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Abstract. A regional online chemical weather model, Weather Research and Forecasting (WRF)/China Meteo-
rological Administration Unified Atmospheric Chemistry Environment (CUACE), is used to assess the contribu-
tions of cloud chemistry to the SO2 and sulfate levels in typical regions of China. Upon comparison with several
time series of in situ cloud chemical observations on Mountain Tai in Shandong Province of China, the CUACE
cloud chemistry scheme is found to reasonably reproduce the observed cloud consumption of H2O2, O3, and SO2
and the production of sulfate, and it is consequently used in the regional assessment of a heavy pollution episode
and monthly average of December 2016. During the cloudy period in the heavy pollution episode, sulfate produc-
tion increased by 60 %–95 % and SO2 production reduced by over 80 %. The cloud chemistry mainly affects the
middle and lower troposphere below 5 km as well as within the boundary layer, and it contributes significantly
to the SO2 reduction and sulfate production in central-east China. Among these four typical regions in China,
the Sichuan Basin (SCB) is the most affected by the cloud chemistry, with an average SO2 abatement of about
1.0–10.0 ppb and sulfate increase of about 10.0–70.0 µg m−3, followed by the Yangtze River Delta (YRD) and
the southeast of the North China Plain (NCP), where SO2 abatement is about 1.0–5.0 ppb and sulfate increase
is about 10.0–30.0 µg m−3. However, the cloud chemistry contributions to the Pearl River Delta (PRD) and the
northwest of the NCP are not significant due to lighter pollution and less water vapor than the other regions.
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1 Introduction

Aerosols interact with radiation and clouds, directly or indi-
rectly affecting the atmospheric radiation balance and precip-
itation, which in turn affects weather and climate (Twomey et
al., 1984; Twomey, 1991; Charlson et al., 1992; Ramanathan
et al., 2001; Pye et al., 2020). Moreover, large amounts of
aerosols dispersed in the atmosphere can reduce visibility
and deteriorate air quality (Molina, 2002), which is harm-
ful to human health and ecosystems (Xie et al., 2019; Sielski
et al., 2021).

In addition to direct emissions, aerosols are mostly pro-
duced secondarily through the oxidation of precursor gases,
and one of the important processes is the transformation in
clouds. Global cloud coverage of about 21 % to 95 % pro-
vides an adequate environment for cloud chemistry processes
(Kotarba, 2020; Ravishankara, 1997). As about 90 % of the
clouds formed in the atmosphere evaporate without depo-
sition or forming precipitation, large fractions of aerosols
formed within clouds can then re-enter the atmosphere (Caf-
frey et al., 2001; Harris et al., 2013; Lelieveld and Heintzen-
berg, 1992). Globally, sulfate production from SO2 oxidation
accounts for about 80 % of total sulfate, and more than half
of it is produced in clouds (Hung et al., 2018; Faloona et al.,
2010; Guo et al., 2012). Ge et al. (2021) found that cloud
chemistry processes reduced SO2 concentrations by 0 %–
50 % in most of central-east China in all seasons. Li (2011)
found that the average sulfate concentration in cloud water
accounted for 53.8 % of the total aerosol concentration at a
mountain site. Li (2020) also found that cloud processes ef-
fectively reduced atmospheric O3 and SO2 concentrations by
an average of 19.7 % and 71.2 %, respectively, at Mount Tai.

Multiphase oxidation of SO2 in aerosol particles in high-
humidity environments is one of the main causes of the ex-
plosive growth of particulate matter in East Asia haze (Guo
et al., 2014; Cheng et al., 2016; Song et al., 2019). From
observations and laboratory works, four main pathways were
identified for this kind of oxidation of SO2, i.e., by H2O2, O3,
NO2, and transition metal ions (TMIs; Iibusuki and Takeuchi,
1987; Martin and Good, 1991; Alexander et al., 2009; Har-
ris et al., 2013; Cheng et al., 2016; Wang et al., 2016;
Wang et al., 2021). Additional pathways of organic peroxides
(ROOH; Yao et al., 2019; Wang et al., 2019; Ye et al., 2018;
Dovrou et al., 2019), photolysis products of nitrate (pNO−3 )
(Gen et al., 2019b, a), and excited triplet states of photosensi-
tizer molecules (T ∗; Wang et al., 2020) have also been found
recently to be important for multiphase oxidation of SO2 dur-
ing very heavy hazy days. Unfortunately, there are still many
uncertainties and gaps to put all those pathways into model
applications from observational and laboratory studies (Pye
et al., 2020; Ravishankara, 1997; Liu et al., 2021). Several
regional and global models have tried to include only O3
and H2O2 in-cloud oxidants in cloud chemistry mechanisms
(Park and Jacob, 2003; Tie, 2005; Von Salzen et al., 2000;
Chapman et al., 2009; Leighton and Ivanova, 2008; Ivanova

and Leighton, 2008), but only a few models can simulate the
pathway of NO2 or the TMIs of Fe or Mn ions (Chang et
al., 1987; Binkowski and Roselle, 2003; Menut et al., 2013;
Terrenoire et al., 2015; Ge et al., 2021).

There has been very serious air pollution in central-east
China where the four heavy pollution regions of the North
China Plain (NCP), Yangtze River Delta (YRD), Sichuan
Basin (SCB), and Pearl River Delta (PRD) are located (Yao et
al., 2021; Zhang et al., 2012). Although many global and re-
gional models have contained sulfate formation mechanisms
by cloud chemistry, few models have assessed its contribu-
tion. Especially lacking is a detailed assessment of regional
cloud chemistry of sulfate and SO2 in China. Some models
have failed to reproduce SO2 and sulfate observations, partic-
ularly underestimating sulfate and overestimating SO2 over
China (Buchard et al., 2014; Cheng et al., 2016; Hong et al.,
2017a; Wei et al., 2019); this is mainly caused by the uncer-
tainties in meteorological conditions (Sun et al., 2016) and
emission inventories (Hong et al., 2017b; Sha et al., 2019b),
as well as unclear and/or inaccurate physical and chemical
mechanisms associated with air pollutants (He and Zhang,
2014; He et al., 2015; Georgiou et al., 2018; Sha et al.,
2019a). The inadequate inclusion or lack of cloud chemistry
of SO2 is one of the main causes (Ge et al., 2021). Therefore,
it is very important and necessary to quantify the contribution
of cloud chemistry in these regions and get a better under-
stand of multi-dimensional pollution interactions, especially
between the upper layer and the surface.

This study is intended to use an online coupled chemi-
cal weather platform of Weather Research and Forecasting
(WRF)/China Meteorological Administration Unified Atmo-
spheric Chemistry Environment (CUACE) in order to ana-
lyze and evaluate the SO2 in-cloud oxidation process in four
polluted regions in China, with two objectives: (1) evaluating
the cloud chemistry scheme in WRF/CUACE using in situ
cloud chemistry observations at Mount Tai in the summers of
2015 and 2018 and (2) quantifying the contributions of cloud
chemistry to the SO2 and sulfate changes in a typical winter
pollution month of December 2016 with a very long-lasting
heavy pollution episode. It is aimed to establish a system to
assess the relative contribution of cloud chemistry to SO2 ox-
idation and sulfate productions vs. other clear-sky processes.

2 Model description and methodology

2.1 Cloud chemistry in WRF/CUACE

WRF/CUACE is an online coupled chemical weather model
under the WRF framework with a comprehensive chemical
module – CUACE, which is developed at CMA (China Me-
teorological Administration) with sectional aerosol physics,
gas chemistry, aerosol–cloud interactions, and thermody-
namic equilibrium (Zhou et al., 2012, 2016; Gong et al.,
2003; Gong and Zhang, 2008; Zhang et al., 2021). It treats
seven types of aerosols, i.e., black carbon (BC), organic car-
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bon (OC), sulfate, nitrate, ammonium, soil dust, and sea salt,
as well as more than 60 gaseous species. The system can
simulate the concentrations of PM10, PM2.5, and O3 as well
as visibility. A complete heterogeneous chemistry module
has been built in CUACE for nine gas-to-particle hetero-
geneous reactions including SO2 to sulfate (C. Zhou et al.,
2021; Zhang et al., 2021). The cloud chemistry mechanism
in CUACE considers the pathways of multiphase oxidation
of SO2 by H2O2 and O3 in both stratocumulus and convec-
tive clouds (Gong et al., 2003; Von Salzen et al., 2000). The
transport and chemical effects of sulfur in convective clouds
are calculated based on a convective cloud model by WRF.
Within the cloudy part of a grid box, the first-order rate con-
stant (in s−1) of S(IV) (=SO2, HSO−3 , SO2−

3 ) oxidation is
given by the following expression:

F =

∣∣∣∣ 1
CS(IV)

dCS(IV)

dt

∣∣∣∣= F1CO3 +F2CH2O2 , (1)

where CS(IV) is the total concentration of S(IV) (gas phase
plus dissolved), CO3 is the total concentration of O3, and
CH2O2 is the total concentration of hydrogen peroxide.

The effective rate constants F1 and F2 are given by the
following expressions:

F1 = RO3f1, (2)
F2 = RH2O2f2. (3)

The reaction rate constants of RO3 and RH2O2 refer to
Maahs (1983) and Martin et al. (1984):

RO3 =

{
4.4× 1011 exp(−4131/T )+ 2.61× 103

exp(−966/T )
[
H+
]−1

}
(Ms)−1, (4)

RH2O2 = 8× 104 exp
[
−3650(1/T − 1/298)

]
{
0.1+

[
H+
]}−1(Ms)−1. (5)

In Eqs. (2) and (3), the factors of f1 and f2 represent the
partitioning of the substance between the aqueous and gas
phases and are determined by the Henry’s law coefficients.

f1 = γ fSO2fO3KSKHO, (6)

f2 = γ fSO2fH2O2KHSKHP, (7)

where γ is the dimensionless volume fraction of liquid water
in the cloud. The parameters of fSO2 , fO3 , and fH2O2 are the
proportions of individual substances in the gas phase, which
are calculated from the dimensionless Henry’s law constant

and γ .

fSO2 =
(
1+ γKHSKS

)−1
, (8)

fO3 =
(
1+ γKHO

)−1
, (9)

fH2O2 =
(
1+ γKHP

)−1
, (10)

with

KS =KHS

(
1+

K1S[
H+
] + K1SK2S[

H+
]2
)
. (11)

The Henry’s law constants used in Eqs. (6) to (8) are listed
in Table 1.

In order to consider the dependence of the oxidation rates
on pH, the H+ concentration is calculated from the ion bal-
ance.[
H+
]
+
[
NH+4

]
=
[
OH−

]
+ 2

[
SO2−

4

]
+ 2

[
SO2−

3

]
+
[
HSO−3

]
+
[
NO−3

]
+
[
HCO−3

]
(12)

From Eqs. (1)–(12), CUACE can simulate the oxidation
rates of SO2 by H2O2 and O3 mainly in the liquid and
gaseous environment in both stratocumulus and convective
clouds in a three-dimensional way.

2.2 Assessment criteria

Three variables, RTCLD, DT, and RT, are defined to assess
the impact of cloud chemistry on SO2 and sulfate. RTCLD
refers to the concentration change ratio of substance i before
and after the cloud chemical processes in a model run.

RTCLD(i)= 1−
BECLD(i)
AFCLD(i)

, (13)

where BECLD and AFCLD denote the concentrations of
component i before and after the cloud chemical processes,
respectively, and i denotes the chemical component of SO2,
O3, H2O2, and sulfate.

DT indicates the difference in concentration of substance i
with (CLD) and without (nCLD) the cloud chemistry module
activated:

DT(i)= CLD(i)− nCLD(i) , (14)

and RT represents the concentration ratio change of the sub-
stance i with and without cloud chemistry in separate model
runs:

RT(i)= 1−
nCLD(i)
CLD(i)

. (15)

2.3 Methodology

2.3.1 Model evaluation – Case 1

Mount Tai, located in central Shandong Province with an al-
titude of 1483 m, is the highest point of the NCP. It is an
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Table 1. Equilibrium constants for the parameterization of the cloud chemistry in CUACE.

Equilibrium relation Constant expression Equilibrium constant

K (298) a∗ unit

SO2 (g)+H2O(aq)↔ SO2 (aq) KHS =
[SO2(aq)]
[SO2(g)] 1.23 3120 M atm−1

SO2 (aq)↔ H++HSO−3 K1S =

[
H+

][
HSO−3

]
[SO2(aq)] 1.7× 10−2 2090 M

HSO−3 ↔ H++SO2−
3 K2S =

[
H+

][
SO2−

3

]
[
HSO−3

] 6.0× 10−8 1120 M

O3 (g)+H2O(aq)↔ O3 (aq) KHO =
[O3(aq)]
[O3(g)] 1.15× 10−2 2560 M atm−1

H2O2 (g)+H2O(aq)↔
H2O2 (aq) KHP =

[H2O2(aq)]
[H2O2(g)] 9.7× 104 6600 M atm−1

∗ “K (298)” and “a” are constants in K = k(298)[a(1/T − 1/298)].

Figure 1. Model nesting domains and target regions. Case 1 (a): the
red triangle is the Mount Tai observation site. Case 2 (b): red dots
are cities where the surface observations of air pollutants are used
for model evaluation. The target four regions are the NCP, YRD,
PRD, and SCB.

ideal observation site for cloud chemistry observation (J. Li
et al., 2017, 2020a, b). The observed concentrations of SO2,
O3, H2O2, and sulfate in cloudy conditions from 19 June
to 30 July 2015 and from 20 June to 30 July 2018 with a
time interval of 1 h are obtained to evaluate the cloud chem-
istry scheme in WRF/CUACE (J. Li et al., 2017; Li et al.,
2020a, b).

The WRF/CUACE is set up with two-level nesting do-
mains for the evaluation with the Riguan Peak as the central
point (Fig. 1a). The horizontal resolution of the outer domain
(O) is 9 km with a grid of 100× 104, and the horizontal res-
olution of the inner domain (I) is 3 km with a grid of 88×94
(Fig. 1a). There are 32 vertical layers with a top pressure
of 100 hPa.

2.3.2 Simulations of regional characteristics – Case 2

December 2016 was selected to assess the regional contribu-
tion of cloud chemistry to SO2 and sulfate in CUACE as a

Table 2. Physics parameterization schemes in WRF.

Parameteri-
Physical management zation References

Microphysics scheme Lin Lin et al. (1983)
Shortwave radiation Goddard Chou and Suarez (1994)
Longwave radiation RRTM Mlawer et al. (1997)
Land surface scheme Noah Chen and Dudhia (2001)
Boundary layer scheme MYJ Janjić (1994)
Cumulus scheme Grell-3D Grell (1993)

typical heavy pollution episode occurred from 16 to 22 De-
cember, covering most of east China, with the highest hourly
PM2.5 concentration exceeding 1100 µg m−3. The simulation
region is set up as shown in Fig. 1b with two-level nesting do-
mains. The outer domain covers Central and East Asia with
a horizontal resolution of 54 km and a grid of 139×112. The
inner domain covers most of China on the eastern side of the
Qinghai–Tibet Plateau including NCP, YRD, PRD, and SCB,
with a horizontal resolution of 18 km and a grid of 157×166.
The vertical layer number of the model is the same as that in
Case 1.

Since the cloud water is the reaction pool of cloud chem-
istry, whether the simulation of cloud water is reasonable or
not is directly related to the effectiveness of cloud chemistry.
Both the cloud water and rainwater from WRF are online
coupled to the cloud chemistry module, and the main physics
configurations are listed in Table 2.

2.4 Meteorological, pollution, and satellite data

For both cases, the meteorological initial and boundary con-
ditions for WRF/CUACE are from the National Centers for
Environmental Prediction (NCEP) FNL (Final) global re-
analysis at a resolution of 1◦× 1◦ with 6 h interval. The
chemical lateral boundary conditions are from the National
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Oceanic and Atmospheric Administration (NOAA) Meteo-
rological Laboratory Regional Oxidant Model (NALROM;
Liu et al., 1996). The model is run in a restart way with a 5 d
spin-up.

FY-2G cloud image data from CMA with a 1 h interval are
used to evaluate the cloud in both cases. Routine meteoro-
logical observations at a 3 h interval from 23 meteorological
stations of CMA for 2 m temperature, 2 m relative humidity,
and 10 m wind speed as well as hourly pollutant data for 55
city sites from the China National Environmental Monitor-
ing Centre are used to evaluate the meteorological fields and
pollutants for December 2016. For a city with several obser-
vation sites, an averaged value is used.

MEIC (Multi-resolution Emission Inventory for China), at
a resolution of 0.25◦, is used as the anthropogenic emissions
with species of SO2, nitrogen oxides (NOx), carbon monox-
ide (CO), ammonia (NH3), BC, OC, non-methane volatile or-
ganic compounds (NMVOCs), PM2.5, and PM10 from indus-
try, transportation, residential areas, and agriculture (M. Li
et al., 2017; Zheng et al., 2018). The emission base years of
2015 and 2017 are used for Case 1 and Case 2, respectively.

3 Results and discussion

3.1 Evaluation of the cloud chemistry mechanism

In order to evaluate the cloud chemistry mechanism in WR-
F/CUACE, the simulation results are compared with the ob-
servations at Mount Tai. By analyzing the satellite cloud
images in and around Mount Tai and matching with the
available observed data, two time periods with clouds, from
19 June to 30 July 2015 and from 20 June to 30 July 2018,
were selected for the comparisons, defined as “cloud process-
1” (CP-1) and “cloud process-2” (CP-2), respectively. The
simulated results for chemical species are illustrated in scat-
terplots (Fig. 2), which reveals that the simulated concentra-
tions of SO2, sulfate, O3, and H2O2 are all within a factor of 2
of the observations when cloud chemistry occurs, indicating
reasonable agreement between simulations and observations
for both CP-1 and CP-2 cases. The sulfate underestimates are
clear in both CP-1 and CP-2 cases, which was reported by
other modeling results as well (Tuccella et al., 2012; Huang
et al., 2019; Ge et al., 2022).

The statistics of correlation coefficients (R), relative av-
erage deviation (RAD), and normalized mean deviation
(NMB) between hourly simulated and observed SO2, O3,
H2O2, and sulfate are shown in Table 3. Among them, the
simulated and observed averages of SO2 are very close in
both CP-1 and CP-2, with a RAD about−3.4 % and−6.1 %.
For other species, the RAD is in the range of 8.7 %–55.0 %.
The R values for the four species are 0.34, 0.33, 0.78, and
0.32 for CP-1 and 0.47, 0.40, 0.06, and 0.54 for CP-2, re-
spectively. Although the R, RAD, and NMB of H2O2 in CP-
2 are only 0.06, 18.0 %, and −19.6 %, the simulated mean
value of H2O2 is closer to the observed mean value than

Figure 2. Scatterplots of hourly SO2 (a1, a2), sulfate (b1, b2),
H2O2 (c1, c2), and O3 (d1, d2) concentrations between WR-
F/CUACE and in situ observations at Mount Tai in CP-1 and CP-2.
Units: SO2 and O3 (ppbv), H2O2 (µM), and sulfate (µg m−3). The
color of the dots represents the point density, and the red means
larger sample size.

that of CP-1 (RAD= 22.4 %, NMB=−36.6 %). For sulfate,
the simulated R values are 0.32 and 0.54 in CP-1 and CP-
2, respectively, but the model underestimates sulfate con-
centrations with NMB of −71.0 % and −59.4 % in CP-1
and CP-2. Some reasons might contribute to the underesti-
mations. Firstly, the latitude of the observed site at Mount
Tai is 1483 m, which can be in the boundary layer during
the daytime and in the free atmosphere during the nighttime
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in summer (Zhu et al., 2018). Therefore, the diurnal varia-
tion of the boundary layer affects the three-dimensional con-
centration distribution of oxidants and aerosols (Peng et al.,
2021) and influences the development of cloud formation.
Secondly, there are biases from the model due to the diffi-
culties of representing the complex topography of Mount Tai
and cloud physics. Thirdly, the cloud chemistry in CUACE
lacks a pathway for TMI- and NO2-catalyzed oxidation, as
well as some other newly discovered oxidation mechanisms,
which could lead to the bias in SO2 and sulfate. Fourthly, typ-
ical measurement systems for ambient aerosols easily mis-
interpret organosulfur (mainly in the presence of hydroxy-
methane sulfonate, HMS) as inorganic sulfate, thus leading
to a positive observational bias, e.g., 20 % mean bias during
winter haze in Beijing (Moch et al., 2018; Song et al., 2019).

Another interesting point simulated correctly by the model
was the increasing trend of H2O2 and the decreasing trend of
SO2 from 2015 to 2018. The observed and simulated mean
values of H2O2 were changed from 26.5 and 16.8 µM in CP-
1 in 2015 to 46.9 and 32.4 µM in CP-2 in 2018, respectively.
For SO2, the observed and simulated mean values were re-
duced from 2.2 and 2.3 µg m−3 in CP-1 in 2015 to 0.6 and
0.6 µg m−3 in CP-2 in 2018, respectively (Table 3). Both the
observations and simulations clearly showed the increasing
trend of H2O2 and the decreasing trend of SO2 from 2015 to
2018. This conclusion is consistent with the trends of other
observational studies (Ren et al., 2009; Shen et al., 2012; Li
et al., 2020a; Ye et al., 2021). The decreasing SO2 and in-
creasing H2O2 and O3 have been attributed to the national
SO2 and particulate emission control measures since 2013
(Fan et al., 2010; Lu et al., 2020).

Figure 4 shows the RTCLD of SO2 and simulated liquid
water content at 02:00 and 08:00 LST on both 24 and 25 June
in CP-1 at Mount Tai. The column cloud and the liquid water
content, which are consistent with the cloud images, indicate
that there are clouds with sufficient water vapor in and around
the vicinity of Mount Tai (Fig. 3). The SO2 consumption rate
(RTCLD(SO2)) distribution is consistent with the liquid wa-
ter distribution at all four times (Fig. 4). The SO2 depletion
rate is above 80 % at Mount Tai, which is compatible with
observations (Li, 2020). All of these indicate that the model
can capture the SO2 consumption in the cloudy environment.

In summary, the simulated SO2, H2O2, O3, and sulfate
concentrations are comparable to the observations. WR-
F/CUACE is also able to simulate the decreasing trend of
SO2 and the increasing trends of O3 and H2O2 over the year.
Therefore, the cloud chemistry mechanism in WRF/CUACE
is relatively reasonable for reproducing the cloud chemistry
for SO2, sulfate, and the important oxidants of H2O2 and O3.

3.2 Assessment of the impacts of cloud chemistry on
regional SO2 and sulfate

This section will further assess the contribution of cloud
chemistry for the four main pollution regions of NCP, YRD,

Figure 3. Cloud water simulation and satellite comparison. The
column liquid water content by WRF/CUACE (a1, b1, unit:
kg m−2), the cloud fraction by WRF/CUACE (a2, b2, unit: %),
and the cloud total amount of FY2G, (a3, b3, unit: %). Panel (a)
is for 08:00 LST on 24 June 2015, and (b) is for 08:00 LST on
25 June 2015. The red triangle is the Mount Tai observation site.

PRD, and SCB (Fig. 1b) in China for all of December of
2016 (hereinafter referred to as DEC) and a heavy pollution
episode (hereinafter referred to as HPE) occurring during the
month (16–22 December), as selected for Case 2. The re-
gional impacts of cloud chemical processes on surface SO2
and sulfate are analyzed for DEC and for HPE. The heavy
pollution episode (HPE) is investigated with respect to the
developing stage HPE-1 (16–18 December 2016), the matu-
rity stage HPE-2 (19–21 December 2016), and the dissipa-
tion stage HPE-3 (22 December 2016) for the four pollution
regions.

3.2.1 Meteorological evaluation

As the driving force for air pollution and cloud chemistry,
the meteorology elements of 2 m temperature (T2), 2 m rela-
tive humidity (RH2), and 10 m wind speed (WS10) in DEC
and HPE are compared between simulated and observed re-
sults in Table 4. The temperature correlation is the best in
DEC, followed by humidity and then wind speed, which is
consistent with previous findings (Zhou et al., 2012; Wang
et al., 2015; Gao et al., 2016). The RMSEs of wind speeds
all range from 1.03 to 1.50 m s−1, falling within the criteria
(less than 2 m s−1) defining “good” model performance in
stagnant weather (Emery et al., 2001). The RMSE of wind

Atmos. Chem. Phys., 23, 8021–8037, 2023 https://doi.org/10.5194/acp-23-8021-2023
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Table 3. Statistics for SO2, O3, H2O2, and sulfate in cloud chemistry at the Mount Tai site.

Observed Simulated
mean mean R RAD (%) NMB (%)

CP-1

SO2 2.2 2.3 0.34 −3.4 7.1
O3 97.8 55.3 0.33 27.8 −43.5
H2O2 26.5 16.8 0.78 22.4 −36.6
Sulfate 31.7 9.2 0.32 55.0 −71.0

CP-2

SO2 0.6 0.6 0.47 −6.1 12.9
O3 60.7 51.0 0.40 8.7 −16.0
H2O2 46.9 32.4 0.06 18.4 −29.6
Sulfate 28.1 11.4 0.54 42.2 −59.4

Units: SO2 and O3 (ppbv), H2O2 (µM), and sulfate (µg m−3).

Figure 4. Regional comparison of in-cloud SO2 oxidation with cloud water at the top of Mount Tai. Distributions of SO2 oxidation rate
(a1, b1, c1, and d1, unit: %) and liquid water content (a2, b2, c2, and d2, unit: g kg−1) by WRF/CUACE, where (a) is for 02:00 LST on
24 June 2015, (b) is for 08:00 LST on 24 June 2015, (c) is for 02:00 LST on 25 June 2015, and (d) is for 08:00 LST on 25 June 2015. The
red triangle is the Mount Tai observation site.

speed and the wind speed for HPE is smaller than that of
DEC, which indicates that the model can relatively reason-
ably capture the static condition.

Figure 5 shows the satellite cloud images, the column
cloud, and the liquid water content simulated for the matu-
rity and dissipation stages (19–22 December) of the HPE.
The satellite image shows that the cloud coverage region is
mainly in the southwest of China, besides SCB on 19 Decem-
ber, covering most of eastern China including NCP, YRD,
PRD, and SCB on December 20 and 21, and then mov-
ing eastward outside of China on December 22 (Fig. 5a1–
d1). The cloud distribution fits well with the satellite im-
ages (Fig. 5a2–d2). The column liquid water distribution also
moves from west to east as the episode developed (Fig. 5a3–
d3), which is located farther south in eastern China than that
of the clouds. In SCB and YRD, the liquid water content
is more abundant, reaching over 100.0 g m−2, than that in
PRD, only up to 10.0 g m−2. NCP has the least liquid wa-
ter content among the four regions, especially in Beijing and
the northwestern part of Hebei Province ranging over 0.001–
0.01 g m−2, mostly due to the dry environment and partly

due to the overestimated temperature and underestimated hu-
midity in the model. Above all, CUACE not only effectively
simulates pollution but also provides a relatively reasonable
meteorological background basis for cloud chemistry in the
heavy pollution period.

3.2.2 Chemical evaluation

Figure 6 shows the mean SO2 and sulfate concentrations sim-
ulated for DEC and HPE-2. The high and low centers of
monthly mean SO2 and sulfate concentrations by CUACE
in December 2016 coincided with the annual observed av-
erage by Cao et al. (2021) in the SCB and NCP. The sul-
fate concentrations are low on a monthly basis and high at
the pollution maturity stage compared to the averaged ob-
servations of several pollution episodes studied by Wang et
al. (2022) in December 2016 for NCP. The simulated mean
sulfate concentration distribution in Fig. 6b is comparable to
that by Wang et al. (2021, 2022) in December 2016, both dis-
playing an increase from northwest to southeast almost of the
same magnitude as in NCP. For SCB, sulfate concentrations
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Table 4. Statistical metrics for meteorology in four regions for HPE and DEC.

Observed mean Simulated mean R NMB (%) RMSE

HPE DEC HPE DEC HPE DEC HPE DEC HPE DEC

T2 1.0 1.1 2.8 2.1 0.70 0.84 187.3 84.9 3.3 2.5
NCP RH2 78.8 68.3 52.3 48.8 0.54 0.64 −33.7 −28.6 32.3 25.9

WS10 1.5 1.7 1.7 2.2 0.49 0.54 14.1 27.5 1.2 1.3

T2 9.2 8.0 9.5 8.4 0.94 0.96 2.9 5.1 1.4 1.3
YRD RH2 79.2 75.6 73.8 73.0 0.86 0.85 −6.8 −3.5 10.7 9.3

WS10 2.2 2.3 2.8 3.0 0.74 0.76 28.7 31.9 1.2 1.3

T2 18.3 17.3 19.0 17.9 0.93 0.92 3.6 3.8 1.9 1.9
PRD RH2 72.2 70.4 64.3 65.4 0.76 0.68 −10.9 −7.2 14.0 13.9

WS10 1.8 2.4 2.0 3.2 0.67 0.72 13.6 37.1 1.0 1.5

T2 10.2 9.7 10.5 10.0 0.74 0.75 2.8 3.1 1.8 2.2
SCB RH2 81.6 79.9 74.1 71.3 0.66 0.60 −9.2 −10.8 12.7 15.5

WS10 1.1 1.3 1.6 1.9 0.49 0.36 49.2 50.5 1.0 1.3

Units: T2 (◦), RH2 (%), and WS10 (m s−1).

Figure 5. Cloud water simulation and satellite comparison in a heavy pollution episode. The cloud total amount of FY-2G (a1, b1, c1, d1,
unit: %), the column cloud of WRF/CUACE (a2, b2, c2, d2, unit: %), and the column liquid water content of WRF/CUACE (a3, b3, c3, d3,
unit: kg m−2). Panel (a) is for 08:00 LST on 19 December, (b) is for 08:00 LST on 20 December, (c) is for 08:00 LST on 21 December, and
(d) is for 08:00 LST on 22 December.
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Figure 6. The mean sulfate concentration for DEC (a, c) and HPE-
2 (b, d) for SO2 (c, d) and sulfate (a, b).

are compatible to that observed in winter in 2015 by Kong et
al. (2020).

The simulated hourly PM2.5, O3, and SO2 concentrations
in four regions are also compared with the observations (Ta-
ble 5). Most of the simulations are within a factor of 2 of
the observations (figure omitted), and the mean values of the
three pollutants in the four regions are close to the observa-
tions for DEC and HPE, indicating that the model captures
the variability of PM2.5, O3, and SO2 concentrations for both
DEC and HPE. During HPE, the differences of mean val-
ues ranged from −7.6 to 10.4 µg m−3 for SO2, from −22
to 23.3 µg m−3 for O3, and from −156.5 to 48.8 µg m−3 for
PM2.5. During DEC, the differences of mean values were
from −21.5 to −1.2 µg m−3 for SO2, from 1.1 to 7.7 µg m−3

for O3, and from −71.3 to 1.3 µg m−3 for PM2.5. During
HPE, the R values are from 0.32 to 0.61 for SO2, from 0.20
to 0.84 for O3, and from 0.27 to 0.84 for PM2.5. During DEC,
the R values are from 0.19 to 0.48 for SO2, from 0.47 to 0.80
for O3, and from 0.28 to 0.73 for PM2.5. During HPE, the
NMBs are from −49.8 to 46.3 for SO2, from −54.0 to 123.1
for O3, and from −48.2 to 51.0 for PM2.5. During DEC, the
NMBs are from −47.4 to 11.9 for SO2, from −45.5 to 97.4
for O3, and from −35.7 to 51.5 for PM2.5. The simulation
in PRD, YRD, and NCP is relatively better than that in the
SCB, where the complex terrain poses great challenges to
meteorological field simulations.

The ability of CUACE to simulate SO2, O3, and sulfate
concentrations has also been evaluated in many previous re-
search applications (Ke et al., 2020; Y. Zhou et al., 2021;
Zhang et al., 2021). Ke et al. (2020) reported that the cor-
relation between CUACE modeled and observed PM2.5 was
0.41–0.85 in NCP and 0.64–0.74 in YRD. Other atmospheric
models in China have shown the same performance: for ex-
ample, NACRMS has a correlation of about 0.68 for PM2.5
in NCP during a haze period (Wang et al., 2014).

Figure 7. The mean SO2 concentration decreased (a) and sulfate
concentration increased (b) by cloud chemistry for DEC.

3.2.3 Assessment of regional contributions

In order to assess the regional contributions, the average
monthly impact of cloud chemistry on surface SO2 and sul-
fate denoted by DT (SO2) and DT (sulfate) for DEC is inves-
tigated (Fig. 7). It is found that the SO2 reduction for DEC is
concentrated mostly in the central-east part of China, by an
average of 0.1–1.0 ppb in most regions by cloud chemistry.
SO2 concentrations are reduced by 0.5–3.0 ppb in most of
the NCP, YRD, PRD, and SCB regions. Among them, there
is a relatively strong center decreasing by 3.0–10.0 ppb in
SCB. Ge et al. (2021) have evaluated the effects of in-cloud
aqueous-phase chemistry on SO2 oxidation in the Commu-
nity Earth System Model version 2 (CESM2). They found
that the results incorporating detailed cloud aqueous-phase
chemistry greatly reduced the SO2 overestimation, i.e., by
0.1–10.0 ppb in China and more than 10.0 ppb in some re-
gions in winter, which is consistent with the results demon-
strated in Fig. 7, where SO2 concentrations are depleted
by 0.1–10 ppb in China. Correspondingly, sulfate growth is
mainly centered in SCB, with the increased maximum up
to 20.0–50.0 µg m−3. Sulfate concentrations are increased by
10.0–20.0 µg m−3 in most parts of NCP, YRD, and PRD and
by 5–10.0 µg m−3 in others.

In addition to the average monthly impact of cloud chem-
istry, Fig. 8 shows DT(SO2) and DT(sulfate) for HPE-2. It
is found that the SO2 concentration decreases most signif-
icantly in SCB: by 1.0–3.0 ppb in most regions and up to
3.0–10.0 ppb in the central region. In YRD, PRD, and NCP,
the reduction reaches 1.0–3.0 ppb in most parts, while the
smallest decrease is below 1.0 ppb in the northern part of
NCP. Meanwhile, in terms of regional distribution, the re-
gions of increasing sulfate and decreasing SO2 concentra-
tions are correlated, but not identical. Sulfate production is
mainly focused in SCB, with the increasing maximum up
to 20.0–50.0 µg m−3, while production is 10.0–20.0 µg m−3

in most parts of NCP, YRD, and PRD and 5.0–10.0 µg m−3

in other regions. In Figs. 7b and 8b, the increasing rates for
monthly mean sulfate concentrations are about 60 % to 70 %
in NCP. The heaviest and longest duration pollution episode
that had many clouds and high liquid water content (Fig. 5)
on 19–21 December 2016 was very favorable for the occur-
rence of in-cloud oxidation processes. Sulfate formation rates
by H2O2 oxidation under winter haze conditions range from
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Table 5. Statistical metrics for hourly SO2, O3, and PM2.5 in four regions for HPE and DEC.

Observed Simulated
mean (µg m−3) mean (µg m−3) R NMB (%)

HPE DEC HPE DEC HPE DEC HPE DEC

SO2 42.0 61.5 50.0 40.0 0.60 0.48 46.3 −15.6
NCP O3 8.8 7.4 7.4 10.9 0.47 0.60 −15.3 −32.4

PM2.5 351.3 182.1 194.8 110.8 0.30 0.62 −48.2 −35.7

SO2 21.8 16.3 15.8 14.9 0.61 0.45 −25.3 −32.8
YRD O3 31.3 14.4 9.3 22.1 0.33 0.68 −54.0 −45.5

PM2.5 70.3 82.9 119.1 84.2 0.70 0.73 18.0 19.3

SO2 13.6 24.0 24.0 17.0 0.32 0.39 76.1 11.9
PRD O3 45.7 56.3 56.5 57.4 0.84 0.80 23.0 13.9

PM2.5 55.7 83.6 83.8 77.5 0.84 0.39 50.1 51.5

SO2 20.0 10.0 12.4 8.8 0.49 0.19 −49.8 −47.4
SCB O3 22.0 49.0 45.3 54.2 0.20 0.47 123.1 97.4

PM2.5 135.6 91.0 117.0 71.0 0.27 0.28 −32.9 −29.1

Figure 8. The mean SO2 concentration decreased (a) and sulfate
concentration increased (b) by cloud chemistry for HPE-2.

10 to 1000 µg m−3 s−1, which is close to the range of 10 to
100 µg m−3 s−1 obtained by Wang et al. (2022) in several
pollution episodes in December 2016, indicating that the in-
cloud oxidation in this study is relatively reasonable.

Exploring details of the HPE, four time periods, 14:00
and 21:00 on December 20, 17:00 on December 21 of the
HPE-2, and 12:00 on December 22 of the HPE-3, are used
to specifically analyze the contribution of cloud chemistry.
It is found that the cloud chemistry influence is mainly on
SCB and YRD at 14:00 and 21:00 LST on 20 December for
HPE-2. The observed PM2.5 concentrations are very high, up
to 350 µg m−3 at 14:00 and 236 µg m−3 at 21:00 on Decem-
ber 20 in Chengdu of SCB, and up to 76 µg m−3 at 14:00
and 77 µg m−3 at 21:00 on December 20 in Hangzhou of
YRD, partially supporting the cloud production of sulfate at
these specific times. Correspondingly, Fig. 9 shows that sul-
fate increases by cloud chemistry during these time periods
are 10–20 µg m−3 and 20–30 µg m−3 14:00 and 21:00 on De-
cember 20 at Chengdu, and 20–60 µg m−3 and 30–60 µg m−3

at Hangzhou.
Above all, the contribution of cloud chemistry to surface

sulfate during the HPE is the highest in the SCB, followed
by the NCP, YRD, and PRD, with most concentration in-

creases ranging over 20.0–100.0 µg m−3, 10.0–60.0 µg m−3,
10.0–40.0 µg m−3, and 10.0–40.0 µg m−3, respectively, and
less than 10.0 µg m−3 in Beijing, Tianjin, and the northwest-
ern part of Hebei Province (Fig. 9). Of particular note is the
NCP region, where the contribution of cloud chemistry is not
significant on a monthly average but is very significant and
exceeds that for the YRD region at certain moments during
HPE. This also provides an explanation for the explosive in-
crease in particulate matter concentrations during HPE in this
region.

Further analysis of the simulation characteristics with and
without cloud chemistry on all the regions during the HPE-2
stage (Fig. 10) and the DEC (Fig. 11) is carried out. Com-
pared with nCLD, R of SO2 in CLD increases by 0.06, 0.15,
and 0.01 in YRD, SCB, and NCP, respectively, and the over-
estimation in NCP and PRD has been corrected during HPE-
2.R also increases by 0.10, 0.03, and 0.05 in YRD, SCB, and
NCP for the DEC, respectively. It is obvious that the model
simulates SO2 concentrations better at NCP during HPE-2
than for DEC with cloud chemistry.

For PM2.5, the statistical results of the simulated mean, R,
and NMB in CLD and nCLD in the four polluted regions do
not differ significantly between HPE-2 and DEC, but there
is a significant improvement in the underestimate of sulfate
in NCP and SCB. Under cloud chemistry, the deviation in
the NCP is reduced from −45.7 % to −35.7 % for DEC and
from −52.6 % to −48.2 % for HPE-2. The deviation in SCB
is also improved from −44.2 % to −29.1 % for DEC and
from −46.5 % to −32.9 % for HPE-2. A significant reduc-
tion in the model’s PM2.5 concentration simulation bias after
considering cloud chemistry and an improvement in the un-
derestimation at NCP and SCB have been achieved.

Moreover, the statistical results of all stations (SUM in
Fig. 12) show that after considering cloud chemical simu-
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Figure 9. The differences in surface sulfate concentrations between with and without cloud chemistry at 14:00 (a) and 21:00 (b) LST on
20 December, at 17:00 LST on 21 December (c), and at 12:00 LST on 22 December (d, units: µg m−3).

Figure 10. Statistical metrics for hourly SO2 and PM2.5 for four re-
gions for HPE-2 with (Mod-CLD) and without (Mod-nCLD) cloud
chemistry. The mean value (a1, unit: µg m−3), R (b1), and NMB
(c1, unit: %) of SO2, as well as the mean value (a2, unit: µg m−3),
R (b2), and NMB (c2, unit: %) of PM2.5. Obs. denotes the obser-
vations.

lation (CLD), the NMB of SO2 is decreased from 39.3 % to
13.8 % and the NMB of PM2.5 from −40.8 % to −31.6 %
during the HPE-2 after the addition of cloud chemistry sim-
ulation, reducing the simulation bias of both SO2 and PM2.5.
This indicates that the addition of cloud chemistry to the
model improves the model for SO2 and sulfate simulations.
The improvement of sulfate simulation in the presence of
clouds also contributes to the improvement of the simulation
accuracy of PM2.5 mentioned above.

In summary, comparing the contribution of cloud chem-
istry in DEC with HPE-2, it is found that the cloud chemistry
in heavy pollution weather for SO2 depletion and sulfate in-
crease is mainly concentrated in central-east China and ob-
viously in the four major pollution regions. However, SO2
consumption and sulfate increase are not consistent, which
is influenced not only by the local SO2 concentration, but
also by the cloud amount. Therefore, for SCB, which is less
polluted and has many more clouds than NCP, the impact of
cloud chemistry on sulfate and its precursor SO2 is always
the most significant for both HPE and DEC.

Figure 11. Statistical metrics for hourly SO2 and PM2.5 for four
regions for DEC with (Mod-CLD) and without (Mod-nCLD) cloud
chemistry. The mean value (a1, unit: µg m−3), R (b1), and NMB
(c1, unit: %) of SO2, as well as the mean value (a2, unit: µg m−3),
R (b2), and NMB (c2, unit: %) of PM2.5. Obs. denotes the obser-
vations.

3.3 Site evaluation of cloud chemistry

The statistical metrics of SO2 and PM2.5 hourly concentra-
tions in 55 representative cities with and without cloud chem-
istry in the model were analyzed. The results indicate that
most of the sites are improved with cloud chemistry in the
SO2 concentration simulation and 42 of the 55 cities are with
the increasing R. In the PM2.5 simulation, the correlations
also are improved in some cities after the presence of cloud
chemistry.

Representative sites of Beijing, Nanjing, Guangzhou, and
Chengdu in NCP, YRD, PRD, and SCB are selected to quan-
tify the impact of cloud chemistry during the HPE. The net
depletion ratio of SO2 column concentration (RT(SO2)) dur-
ing cloud chemistry is shown in Fig. 13. It is found that SO2
column concentration reduction maintained mostly a high
value of over 60 %, even 80 % sometimes, in Chengdu dur-
ing HPE-2. In Nanjing, the SO2 level was reduced by about
20 %–50 % from December 17 to 19 and by up to 80 % from
December 20 to 21, when the episode matured there. The
changes of SO2 in these two cities are consistent with the
changes in cloud and liquid cloud water content distributions
during the HPE-2 in Fig. 3. The SO2 reduction in Beijing and
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Figure 12. Statistical metrics for hourly SO2 and PM2.5 in all
selected sites for HPE-2 and DEC with (Mod-CLD) and without
(Mod-nCLD) cloud chemistry. The mean value (a1, unit: µg m−3),
R (b1), and NMB (c1, unit: %) of SO2, as well as the mean value
(a2, unit: µg m−3), R (b2), and NMB (c2, unit: %) of PM2.5. Obs.
denotes the observations.

Figure 13. The rates of SO2 column concentration reduced by
cloud chemistry in Beijing (blue), Nanjing (yellow), Guangzhou
(green), and Chengdu (red).

Guangzhou was consistently maintained at around 40 % dur-
ing the period from December 17 to 21. The lower oxidative
transformation was related to the lower liquid water content
in Beijing, while in Guangzhou it was attributed to the com-
bination of low pollution levels and low cloud water content.
Figure 3 shows that Chengdu maintained abundant water va-
por conditions from December 17 to 21, as did Nanjing from
December 20 to 21. However, the ambient water vapor con-
tent was quite low in Guangzhou and Beijing throughout the
process and the SO2 oxidation was much lower than that of
Chengdu and Nanjing. In conclusion, the cloud chemistry
process can lead to a SO2 column concentration consump-
tion share of more than 60 % when cloud water content is
abundant, which is also consistent with the observations of
Mount Tai by Li (2020).

The impact of cloud chemistry (RT) on surface SO2 and
sulfate in four sites is also shown in Fig. 13. The overall
trend shows that the peak and valley timing of surface SO2
consumption and sulfate increase are coincident. The cloud
chemical processes of the surface SO2 oxidation vary greatly
between cities in different regions (Fig. 14a). In HPE-2, the
percentage of surface SO2 consumption reached more than
90 % in Chengdu and Nanjing, while it was below 30 % in

Figure 14. The rates of surface SO2 reduced (a) and the surface sul-
fate increased (b), influenced by cloud chemistry in Beijing (blue),
Nanjing (yellow), Guangzhou (green), and Chengdu (red).

Figure 15. Vertical profiles of sulfate concentration difference (DT)
at 12:00 on 20 December, at 21:00 on 20 December, at 17:00 on
21 December, and at 12:00 on 22 December in Beijing (blue), Nan-
jing (yellow), Guangzhou (green), and Chengdu (red).

Beijing and Guangzhou, and did not reach 40 % until Decem-
ber 22. Although the percentage of surface SO2 consump-
tion varies greatly, the increase in the percentage of sulfate
does not vary much between cities. In HPE-2, the increase
in surface sulfate in the four cities ranged from 60 %–95 %
(Fig. 14b), which is consistent with the sulfate increase rates
summarized by Turnock et al. (2019).

Figure 15 shows the variation of vertical profiles of sul-
fate increase by the cloud chemistry at the four times
of 12:00 LST on 20 December for HPE-2, 04:00 LST on
21 December for HPE-2, and 04:00 and 12:00 LST on
22 December for HPE-3 in Beijing, Nanjing, Chengdu, and
Guangzhou. This shows that the sulfate produced by the
cloud chemistry during this pollution process is concentrated
mostly below 5 km in the troposphere and especially under
2 km. Again, less sulfate has been produced in Beijing in the
vertical than that by others by cloud chemistry.

4 Summary and conclusions

The cloud chemistry mechanism in WRF/CUACE has been
assessed by using the in situ cloud chemistry observations of
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SO2, O3, and H2O2 from Mount Tai in June–July of 2015 and
2018. The results show that the mechanism has well captured
the cloud processes for the oxidation of SO2, reducing SO2
by more than 80 % during the cloudy phase, which is in good
agreement with the observations.

The cloud chemistry contributions to the changes of SO2
and sulfate concentrations in NCP, YRD, PRD, and SCB re-
gions are assessed by WRF/CUACE. During heavy pollu-
tion (HPE-2), the four regions are significantly affected by
cloud chemistry, with SCB being the most obvious. The sur-
face SO2 reduction in SCB is 1.0–3.0 ppb and reaches 3.0–
10.0 ppb in the high value areas, and surface sulfate con-
centration increased by 10.0–30.0 µg m−3 on average, with
a maximum of more than 20.0–70.0 µg m−3. Most areas in
NCP, YRD, and PRD have an average SO2 reduction of 0.5–
3.0 ppb and sulfate increase of 5.0–30.0 µg m−3. Although
the monthly average impact of cloud chemistry is much
weaker in the NCP due to less water vapor in December,
the contribution in the southern part of NCP during the
heavy pollution episode is still significant and cannot be ig-
nored. In PRD, the contribution of cloud chemistry is weaker
than other regions due to lighter pollution, although there
are many clouds with abundant liquid water there. In addi-
tion, the cloud chemistry increases surface sulfate concen-
trations by 60 %–95 % and reduces surface SO2 concentra-
tions by more than 80 % in Beijing, Nanjing, Chengdu, and
Guangzhou during HPE-2. Above all, the average contribu-
tion of cloud chemistry during HPE-2 is significantly greater
than that for DEC. Vertically, the cloud chemistry influence
is mainly in the middle and lower troposphere below 2 km
for four representative cities in HPE-2. Generally, the cloud
chemistry can improve the model performance by reducing
the overestimates of SO2 and underestimates of sulfate.

In the future, more mechanisms should be added to im-
prove the cloud chemistry mechanism in CUACE and to in-
crease accuracy in simulating SO2, sulfate, and other aerosol
components such as nitrate, ammonium, carbonate, and or-
ganic aerosols.
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