCCON sites located in eastern China, Hefei
(HF) and Xianghe (XH) (Liu et al., 2023; Yang et al., 2020),
and their observations are sensitive to methane emissions
from eastern China. We note that a previous evaluation of
GOSAT and TROPOMI against TCCON did not include data
from these two sites, as their data were not available then (Qu
et al., 2021). We use only measurements with solar zenith an-
gles <60◦ to ensure high data quality.

All the above surface sites are far from northern India,
which is a major methane-emitting region in the study do-
main. The only relevant dataset available to us in this area
comes from the Civil Aircraft for the Regular Investiga-
tion of the atmosphere Based on an Instrument Container
(CARIBIC) project (available via the CH4 GLOBALVIEW-
plus v4.0 ObsPack, Schuldt et al., 2021), which includes reg-
ular flights in the troposphere over northern India. However,
these data were collected in earlier years between 2012 and
2014 before the time of TROPOMI. In the absence of better
observation data, we compare these 2012–2014 aircraft ob-
servations to a simulation driven by a similarly configured
GOSAT inversion for an earlier period (2010–2017) (Zhang

Figure 2. Spatial distribution of prior emissions. Locations of inde-
pendent data for evaluation (seven surface sites and aircraft route)
are shown. Circles represent background sites and triangles source-
region sites. Total column measurements are coded in red and in
situ measurements in blue. The solid purple line shows a CARIBIC
aircraft route that measured tropospheric methane over India on
22 November 2012.

et al., 2022). By doing so, we assume that any systematic bias
derived from this comparison should still be representative of
the 2019 GOSAT inversion.

3 Inverse analysis

3.1 Forward model and prior emissions

We use GEOS-Chem v12.9.3 as the forward model for the in-
version. The simulation is conducted for 2019 over East Asia
(15–55◦ N, 60–140◦ E) on a 0.5◦× 0.625◦ horizontal grid
with 47 vertical layers and is driven by MERRA-2 meteoro-
logical fields from the NASA Global Modeling and Assimi-
lation Office (GMAO) (Gelaro et al., 2017). The initial con-
centration fields on 1 January 2019 and 3-hourly boundary
conditions for the nested domain are taken from a global in-
version of TROPOMI data for 2019 (Qu et al., 2021). We find
that the boundary conditions from this global inversion still
have biases over East Asia (discussed further in Sect. 4.3.3),
which may partly be due to the fact that Qu et al. (2021) used
an earlier version of TROPOMI retrievals. In our inversion,
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we optimize for systematic biases at four lateral boundaries
together with methane emissions.

Prior emissions (Fig. 2) used in GEOS-Chem simulations
are compiled from bottom-up sectoral inventories (Table S2).
In brief, we use EDGAR v4.3.2 (Janssen-Maenhout et al.,
2019) for anthropogenic methane emissions, with those from
fossil fuel exploitation replaced by Scarpelli et al. (2020)
(oil and gas; coal outside of China) and Sheng et al. (2019)
(coal in China). A comparison with a more recent inven-
tory EDGAR v6 shows no large revisions of anthropogenic
methane emissions over the study region that we expect
to have a great impact on the inversion results (Fig. S4).
For natural emissions, we use the ensemble average of the
WetCHARTs version 1.0 inventory for wetlands (Bloom et
al., 2017), the Quick Fire Emissions Dataset (QFED) v2.4r8
for biomass burning, Fung et al. (1991) for termite emissions,
and Maasakkers et al. (2019) for geological sources.

While methane sinks are not optimized in our regional in-
version, they are explicitly simulated in GEOS-Chem sim-
ulations. We use monthly OH fields from a full-chemistry
GEOS-Chem simulation (Wecht et al., 2014) and soil absorp-
tion from Murguia-Flores et al. (2018).

3.2 Inversion procedure

We perform analytical Bayesian inversions to optimize a
state vector x containing annual methane emissions from 600
clusters and average methane column biases at four model
boundaries. We optimize emissions on 600 spatial clusters
instead of the native 0.5◦× 0.625◦ grid (Fig. S5), which are
generated based on a Gaussian mixed model (GMM) algo-
rithm proposed by Turner and Jacob (2015). This strategy
significantly reduces the computation of an analytical inver-
sion while accounting for major patterns in the distribution
of methane emissions. We also optimize for biases in bound-
ary conditions on four sides of our domain (east, south, west,
north). Examination of our prior simulation finds domain-
wide biases against either GOSAT or TROPOMI observa-
tions that can only be attributed to biased boundary condi-
tions. The optimization is done annually for our main result.
In addition, we also perform a seasonal optimization in a sen-
sitivity inversion.

Assuming a Gaussian distribution of error, the optimal
estimate of x is obtained by minimizing the cost function
(Brasseur and Jacob, 2017; Rodgers, 2000):

J (x)= (x− xA)TS−1
A (x− xA)

+ (y−F (x))TS−1
O (y−F (x)), (2)

where xA represents prior estimates for x and y is the ob-
servation vector containing either TROPOMI or GOSAT ob-
servations, and F is a function of x representing the forward
model. SA and SO are respectively prior and observation er-
ror covariance matrices, and their specification is described
and discussed in Sect. 3.3.

The forward model (GEOS-Chem) can be described by a
linear equation:

F (x)=Kx, (3)

where K=∇xF is the Jacobian matrix, which describes the
sensitivity of observations to the state vector. The cost func-
tion is minimized at ∇xJ (x)= 0, which yields the optimal
estimate (x̂),

x̂ = xA+
(

KTS−1
O K+S−1

A

)−1
KTS−1

O (y−KxA) , (4)

with the posterior error covariance matrix Ŝ,

Ŝ=
(

KTS−1
O K+S−1

A

)−1
, (5)

and the averaging kernel matrix A that describes the sensitiv-
ity of the optimal solution to the true value:

A=
∂x̂

∂x
= In− ŜS−1

A . (6)

The trace of A is referred to as the degrees of freedom for
signal (DOFS), which represents the number of independent
pieces of information constrained by an observing system.

We apply a transformation vector w to aggregate the poste-
rior estimate regionally (x̂r = wTx̂). The corresponding pos-
terior error covariance for the region (σ̂ 2

r ) is then computed
as

σ̂ 2
r = wTŜw. (7)

3.3 Error specification

The observation error covariance matrix SO represents total
random errors from both the methane retrieval (y) and the
forward model (F (x)). It can be decomposed as SO =6C6,
where 6 is the diagonal standard deviation matrix and C is
the error correlation matrix. In general, inverting SO (which
has a dimension of 10 000–10 000 000) in Eqs. (4) and (5) is
computationally difficult if C is non-diagonal. The computa-
tional challenge can be eased by omitting error correlations
(SO =62), but this assumption of error independence un-
realistically increases the power of individual observations,
leading to overfitting (highly unlikely departure of the poste-
rior solution from the prior estimate) (Zhang et al., 2018). To
remedy this issue, previous studies introduce a scalar factor
γ (SO =

62

γ
), which serves to enlarge the observation error

(γ is usually<1) and thus de-weight individual observations
(e.g., Maasakkers et al., 2019; Qu et al., 2021; Zhang et al.,
2018). The γ value, which plays the same role as the regular-
ization parameter in Tikhonov methods, can be determined
through the graph-based L-curve method (Hansen, 1998; Lu
et al., 2021); however, results are sometimes ambiguous and
often difficult to interpret physically.
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Here, we propose an alternative method. We first deter-
mine the diagonal matrix 6 following the residual error
method (Heald et al., 2004), which yields observation error
standard deviations that average 16 ppbv for TROPOMI and
18 ppbv for GOSAT. Then, we specify a full error correla-
tion matrix C. We parametrize the entry Cij as a function of
the distance (1dij ) and the time (1tij ) between ith and j th
observations:

Cij = exp
(
−
1dij

ρd

)
exp

(
−
1tij

ρt

)
, (8)

where ρd and ρt are correlation scales in space and time, re-
spectively. The values of ρd and ρt can be determined em-
pirically by analyzing spatial and temporal correlations in
prior residual errors (Fig. S6). In our case, we find ρt = 7 d
and ρd = 400 km. Finally, we find C̃−1, a computationally
tractable (diagonal) approximation to C−1, and replace S−1

O
in Eqs. (4) and (5) with 6−1C̃−16−1. See Appendix A for
the derivation of C̃−1. Compared to the traditional γ fac-
tor, this method provides better interpretability by explicitly
specifying error correlations. Moreover, C̃−1 can be unequiv-
ocally determined once C is specified. For comparison, we
also include a sensitivity inversion in which SO is specified
as 62

γ
with γ = 0.6 for GOSAT observations and γ = 0.09

for TROPOMI observations following the procedure by Lu
et al. (2021) (Fig. S7).

For the prior error covariance matrix SA, we take it as a
diagonal matrix and assume a 50 % standard deviation for
prior emissions and a 1 % standard deviation for boundary
conditions. We also test two alternative configurations for SA
in sensitivity inversions: (1) the relative error standard devi-
ation for prior emissions is enlarged to 100 %; and (2) the
error standard deviation for prior emissions is specified as
50 % or 1× 10−10 kg m−2 s−1, whichever is larger. The lat-
ter SA specification gives the inversion more freedom to ad-
just at locations where prior methane emissions are small or
nonexistent.

4 Results and discussion

4.1 Comparison of methane emissions from TROPOMI
and GOSAT inversions

Figure 3 shows the correction patterns of methane emis-
sions (posterior–prior emissions) respectively inferred from
TROPOMI and GOSAT inversions. Both inversions find that
the prior inventory underestimates methane emissions from
northeastern China (NEC) and Bangladesh (BAN) and over-
estimates emissions from central southern China (CSC). The
two inversions also find similar correction patterns in cen-
tral northern China (CNC) with upward adjustments over
central Shanxi and downward adjustments over neighboring
Henan province. These agreements reflect some consisten-
cies between TROPOMI and GOSAT inversions at the re-
gional level.

TROPOMI and GOSAT inversions show large differences
over important source regions, including eastern China (EC)
and northern India (IND) (Fig. 3). While the GOSAT inver-
sion suggests that methane emissions over IND should be
increased and those from EC decreased relative to prior esti-
mates, the TROPOMI inversion finds the opposite. As a re-
sult, regional total methane emissions inferred by the two in-
versions differ by 7.7 Tg a−1 or 27 % over IND (TROPOMI:
24.6± 0.6 Tg a−1, GOSAT: 32.3± 0.8 Tg a−1) (errors re-
ported for regional estimates are 1σ standard deviations
derived from posterior error covariance matrices) and by
6.4 Tg a−1 or 29 % over EC (TROPOMI: 28.0± 0.8 Tg a−1,
GOSAT: 21.6± 1.0 Tg a−1) (Fig. 3c). In addition, the two
inversions also disagree over the northwestern part of the
domain (NWD, including parts of Kazakhstan and north-
ern Xinjiang in China, and SXJC, including mainly southern
Xinjiang), where TROPOMI indicates large upward adjust-
ments while GOSAT finds agreement with the prior inven-
tory.

Table S2 summarizes methane emission estimates from
TROPOMI and GOSAT inversions over the entire East Asia
domain and over China. The two inversions find consistent
posterior methane emissions from East Asia (TROPOMI:
142.7± 1.3 Tg a−1; GOSAT: 142.6± 1.5 Tg a−1), with dif-
ferences in China (TROPOMI: 73.7± 0.9 Tg a−1; GOSAT:
66.4± 1.1 Tg a−1) largely canceled out by differences in
northern India. For China, we attribute 67.9 Tg a−1 for the
TROPOMI inversion and 61.6 Tg a−1 for the GOSAT inver-
sion to anthropogenic emissions based on prior sectoral frac-
tions in each spatial cluster. These values are at the high
end of previous inversion-based estimates of 43–62 Tg a−1

(Deng et al., 2022; Lu et al., 2021; Miller et al., 2019; Qu et
al., 2021; Saunois et al., 2020; Sheng et al., 2021; Stavert et
al., 2022; Wang et al., 2021; Zhang et al., 2021, 2022) and
are higher than China’s latest submission to the United Na-
tions Framework Convention on Climate Change (UNFCCC,
55 Tg a−1) for 2014 (UNFCCC, 2020). These previous inver-
sions mainly used GOSAT observations but differ greatly in
their inversion setups (e.g., time, domain coverage, spatial
resolution, transport model), thus resulting in a considerable
range of estimates. In contrast, the differences in inversions
presented in this work are fully due to satellite observations.
Our TROPOMI inversion results are consistent with a recent
TROPOMI inversion study by Chen et al. (2022), who re-
ported estimates of China’s total, anthropogenic, and natu-
ral methane emissions of 70.0 (61.6–79.9), 65.0 (57.7–68.4),
and 5.0 (3.9–11.6) Tg a−1.

In addition to the main inversion, we also perform a se-
ries of sensitivity inversions. The objective is to test whether
the comparison between the GOSAT and TROPOMI inver-
sions (e.g., Fig. 3) is affected by the configurations such
as the assimilation window and error specifications. There
are four sensitivity tests including (1) optimizing emissions
seasonally instead of annually, (2) increasing prior error
standard deviations from 50 % to 100 %, (3) assigning a
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Figure 3. Spatial distributions of methane emission corrections (posterior–prior) inferred by (a) GOSAT and (b) TROPOMI inversions.
Panel (c) shows emissions aggregated by region as defined in blue rectangles in (a) and (b). Error bars represent the standard deviation
of regional estimates derived from posterior error covariance matrices (Eq. 7). These errors do not include systematic uncertainties due to
inversion setups and are thus optimistic, but they are relevant for comparing results from two identically configured inversions.

minimum prior error standard deviation equivalent to 1×
10−10 kg m−2 s−1, and (4) applying a traditional regulariza-
tion factor following Lu et al. (2021) (γ = 0.6 for GOSAT
and γ = 0.09 for TROPOMI) to account for error correla-
tions in SO instead of the method proposed in Sect. 3.3.

Figures S8 and S9 show that the major findings from
our comparison of the GOSAT and TROPOMI inversions in
Fig. 3 (agreement in NEC, BAN, and CSC; disagreement in
EC, IND, NWD, SXJC) are robust against these perturbed
inversion configurations. Consistent with the main inversion,
the sensitivity tests find good agreement between the GOSAT
and TROPOMI inversions in posterior methane emissions
from NEC (upward adjustment), BAN (upward adjustment),
and CSC (downward adjustment) but find that discrepan-
cies range 4.1–8.2 Tg a−1 for EC and 5.1–8.8 Tg a−1 for IND
(Fig. S9). These results indicate that the effects of inversion
configurations are only moderate on systematic differences
between the GOSAT and TROPOMI inversions.

4.2 Evaluation of inversion results with independent
observations

Both TROPOMI and GOSAT posterior simulations can re-
duce errors against their respective “training” data relative to
the prior simulation (Fig. 4), which is expected for successful
inversions. However, concentration fields from the two simu-
lations show varied degrees of agreement across the domain

(Fig. 5a). In this section, we use independent high-quality
observations to evaluate whether GOSAT and TROPOMI in-
version results are consistent, and in the case that they are
not, which one is in better agreement with independent data.

Table 1 summarizes performance metrics against these
independent observations. Figure S10 plots the time series
of these observations in comparison with prior and pos-
terior simulations. GOSAT and TROPOMI inversions per-
form similarly at background sites such as PDI, UUM,
WLG, and LLN. Both posterior simulations considerably
reduce biases against in situ observations at WLG and
PDI and achieve reasonable agreement at PDI, UUM, and
WLG (absolute biases <8 ppbv and R2 between 0.40–0.73).
Among these sites, WLG show a relatively low posterior R2

(GOSAT: 0.40; TROPOMI: 0.41) due to inability to cap-
ture sub-seasonal variability (Fig. S10). Seasonal optimiza-
tion done in one of the sensitivity inversions only improves
R2 at WLG marginally (Fig. S10). An exception is LLN (a
high-mountain background site in the southeast of the do-
main) where biases grow larger in both posterior simulations
(10.8 ppbv for GOSAT and 16.7 ppbv for TROPOMI). This is
mainly caused by large seasonal biases in the eastern bound-
ary (Fig. 5c) (see Sect. 4.3.3 for more discussion). The bias
is the largest during the monsoon season (May to August)
(Fig. S10).

On the other hand, methane concentrations from the
TROPOMI and GOSAT posterior simulations differ by
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Figure 4. Differences in XCH4 between simulations and satellite observations from GOSAT (a, c) and TROPOMI (b, d). Panels (a) and
(b) show results for the prior simulation; panel (c) is for the posterior simulation driven by the GOSAT inversion, and panel (d) is for
the posterior simulation driven by the TROPOMI inversion. Root mean square errors (RMSEs, in ppbv) and mean biases (MBs, in ppbv,
simulation – observation) are inset.

Figure 5. Differences in tropospheric methane concentrations (TROPOMI–GOSAT) between GOSAT and TROPOMI posterior simulations.
Panel (a) shows the total differences, while panels (b) and (c) decompose the differences to methane emissions and boundary condition bias
corrections. The corrections of boundary conditions (in ppbv) by the two inversions are shown.

∼ 10–20 ppbv at sites in methane source regions (i.e., XH
and HF within EC and AMY in Korea downwind of EC)
(Fig. 5a). Their differences in concentrations are due mainly
to higher methane emissions inferred by the TROPOMI in-
version than GOSAT over EC (by 6.4 Tg a−1) and Korea

(Fig. 3). Our evaluation against in situ measurements at
AMY and total column measurements at XH and HF shows
consistently high biases of ∼ 15–27 ppbv by the TROPOMI
posterior simulation and comparatively better agreement
(bias ∼ 8 ppbv) with the GOSAT posterior simulation (Ta-
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Table 1. Evaluation of simulated methane concentrations against independent observationsa.

Site Mean bias± standard error (ppbv) R2,b

Prior GOSAT TROPOMI Prior GOSAT TROPOMI

AMY −5.9± 2.5 7.9± 2.4 27.2± 2.7 0.46 0.50 0.46
PDI −20± 2.3 −5.5± 2.2 −1.4± 2.2 0.67 0.70 0.70
LLN 0.5± 4.1 10.8± 4.2 16.7± 4.3 0.39 0.40 0.37
UUM −9.0± 2.1 6.3± 2.0 7.8± 2.2 0.71 0.73 0.72
WLG −16.6± 2.7 −4.1± 2.7 −2.5± 2.5 0.40 0.40 0.41
XHc

−3.4± 1.0 8.4± 0.9 15.3± 1.0 0.72 0.75 0.74
HFc,d 1.0± 3.0 9.0± 3.1 20.6± 3.2 0.53 0.53 0.57
CARIBICe – 14.9± 0.8 10.± 0.8 – – –

a Five sites report surface in situ measurements, with PDI, LLN, UUM, and WLG being continental-scale background
sites and AMY a regional site. Two sites (XH and HF) located in eastern China report ground-based total column
measurements. The aircraft measurements (CARIBIC) are taken over northern India. b Main inversions are unable to
improve the performance for temporal variability, as the optimization of methane emissions is done only annually.
Seasonal inversions improve the performance at sites AMY, WLG, XH, LLN (only GOSAT), and HF but in most cases
only slightly. Other factors that affect the R2 metric include model transport errors and observation representativeness.
c Small prior biases at XH and HF should not be interpreted as evidence for unbiased prior emissions from EC because
the prior simulation has substantial low biases in background concentrations as shown by data at WLG (upwind of EC).
d Large biases between simulations and observations occur on five days (22 July, 30 September, 3 November,
23 November, and 3 December) at site HF (Fig. S10). Relatively low R2 values are largely affected by these data.
Excluding this subset of observations results in correlation coefficients of ∼ 0.8 for all simulations and mean biases of
−2.9± 1.4, 5.4± 1.3, and 15.9± 1.7 ppbv for prior, GOSAT, and TROPOMI simulations, respectively. e Indirect
evaluation is performed for CARIBIC data. The value in the “GOSAT” column represents the mean bias between the
posterior simulation of the 2010–2017 GOSAT inversion and 2012–2014 CARIBIC aircraft observations. We assume
that GOSAT inversions are consistent between years so that the 2012–2014 bias is representative for the 2019 condition.
The value in the “TROPOMI” column is computed by subtracting the mean difference along aircraft paths between
2019 GOSAT and TROPOMI posterior simulations (∼ 4.9 ppbv) (Fig. 5a) from the 2012–2014 GOSAT bias. R2 is not
reported for this indirect comparison.

ble 1). Smaller mean biases are achieved by the prior simu-
lation at XH and HF (Table 1), but this is largely because of
the low background concentration caused by biases in prior
boundary conditions (as indicated by the large negative prior
bias at the upwind background site WLG; Table 1). The abil-
ity to capture temporal variations can be further improved by
seasonal optimization of emissions, especially for HF where
the influence of the seasonal cycles in rice emissions is strong
(Fig. S10). Overall, our results at AMY, XH, and HF sup-
port the lower methane emissions from EC inferred by the
GOSAT inversion over the TROPOMI inference and indicate
that TROPOMI XCH4 retrievals may have regional high bi-
ases over EC (more discussion in Sect. 4.3.1).

Methane concentrations from the TROPOMI and GOSAT
posterior simulations differ by 4.9 ppbv on average along
the CARIBIC flight tracks over the Indo-Gangetic Plain
(Fig. 5a). This difference is mainly due to different IND
methane emissions between the two inversions (Fig. 5b) with
minor contributions from boundary condition bias inference
(Fig. 5c). In the absence of concurrent independent obser-
vations over IND, we use CARIBIC aircraft observations
that are only available from 2012 to 2014 to evaluate the
inversions. Since these observations predate TROPOMI, we
can only indirectly evaluate by using a simulation driven by
methane emissions from a GOSAT inversion for earlier years
as an intercomparison platform. We take inversion results
from a previous study (Zhang et al., 2022), which performed

an East Asia inversion also using GOSAT Proxy XCH4 re-
trievals. Their inversion is almost identically configured as
this study except that it was for 2010–2017. Consistent with
our GOSAT results, the GOSAT inversion from Zhang et
al. (2022) also found that IND methane emissions should be
adjusted upward.

Comparison with these aircraft observations indicates
that the 2012–2014 simulation driven by GOSAT-optimized
emissions from Zhang et al. (2022) overestimates the aircraft
observations by ∼ 14.9 ppbv (Table 1). On the other hand,
the 2019 posterior simulation from the GOSAT inversion is
about 4.9 ppbv higher than that from the TROPOMI inver-
sion along flight tracks (Fig. 5a). Assuming that our 2019
GOSAT inversion is consistent with the 2010–2017 GOSAT
inversion by Zhang et al. (2022) (mean bias 14.9 ppbv), it
thus suggests that the TROPOMI inversion likely agrees bet-
ter with the CARIBIC observations (mean bias 10.0 ppbv)
than the GOSAT inversion. Unlike the EC case, we find
relatively small systematic differences in TROPOMI and
GOSAT XCH4 retrievals over IND (Fig. 6). Our analysis
suggests that good data coverage of TROPOMI over IND is
likely responsible for its better performance in constraining
methane emissions (see Sect. 4.3.2 for more discussion).
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4.3 Attribution of TROPOMI and GOSAT inversion
differences

4.3.1 Regional differences in XCH4 retrievals

To understand the cause of differences in the inferred
methane emissions, we first compare coincident TROPOMI
and GOSAT XCH4 retrievals. The comparison is done fol-
lowing Zhang et al. (2010) where a CTM simulation is used
as an intercomparison platform to account for differences
in prior profiles and vertical sensitivity between TROPOMI
and GOSAT retrievals. TROPOMI XCH4 is on average
higher than GOSAT XCH4 over EC by ∼ 6 ppbv, SXJC by
∼ 10 ppbv, and NWD by ∼ 10 ppbv (Fig. 6b), which leads
to higher methane emissions inferred by the TROPOMI in-
version over these regions (Fig. 3). These differences per-
sist throughout the year in EC and SXJC but appear to be
highly seasonal in NWD. The largest TROPOMI–GOSAT
differences in NWD (∼ 30–40 ppbv) occur between Decem-
ber and March. In other regions of interest, the annual av-
eraged TROPOMI–GOSAT XCH4 differences are in general
less than 5 ppbv including IND where the two inversions find
large discrepancies in posterior methane emissions.

Independent ground-based observations are more consis-
tent with the GOSAT inversion and thus do not support
high emissions from EC inferred by the TROPOMI inver-
sion, which indicates that TROPOMI retrievals have system-
atic regional high biases over EC. In addition, even with en-
hanced methane emissions in EC, SXJC, and NWD from the
TROPOMI inversion, the posterior simulation cannot fully
capture these high XCH4 concentrations (Fig. 4d). This is
also a hint toward retrieval biases, as it indicates that the in-
version finds it difficult to reconcile these high XCH4 pat-
terns with known methane sources and wind information,
given our specification of error parameters (SA and SO).

In addition to EC, large XCH4 differences between
GOSAT and TROPOMI are also found in the northwestern
part of the domain (SXJC and NWD). Although we do not
have independent observations over these regions, we spec-
ulate that TROPOMI retrievals have positive biases. SXJC
is featured with high surface albedo (desert), while in NWD
large TROPOMI and GOSAT differences occur during De-
cember and March when surface albedo is low (snow and/or
ice cover) (Fig. S11). High and low surface albedo scenes are
known to be challenging for the full-physics retrieval. We
suggest applying the “blended albedo” filter to TROPOMI
observations over these regions before inversion (Chen et al.,
2022; Wunch et al., 2011).

In our study, we use the TROPOMI science product from
Lorente et al. (2021a), who applied a posterior correction
for surface-albedo-dependent biases identified in originally
retrieved TROPOMI data. We find that this bias correction
scheme does improve the agreement between TROPOMI and
GOSAT overall in both their methane column concentrations

(Fig. S12) and posterior methane emissions (Fig. S13). How-
ever, the agreement is not improved in EC, SXJC, and NWD.

Previous studies have reported decreased accuracy of
GOSAT CO2 Proxy retrievals in India owing to errors in
the specified CO2 field (Parker et al., 2015; Schepers et
al., 2012), which is consistent with a large uncertainty in
modeled XCO2 applied to GOSAT CH4 retrievals in India
(Fig. S1). The range of modeled XCO2 used in the GOSAT
product is equivalent to an XCH4 uncertainty of 0.7 % (∼
13 ppbv) in India and Bangladesh. Our result shows that
TROPOMI XCH4 is lower than GOSAT XCH4 in the west-
ern Indo-Gangetic Plain (around Delhi) and higher in a few
locations outside the Indo-Gangetic Plain (Fig. 6a), but the
regional difference between the two retrievals is overall small
(<5 ppbv) in IND compared to those in EC, SXJC, and NWD
(Fig. 6b). Exceptions are November and December when the
differences are up to 20 ppbv in IND.

4.3.2 Spatial coverage of observations

Although methane emissions from IND inferred by the
GOSAT inversion are considerably larger than those inferred
by the TROPOMI inversion, we find relatively small differ-
ences in coincident XCH4 retrievals there (Fig. 6), indicating
that retrieval biases are unlikely the only cause of discrep-
ancies. Moreover, the two satellite products differ greatly
in their data density over the Indo-Gangetic Plain (blue el-
lipse in Fig. 7) where the discrepancy in inferred methane
emissions is the largest. GOSAT has almost no observations
over the region, while TROPOMI samples the region fairly
well (Fig. S3). We have shown above that indirect compar-
ison with CARIBIC tropospheric aircraft measurements fa-
vors lower emissions from IND estimated by the TROPOMI
inversion (Table 1). In this section, we explore whether dif-
ferences in data coverage between TROPOMI and GOSAT
may contribute to the discrepancies in inferred emissions.

Figure 7 compares the ability of TROPOMI and GOSAT
inversions to constrain the distribution of methane emis-
sions measured by averaging kernel sensitivities (diagonal
elements of the averaging kernel matrix). The sum of aver-
aging kernel sensitivities over a region represents the num-
ber of pieces of independent information (also known as de-
grees of freedom for signal, DOFS) constrained by an obser-
vation system. Figure 7 shows that the TROPOMI inversion
has a larger DOFS value (74) than the GOSAT inversion (46)
over the East Asia domain. A large difference in DOFS be-
tween the two inversions is found in IND (TROPOMI: 23 vs.
GOSAT: 13), indicating a weak observational constraint on
emissions from IND by the GOSAT inversion, even though
it infers a large emission correction.

We further investigate why this correction is inferred by
the GOSAT inversion by examining the contribution of in-
dividual observations to the correction. This analysis indi-
cates that the correction is primarily driven by observations
in Bangladesh (Fig. 8a). Low XCH4 biases are found over
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Figure 6. Differences in XCH4 between GOSAT and TROPOMI (defined as TROPOMI–GOSAT) shown on the 0.5◦× 0.625◦ grid (a) and
by region (b). Panel (a) shows annual averages for each grid cell, and panel (b) shows time series of regional averages. Regions are defined
in blue rectangles in Fig. 3a.

Figure 7. Averaging kernel sensitivities for GOSAT (a) and TROPOMI (b) inversions. Values represent the ability of observations to
constrain methane emissions (0: not at all, 1: perfectly). The eastern Indo-Gangetic Plain is marked by blue rectangles. Panel (c) compares
the DOFS of regional emissions constrained by TROPOMI and GOSAT inversions.

Bangladesh when we compare the prior simulation to ei-
ther GOSAT or TROPOMI observations (Fig. 4). In the ab-
sence of GOSAT observations over the Indo-Gangetic Plain,
the inversion partly attributes these XCH4 biases to emis-
sions from the Indo-Gangetic Plain, which is upwind of
Bangladesh most of the time, leading to a substantial upward
correction of emissions from IND. In contrast, the XCH4 bias
over Bangladesh is corrected locally by the TROPOMI in-
version. In this case, only small corrections are inferred for
emissions from the Indo-Gangetic Plain and the corrections

are informed mainly by observations over the Indo-Gangetic
Plain (Fig. 8b).

4.3.3 Regional boundary conditions

Our evaluation against surface observations shows improved
agreement at background sites (i.e., PDI, UUM, and WLG)
by both inversions (Table 1). This is achieved through si-
multaneous optimization for biases in boundary conditions
together with emissions. As WLG, UUM, and PDI are re-
spectively sensitive to the western, northern, and southern
boundaries, this result suggests that satellite observations can
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Figure 8. Contribution of individual observations to the correction of emissions from the Indo-Gangetic Plain by the (a) GOSAT and
(b) TROPOMI inversions. This is done by decomposing the computation of Eq. (4). Results are aggregated on the inversion grid. The scales
are different between the two panels.

correct biases along these boundaries, supporting our inver-
sion configuration. Furthermore, we find that a sensitivity in-
version not optimizing for boundary condition biases (S0)
cannot reduce large prior biases at WLG and PDI and leads
to unrealistically high methane emissions over East Asia
(222 Tg a−1) including China (102 Tg a−1).

An exception in Table 1 is LLN (a high-mountain back-
ground site in the southeast of the domain) where biases are
increased by both inversions. Although the site AMY is also
close to the eastern boundary, it has little influence from the
southeast monsoon (Fig. 5c). The biases show strong season-
ality, with the largest occurring in summer, consistent with
ocean-to-land (southeast to northwest) transport by the sum-
mer monsoon. Our analysis suggests that this increase in bi-
ases is caused by large adjustments at the eastern bound-
ary (GOSAT: 4.5 ppbv; TROPOMI: 25.4 ppbv) rather than
changes in methane emissions (Fig. 5). This result indicates
that satellite observations that are mainly over land are in-
sufficient to constrain the eastern boundary, which consists
mainly of ocean.

We then assess the impact of biases along the eastern
boundary on inferred methane emissions. We perform sen-
sitivity inversions using varied levels of fixed (not optimized
by the inversion) eastern boundary conditions and find rel-
atively small effects on quantifying annual emissions as ex-
pected from prevailing westerlies in midlatitudes. A positive
bias of 10 ppbv would result in a reduction of annual methane
emissions by 3.3 Tg a−1 (∼ 2 %) over the East Asia domain,
1.8 Tg a−1 (∼ 2 %) over China, and 0.75 Tg a−1 (∼ 3 %) over
EC (the most affected region) (Fig. 9). Although the inver-
sion has a weak constraint on the eastern boundary condi-
tions, it does not have a great influence on the posterior emis-
sions.

5 Conclusions

We estimate methane emissions from East Asia for 2019
by applying atmospheric methane column retrievals from
two different satellite instruments (GOSAT and TROPOMI)
to a high-resolution regional inversion framework, in which
methane emissions are optimized on 600 spatial clusters with
up to about 0.5◦ horizontal resolution. Our objective is to
assess if consistent methane emissions from East Asia are
inferred from inversion of GOSAT and TROPOMI observa-
tions. This information adds to the uncertainty characteriza-
tion of satellite-data-based methane emission quantification.

The two inversions estimate a consistent magnitude
of methane emissions from East Asia (TROPOMI:
142.7 Tg a−1; GOSAT: 142.6 Tg a−1) compared to the
prior estimate (130 Tg a−1) but differ by ∼ 10 % in China
(TROPOMI: 73.7 Tg a−1; GOSAT: 66.4 Tg a−1). Com-
parisons at the regional scale show that the GOSAT and
TROPOMI inversions find consistent results over central
northern China, central southern China, northeastern China,
and Bangladesh, where the inferred emissions differ by less
than 2.6 Tg a−1. However, the two inversions show large
differences over some of the important regions including
northern India and eastern China. The inferred methane
emissions by GOSAT observations are 7.7 Tg a−1 higher
than those by TROPOMI over northern India but 6.4 Tg a−1

lower over eastern China. Large differences in inferred emis-
sions are also found in northwestern China and Kazakhstan
(SXJC and NWD). These findings from the comparison of
the GOSAT and TROPOMI inversions are robust against
varied inversion configurations.

We evaluate the inversion results by comparing GOSAT
and TROPOMI posterior simulations with independent ob-
servations. We find that independent ground-based in situ ob-
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Figure 9. Impact of biases in the eastern boundary on quantification of annual methane emissions. Inversions are performed by using fixed
eastern boundary conditions. Sensitivity results are computed from perturbing these fixed eastern boundary conditions by 10 (S10), 20 (S20),
and 30 (S30) ppbv.

servations at AMY and total column observations at XH and
HF are more compatible with lower methane emissions from
eastern China inferred by the GOSAT inversion than those by
the TROPOMI inversion. We also indirectly evaluate against
tropospheric aircraft observations over India during 2012–
2014 by using a consistent GOSAT inversion of earlier years
as an intercomparison platform, which favors lower methane
emissions from northern India inferred by the TROPOMI in-
version over those by the GOSAT inversion.

The fact that high eastern China emissions inferred from
TROPOMI are inconsistent with independent observations
suggests high regional biases in TROPOMI retrievals over
eastern China. Large retrieval differences between GOSAT
and TROPOMI are also found in northwestern China and
Kazakhstan, which also leads to substantially higher methane
emissions inferred by the TROPOMI inversion. Unfortu-
nately, we do not have independent observations to evalu-
ate the results in these two regions. However, we note that
large TROPOMI XCH4 variations in Kazakhstan and north-
ern Xinjiang are coincident with seasonal changes in sur-
face albedo, suggesting possible overcorrection of surface-
albedo-dependent biases in TROPOMI retrievals at the re-
gional level.

The two inversions show large discrepancies in emissions
over northern India along the Indo-Gangetic Plain, although
GOSAT and TROPOMI XCH4 values agree reasonably well.
We find that the discrepancy in emissions from the Indo-
Gangetic Plain is related to differences in data coverage. In
the absence of GOSAT observations over the Indo-Gangetic
Plain, the inversion attributes the model–observation differ-
ences in XCH4 over Bangladesh partly to its upwind region.
In contrast, the TROPOMI inversion finds little emission cor-
rection based on the observations over the Indo-Gangetic
Plain and attributes the XCH4 differences over Bangladesh
primarily to local emissions.

Both inversions show improved agreement at background
sites, supporting our optimization of boundary condition bi-
ases. An exception is LLN where both inversions show large
positive concentration biases against in situ measurements,

which results from overcorrections at the eastern boundary
by inversions. However, our simulations demonstrate that
methane concentration biases at the eastern boundary have
relatively small impacts on annual emission inference. The
newer version of the TROPOMI methane product includes
glint-mode ocean observations, which may improve the opti-
mization of eastern boundary conditions.

Appendix A: Approximation to the inverse of the
error correlation matrix

The observational error covariance matrix is decomposed as
SO =6C6, where 6 is a diagonal matrix, while C is gen-
erally non-diagonal. The inverse of SO can then be written
as S−1

O =6−1C−16−1. However, the computations of C−1

and S−1
O quickly become intractable as the dimension of the

C matrix (m) grows. We therefore seek C̃−1 that approxi-
mates C−1 but is easy to compute. To do so, we assume that
C̃−1 is a diagonal matrix.

For clarity, we denote C−1 as X and C̃−1 as X̃. We have
the following linear system by definition:

CX= I, (A1)

where I is an identity matrix. To find X is to find its column
vectors xi such that

Cxi = ei, i = 1, 2, . . . ,m. (A2)

Here ei = (0, . . . ,1, . . . ,0)T is a unit vector with its ith ele-
ment being 1 and the rest 0.

By assuming that X̃ is diagonal, we impose the condition
that its column vectors x̃i ∈ span {ei}. We apply the oblique
projection technique to find the solution for x̃i such that the
residual vector ei−Cx̃i is orthogonal to the one-dimensional
subspace spanned by Cei (Saad, 2003). Hence, we have

(Cei)T (ei −Cx̃i)= 0. (A3)
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Solving the equation yields

x̃ii =
Cii

||Cei ||
2
2
=

1∑m
j=1C

2
ij

, (A4)

where x̃ii is the ith element of x̃i and ||·||2 represents the L-2
norm. Because C is a correlation matrix, its diagonal element
Cii is equal to 1.

Consequently, we obtain

C̃−1
= X̃

= diag

(
1∑m

j=1C
2
1j
,

1∑m
j=1C

2
2j
, . . . ,

1∑m
j=1C

2
mj

)
. (A5)

Note that computation of C̃−1 can be readily parallelized for
speed-up.

The diagonal elements of C̃−1 can be interpreted as the
weight for individual observations. The weight is 1 for an
independent observation i uncorrelated with any other obser-
vations (Cii = 1 and Cij = 0 for i 6= j ), while the weight can
be substantially smaller than 1 for an observation with strong
correlation with others (many nonzero Cij terms or large Cij
terms for i 6= j ).

Data availability. The TROPOMI methane observations
are from https://ftp.sron.nl/open-access-data-2/TROPOMI/
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