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Abstract. High-resolution simulations were performed to assess the impact of different parameterization
schemes, surface datasets, and analysis nudging on lower-tropospheric conditions near Lake Michigan. Sim-
ulations were performed where climatological or coarse-resolution surface datasets were replaced by high-
resolution, real-time datasets depicting the lake surface temperatures (SSTs), green vegetation fraction (GVF),
and soil moisture and temperature (SOIL). Comparison of two baseline simulations employing different parame-
terization schemes (referred to as AP-XM and YNT, respectively) showed that the AP-XM simulation produced
more accurate analyses on the outermost 12 km resolution domain but that the YNT simulation was superior for
higher-resolution nests. The diurnal evolution of the surface energy fluxes was similar in both simulations on the
12 km grid but differed greatly on the 1.3 km grid where the AP-XM simulation had a much smaller sensible heat
flux during the daytime and a physically unrealistic ground heat flux. Switching to the YNT configuration led
to more accurate 2 m temperature and 2 m water vapor mixing ratio analyses on the 1.3 km grid. Additional im-
provements occurred when satellite-derived surface datasets were incorporated into the modeling platform, with
the SOIL dataset having the largest positive impact on temperature and water vapor. The GVF and SST datasets
also produced more accurate temperature and water vapor analyses but had degradations in wind speed, espe-
cially when using the GVF dataset. The most accurate simulations were obtained when using the high-resolution
SST and SOIL datasets and analysis nudging above 2 km a.g.l. (above ground level). These results demonstrate
the value of using high-resolution satellite-derived surface datasets in model simulations.
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1 Introduction

Locations along the Lake Michigan shoreline in the United
States of America have a long history of recording surface
ozone concentrations that exceed the levels set by the Na-
tional Ambient Air Quality Standards (NAAQS), especially
during the warm season (Stanier et al., 2021). Since the first
ozone NAAQS was released in 1979, most lakeshore coun-
ties in the states bordering Lake Michigan (Wisconsin, Illi-
nois, Indiana, and Michigan) have been designated as being
in nonattainment for surface ozone in one or more of the sub-
sequent NAAQS revisions. These states are required by the
Clean Air Act to develop State Implementation Plans (SIPs)
to demonstrate strategies to bring the affected areas into at-
tainment and to mitigate the impacts of high-ozone concen-
trations. Large decreases in local emissions of ozone precur-
sors such as nitrogen oxides and volatile organic compounds
have steadily reduced the 1 and 8 h maximum ozone concen-
trations across the region in recent decades. However, the im-
plementation of stricter ozone NAAQS means that additional
air quality modeling assessments are necessary to help states
demonstrate that they can reach attainment by the required
statutory deadlines.

Urban and rural areas near Lake Michigan are suscep-
tible to high-ozone events due to the complex interaction
between synoptic and mesoscale circulation patterns, with
large sources of industrial, transportation, and urban emis-
sions along the southern end of the lake. High-ozone days are
most common when synoptic-scale weather patterns char-
acterized by weak southerly winds transport ozone and its
precursors northward from their primary source regions over
the Chicago and Milwaukee metropolitan areas and then
interact with the mesoscale lake and land breeze circula-
tions (Lyons and Olsson, 1973; Ragland and Samson, 1977;
Lennartson and Schwartz, 2002). At night, the land breeze
carries ozone precursors from land-based emissions sources
over the lake, where they become confined within a shal-
low nocturnal boundary layer and are then converted into
ozone after sunrise via photochemical processes (Dye et al.,
1995). As the land surface warms during the day, a reversal
of the mesoscale circulation leads to the formation of the lake
breeze during the morning that transports the high-ozone air
mass back onshore, with elevated ozone concentrations oc-
curring across inland areas during midday and afternoon. On
high-ozone days, the lowest ozone concentrations are often
found in areas with high nitrogen oxide emissions, such as
Chicago and northwestern Indiana, with the highest ozone
levels located downwind in rural and suburban areas to the
north of these urban and industrial locations (Foley et al.,
2011; Cleary et al., 2015).

When synoptic-scale conditions are favorable for lake and
land breeze formation, the horizontal temperature gradient
between adjacent land and water areas influences the strength
of the circulation pattern and the distance that the lake breeze
penetrates inland during the daytime. Changes in the lo-

cation of the lake breeze can have a profound impact on
near-surface meteorology, the depth and vertical structure of
the planetary boundary layer (PBL), and ozone concentra-
tions along the Lake Michigan shoreline (Dye et al., 1995).
Among other things, an accurate depiction of near-surface
features in numerical weather prediction models requires an
accurate specification of the lower boundary conditions at
the land and water surface. For example, an accurate rep-
resentation of land surface conditions (such as soil mois-
ture, soil temperature, and green vegetation fraction) is nec-
essary to correctly partition the surface net radiation into
sensible, latent, and ground heat fluxes. This partitioning in
turn impacts the growth and depth of the PBL and lower-
tropospheric temperature, moisture, and wind profiles (Berg
et al., 2014; Dirmeyer and Halder, 2016; Schwingshakl et al.,
2017; Welty and Zeng, 2018). Soil moisture and vegetation
fraction (or leaf area index) are especially important vari-
ables through their influence on the land–atmosphere cou-
pling processes that link the surface hydrologic and atmo-
spheric components of the Earth system (Santanello et al.,
2018, 2019). Indeed, Huang et al. (2017) showed that the use
of improved soil moisture and green vegetation fraction es-
timates in high-resolution simulations reduced biases in air
temperatures and PBL heights over the Missouri Ozarks and
had a large impact on biogenic isoprene emissions.

Given the important role that boundary layer meteorology
and the land–lake breeze circulation have for ozone produc-
tion and transport in the Lake Michigan region, it is critical to
explore the ability of different parameterization schemes and
surface datasets to improve the accuracy of near-surface me-
teorological and air quality simulations. For example, ozone
production is highly sensitive to temperature and humidity
(Bloomer et al., 2009; Camalier et al., 2007; Coates et al.,
2016; Dawson et al., 2007; Jacob and Winner, 2009; Pusede
et al., 2014), and the production and transport of ozone pre-
cursors such as nitrogen oxides and volatile organic com-
pounds are also dependent on temperature and winds (Dye
et al., 1995; Porter and Heald, 2019; Wang et al., 2022;
Wiedinmyer et al., 2006). In this two-part study, we de-
velop and assess the accuracy of a satellite-constrained mod-
eling platform for the Midwestern United States that sup-
ports the needs of the Lake Michigan Air Directors Consor-
tium (LADCO) as they conduct detailed air quality modeling
assessments for the member states. The modeling platform
uses high-resolution analyses of soil moisture, green vegeta-
tion fraction, and lake surface temperatures (SSTs) derived
from satellite observations and an offline land surface model
(LSM) to constrain the evolution of the lower boundary con-
ditions during multi-week model simulations. In Part 1, we
use the results from a large set of Weather Research and Fore-
casting (WRF) model simulations to assess the impact of the
high-resolution surface datasets, different parameterization
schemes, and analysis nudging on near-surface meteorolog-
ical conditions and energy fluxes. We will show that a base-
line model configuration employing default surface datasets
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produces better results for model simulations performed at
12 km horizontal grid spacing but that more accurate results
are obtained at higher resolutions when the satellite-derived
surface datasets and alternative parameterization schemes are
used. In Part 2 of this study, we use meteorological analy-
ses from two of the WRF model configurations as input to
Community Multiscale Air Quality (CMAQ) model simula-
tions to assess the impact of these model changes on ozone
forecasts in the Lake Michigan region. The remainder of this
paper is organized as follows: Sect. 2 contains a description
of the model configurations and surface datasets. The results
are presented in Sect. 3, with a discussion and conclusions
provided in Sect. 4.

2 Methods

2.1 WRF model configurations

Version 3.8.1 of the WRF Preprocessing System (WPS) and
WRF model (Powers et al., 2017) was used to perform sim-
ulations containing three one-way nested domains covering
the contiguous United States, Midwestern United States, and
Lake Michigan regions with 12, 4, and 1.3 km horizontal res-
olutions, respectively (Fig. 1). Each simulation contained 40
terrain-following vertical layers, with seven of the layers lo-
cated below 2 km. The model top was set to 100 hPa. The
0.25◦ resolution Global Forecast System Final (GFS-FNL)
reanalyses, available at 6 h intervals, served as the initial
and lateral boundary conditions (ICs and BCs) for the WRF
model simulations. All simulations were run from 12 May–
22 June 2017, with our evaluation focusing on the 22 May–
22 June 2017 time period corresponding to the Lake Michi-
gan Ozone Study field project (Stainer et al., 2021). Except
for the two baseline simulations described below, all of the
simulations were performed in daily increments using the
standard WRF model restart files to allow for daily updates
of high-resolution surface datasets using the WPS. The 40-
category National Land Cover Database (NLCD) 2011 land
use dataset (Jin et al., 2013) was used to determine the vege-
tation type and soil properties for each model grid point.

Eight model simulations were performed to assess the im-
pact of different physics options and surface datasets on the
model accuracy in the lower troposphere (Table 1). The first
simulation, hereafter referred to as the AP-XM baseline con-
figuration, employed the Morrison microphysics (Morrison
et al., 2005), rapid radiative transfer model for general cir-
culation models (RRTMG) longwave and shortwave radia-
tion (Iacono et al., 2008; Mlawer et al., 1997), and ACM2
PBL (Pleim, 2007) parameterization schemes on all three do-
mains, along with the Kain–Fritsch cumulus scheme (Kain,
2004) on the outer two domains. These schemes were cho-
sen for the baseline configuration because they are often used
in simulations performed at the U.S. Environmental Protec-
tion Agency (EPA). The ACM2 PBL scheme is a hybrid
first-order closure scheme that attempts to capture both lo-

Figure 1. Map showing the geographic regions covered by the
12 km (red box), 4 km (orange box), and 1.3 km (yellow box) reso-
lution domains used during the WRF model experiments.

cal and non-local fluxes (Pleim, 2007). When conditions are
stable, only the local closure portion of the ACM2 scheme is
used. Surface energy fluxes (sensible, latent, and ground) and
changes in soil moisture and soil temperature were simulated
using the Pleim–Xiu LSM (Gilliam and Pleim, 2010; Xiu
and Pleim, 2001). In addition, analysis nudging was used to
continuously adjust the temperature, water vapor, and winds
above the PBL toward the 6 h GFS analyses (e.g., Borge
et al., 2008; Campbell et al., 2019; Harkey and Holloway,
2013; Otte, 2008a, b; Otte et al., 2012; Pleim and Gilliam,
2009). Though additional procedures such as surface obser-
vation nudging and indirect soil moisture and soil tempera-
ture nudging (Pleim and Gilliam, 2009; Pleim and Xiu, 2003)
are sometimes used to constrain the evolution of model sim-
ulations performed using the ACM2 scheme and Pleim–Xiu
LSM, they are not employed during this study in order to
maintain consistency with the other model simulations.

A second simulation was performed using the Yonsei Uni-
versity (YSU) PBL (Hong et al., 2006), Noah LSM (Chen
and Dudhia, 2001; Ek et al., 2003), and Thompson micro-
physics (Thompson et al., 2008, 2016) schemes, which is
hereafter referred to as the YNT configuration. Like the AP-
XM simulation, this configuration employed the RRTMG
longwave and shortwave radiation and Kain–Fritsch cumulus
schemes on the outer two domains, along with grid nudging
toward the GFS temperature, humidity, and wind analyses
above the PBL. This particular set of schemes was chosen
based on our previous studies, showing that they performed
well during the warm season across the United States (e.g.,
Harkey and Holloway, 2013; Cintineo et al., 2014; Green-
wald et al., 2016; Griffin et al., 2021; Henderson et al., 2021).
Because there are dozens of parameterization schemes to
choose from in the WRF model, we do not necessarily aim
to find the best physics suite but instead to assess the po-
tential of using other schemes to improve upon the perfor-
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Table 1. List showing the parameterization schemes, model initialization datasets, surface datasets, and nudging approaches used during
each of the eight WRF model experiments. Acronyms are described in the text.

AP-XM YNT YNT_SST YNT_GVF YNT_SOIL YNT_N2KM YNT_SSNG YNT_SSN

PBL ACM2 YSU YSU YSU YSU YSU YSU YSU

LSM Pleim–Xiu Noah Noah Noah Noah Noah Noah Noah

Surface
layer

Pleim–Xiu Monin–
Obukhov

Monin–
Obukhov

Monin–
Obukhov

Monin–
Obukhov

Monin–
Obukhov

Monin–
Obukhov

Monin–
Obukhov

Micro Morrison Thompson Thompson Thompson Thompson Thompson Thompson Thompson

Cumulus Kain–
Fritsch

Kain–
Fritsch

Kain–
Fritsch

Kain–
Fritsch

Kain–
Fritsch

Kain–
Fritsch

Kain–
Fritsch

Kain–
Fritsch

IC and
BC

GFS-FNL GFS-FNL GFS-FNL GFS-FNL GFS-FNL GFS-FNL GFS-FNL GFS-FNL

SST Default Default GLSEA Default Default Default GLSEA GLSEA

GVF Default Default Default VIIRS Default Default VIIRS Default

Soil Default Default Default Default SPoRT LIS Default SPoRT LIS SPoRT LIS

Nudging Analysis,
above PBL

Analysis,
above PBL

Analysis,
above PBL

Analysis,
above PBL

Analysis,
above PBL

Analysis,
above 2 km

Analysis,
above 2 km

Analysis,
above 2 km

mance of the baseline AP-XM configuration. The YSU PBL
scheme is a first-order, non-local closure scheme that allows
non-local mixing with explicit entrainment processes at the
top of the PBL (Hong et al., 2006; Hong, 2010). The Noah
LSM is a community model that has been widely used within
the weather and climate modeling communities (Campbell
et al., 2019). It contains four soil layers (0–10, 10–40, 40–
100, and 100–200 cm depth), along with vegetation canopy,
soil drainage, and runoff models that allow it to simulate sur-
face hydrological and radiative processes. A realistic repre-
sentation of land surface processes becomes increasingly im-
portant when moving towards higher model resolutions (e.g.,
Sutton et al., 2006; Case et al., 2008).

The remaining six simulations (Table 1) use the YNT con-
figuration as their baseline. These simulations are designed
to assess the impact of three high-resolution surface datasets
and analysis nudging above 2 km (rather than above the PBL)
on the model accuracy when used individually or in combi-
nation. In particular, three simulations were run where the
standard climatological or coarse-resolution surface datasets
were replaced by high-resolution, real-time datasets de-
picting lake surface temperatures, green vegetation frac-
tion (GVF), and soil moisture and soil temperature across
the study region. These surface datasets and the methods
used to incorporate them into the WRF model simulations
are described in the next section. Simulations employing
these datasets are referred to as YNT_SST, YNT_GVF, and
YNT_SOIL (where SOIL refers to soil moisture and tem-
perature), respectively. Another experiment was performed
in which analysis nudging was used above 2 km rather than

above the PBL, which is referred to as the YNT_N2KM sim-
ulation. This change in nudging compared to the AP-XM
and YNT baseline experiments was motivated by a model-
ing study by Odman et al. (2019), showing that the evolution
of the nocturnal low-level jet across the Great Lakes region
was more accurately simulated when nudging was withheld
in the lower troposphere (e.g., below 2 km) when the PBL
is shallow. Differences in the nocturnal low-level jet could
affect the transport of ozone and its precursors from urban
regions to Lake Michigan during the overnight hours. Fi-
nally, two combination simulations were performed in which
the 2 km analysis nudging approach was used along with all
three of the high-resolution surface datasets (YNT_SSNG)
or only with the lake surface temperature and soil datasets
(YNT_SSN). The latter simulation is included because it was
found that this combination of surface datasets and analysis
nudging generally led to the best results.

2.2 Surface datasets

2.2.1 Lake surface temperatures

Daily maps of the Great Lakes surface temperatures, with
a horizontal resolution of ∼ 1.3 km, were obtained from the
Great Lakes Surface Environmental Analysis (GLSEA) pro-
duced at the NOAA Great Lakes Environmental Research
Laboratory (Schwab et al., 1992). The lake surface tem-
peratures are estimated using clear-sky infrared brightness
temperatures from the Advanced Very High Resolution Ra-
diometer on board multiple polar-orbiting satellites. If a sur-
face retrieval is not possible on a given day due to cloud
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cover, then a smoothing algorithm is applied to the previous
analysis to maintain complete coverage. Only satellite obser-
vations are used to produce the daily lake surface temperature
analyses, which have been shown by Schwab et al. (1992)
to have a small bias and root mean square error (RMSE; 1–
1.5 ◦C) when compared to buoys. The daily GLSEA anal-
yses were used to overwrite the simulated surface tempera-
tures for Great Lakes grid points at 00:00 UTC on each day in
the YNT_SST, YNT_SSN, and YNT_SSNG simulations us-
ing the WPS. Replacing the coarse-resolution (0.25◦) GFS-
FNL surface temperatures (Fig. 2a) with the GLSEA analy-
ses (Fig. 2b) led to warmer lake temperatures near the shore-
line, especially along the northern parts of Lake Michigan
where temperatures were > 2 K warmer, and cooler temper-
atures across the rest of the lake, when averaged over the
22 May–22 June 2017 time period (Fig. 2c). This spatial
pattern indicates that the finer horizontal resolution of the
GLSEA dataset allows it to capture warmer temperatures in
shallower waters near the shoreline while also depicting the
cooler mid-lake temperatures due to the cooler-than-normal
weather conditions that prevailed across the region in May
(NCEI, 2017).

2.2.2 VIIRS green vegetation fraction

GVF is the photosynthetically active fractional green vege-
tation cover within a grid cell, with higher values indicat-
ing more extensive actively transpiring vegetation. It is a key
parameter in an LSM because vegetation representation is
used to partition the incoming solar radiation into sensible,
latent, and ground heat fluxes, where the latent heat flux is
largely due to vegetation transpiration (e.g., Yin et al., 2016).
Surface latent heat flux is sensitive to GVF because vegeta-
tion roots are able to access deeper soil moisture that would
not otherwise be able to evaporate (Miller et al., 2006). For
this study, we used daily global GVF derived using obser-
vations from the Visible Infrared Imaging Radiometer Suite
(VIIRS; Vargas et al., 2015) instead of the default monthly
climatology to constrain the evolution of vegetation in the
YNT_GVF and YNT_SSNG simulations. The VIIRS GVF
composite product is generated daily at 4 km resolution and
available from the NOAA Comprehensive Large Array-data
Stewardship System (CLASS). Ding and Zhu (2018) have
shown that the VIIRS GVF product has smaller errors and
bias than other satellite-derived GVF datasets because of re-
duced atmospheric influences, improved observing capabil-
ities in high biomass regions, better representation of vege-
tation canopies, and reduced bidirectional reflection distribu-
tion function effects. The real-time daily GVF analyses were
used to overwrite the default monthly climatological vege-
tation fraction data used by the WRF model at 00:00 UTC
on each day. Using real-time, satellite-derived GVF instead
of a monthly GVF climatology has been shown to improve
the representation of the surface energy budget and sub-
sequent model forecasts during the warm season (Case et

al., 2014). In Fig. 2f, it is evident that use of the real-time
GVF led to lower leaf area index (Fig. 2e; computed inter-
nally by the WRF model) across most of the domain com-
pared to the climatological vegetation data (Fig. 2d), with
the exception of some forested regions in the northern por-
tion of the domain and bands of enhanced leaf area index
surrounding metropolitan areas such as Chicago. The lower
leaf area index in agricultural areas is consistent with de-
layed crop growth due to the cool spring weather, whereas
the bands of higher leaf area index represent the impact of
urban sprawl, since the climatological vegetation data shown
in Fig. 2d were generated using satellite observations from
the late 1980s and early 1990s (see Gutman et al., 1995).

2.2.3 SPoRT LIS soil moisture and temperature
analyses

A customized version of the Land Information System (LIS;
Kumar et al., 2006) run at the Short-term Prediction Re-
search and Transition Center (SPoRT) was used to gener-
ate high-resolution soil moisture and soil temperature anal-
yses. Version 3.6 of the Noah LSM (Chen and Dudhia, 2001)
was run on a 1 km resolution domain covering the central
and eastern United States and nearby portions of southern
Canada. Required inputs to run the Noah LSM were obtained
from hourly analyses of surface pressure, 2 m temperature,
2 m specific humidity, 10 m wind speed, and downwelling
shortwave and longwave radiation from the North American
Land Data Assimilation System Phase 2 (NLDAS-2; Xia et
al., 2012). No observations were assimilated during the LIS
runs. Quantitative precipitation estimates (QPEs) were ob-
tained from the Multi-Radar/Multi-Sensor System (MRMS)
gauge-adjusted radar product (Zhang et al., 2016), the Global
Data Assimilation System (GDAS; Wang et al., 2013), and
NLDAS-2. A simple blending methodology was used to in-
corporate the multiple sources of QPEs because an evalua-
tion of the real-time SPoRT-LIS product (Case 2016; Case
and Zavodsky 2018; Blankenship et al., 2018) and prelim-
inary LIS experiments during this study revealed that the
NLDAS-2 and MRMS precipitation products have a dry
bias across the region. To reduce this bias, the precipitation
forcing used the average of the highest two values of the
MRMS, GDAS, and NLDAS-2 QPE datasets. Inspection of
the blended precipitation product showed that the precipita-
tion bias was reduced, while preserving small-scale spatial
details in the MRMS QPE product. Daily VIIRS GVF com-
posites were also used to constrain vegetation during the of-
fline LIS-Noah simulation.

Following an initial spin-up of LIS using NLDAS-2 forc-
ing data from 2012–2016 to remove the memory of the pre-
scribed initial conditions, the final analysis from this run
was used to restart the simulation on 1 January 2012 us-
ing NLDAS-2 atmospheric forcing data, VIIRS GVF, and
the merged QPE product. Soil moisture and soil temperature
analyses from this LIS simulation were then used to replace
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Figure 2. Average lake surface temperatures (K) from the (a) YNT and (b) YNT_SST simulations, with their differences shown in panel (c).
Average leaf area index (m2 m−2) from the (d) YNT and (e) YNT_GVF simulations, with their differences shown in panel (f). Average
0–10 cm soil temperatures (K) from the (g) YNT and (h) YNT_SOIL simulations, with their differences shown in panel (i). Average 0–10 cm
soil moisture content (m3 m−3) from the (j) YNT and (k) YNT_SOIL simulations, with their differences shown in panel (l). The averages
for each variable were computed using data valid at 00:00 UTC on each day during the 22 May–22 June 2017 time period.
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the corresponding variables in the YNT_SOIL, YNT_SSN,
and YNT_SSNG simulations at 00:00 UTC on each day from
12 May–22 June 2017 using the WPS. Comparison of the
0–10 cm soil temperatures from the GFS (Fig. 2g) and LIS
(Fig. 2h), averaged over the 22 May–22 June 2017 period,
shows that the topsoil temperatures are noticeably cooler in
the LIS data across most of the region, except for the northern
parts of Wisconsin and Michigan. The cooler temperatures
are most prominent in suburban regions, where the largest
increases in GVF also occurred (Fig. 2f). For 0–10 cm soil
moisture, the LIS analyses are generally wetter across the do-
main (Fig. 2l), with the largest increases across the forested
regions of Wisconsin and Michigan. Deeper soil layers ex-
hibited similar differences between the GFS-FNL and LIS
datasets (not shown).

2.3 Evaluation methods

The accuracy of the WRF model simulations was assessed
using hourly surface observations of temperature, humidity,
and wind from the Meteorological Assimilation Data Ingest
System (MADIS; https://madis.ncep.noaa.gov/, last access:
13 July 2023) during 22 May–22 June 2017. These obser-
vations were chosen because of their widespread availability
and their important influence on surface chemistry processes.
The model evaluations are performed on all three domains,
using observations from stations located on the innermost do-
main surrounding Lake Michigan, which allows us to assess
the behavior of each configuration as a function of spatial
resolution using the same set of stations. Version 1.4 of the
Atmospheric Model Evaluation Tool (AMET; Appel et al.,
2011) from the EPA was used to collocate hourly observed
and modeled values in a grid cell where a particular observa-
tion station was located and to calculate model performance
statistics including bias and root mean square error.

3 Results

3.1 Assessment of AP-XM and YNT baseline
experiments

This section contains a high-level assessment of the accu-
racy of the AP-XM and YNT baseline experiments on each
domain, with a more detailed evaluation of all experiments
on the 1.3 km resolution domain provided in Sect. 3.2. Fig-
ure 3 shows 2 m temperature, 2 m water vapor mixing ratio,
and 10 m wind speed errors for each domain computed us-
ing hourly surface observations. The left column shows the
bias for each variable and experiment, whereas the center
and right columns show the percentage changes in RMSE
for each experiment relative to the AP-XM and YNT base-
line experiments, respectively. A negative (positive) value for
a given variable and domain indicates that the RMSE for that
experiment is smaller (larger) than the actual RMSE for the
corresponding baseline experiment plotted in the gray box.

Inspection of the YNT statistics reveals a consistent pat-
tern in the RMSE, where the percentage changes for each
variable either switch from positive to negative or become
more strongly negative as the model resolution increases
from 12 to 1.3 km. For temperature, the RMSE improves
from being 1.37 % larger than the AP-XM on the 12 km do-
main to 25.83 % smaller on the 1.3 km domain (Fig. 3b).
A similar pattern is present for 10 m wind speed, where
the RMSE is 7.10 % larger on the 12 km domain but then
steadily decreases so that the RMSE becomes 3.26 % smaller
on the 1.3 km domain (Fig. 3h). The AP-XM simulation had
a smaller wind speed bias on all three domains compared to
the YNT baseline. For the 2 m mixing ratio (Fig. 3d, d), a
positive bias on the 12 km domain increased at higher spa-
tial resolutions for the AP-XM simulation but decreased and
turned into a negative bias for the YNT simulation, which
also exhibits a large reduction in the RMSE on all three do-
mains. These results indicate that the AP-XM physics suite
becomes less accurate at higher resolutions and that the YNT
configuration provides superior performance on the 1.3 km
domain when averaged across all stations. In the following
sections, we will use the results from this domain to exam-
ine the impacts of the surface datasets and analysis nudging
on the model accuracy with respect to the AP-XM and YNT
baseline experiments.

3.2 YNT sensitivity experiments

3.2.1 The 2 m temperature evaluation

To examine regional differences in model performance,
Fig. 4 shows the 2 m temperature bias and RMSE computed
separately for each station using hourly observations from
22 May–22 June 2017. For the AP-XM simulation, there is
a north–south gradient in the RMSE, with the largest errors
across northern Illinois and Indiana (Fig. 4a). Stations near
Lake Michigan have the smallest RMSE due to its moder-
ating influence on local weather conditions. Similar to the
RMSE, the smallest biases occurred in the northern part of
the domain and along the eastern shoreline; however, bi-
ases along the western shoreline are larger and of compara-
ble magnitude to those at inland locations across Wisconsin
and Illinois. Overall, the AP-XM simulation had an RMSE
of 3.03 K and a bias of −0.14 K when averaged across all
stations (Fig. 3a–b). Switching to the YNT parameterization
suite greatly reduced the RMSE by 25.83 % across the en-
tire domain (Fig. 3b); however, the bias increased to 0.55 K
(Fig. 3a). The largest RMSE reductions (up to 45 %) oc-
curred in rural areas of northern Illinois, with similar RMSEs
found across the entire domain (Fig. 4b). The larger positive
temperature bias in the YNT baseline simulation is primarily
due to larger errors in Wisconsin and within densely popu-
lated urban areas along the western Lake Michigan shoreline
from Chicago to Milwaukee (Fig. 4f). A mixed pattern of
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Figure 3. Summary statistics showing the (a) 2 m temperature bias for each experiment, along with the percentage change in the 2 m tem-
perature root mean square error (RMSE) for a subset of experiments relative to the (b) AP-XM baseline and (c) YNT baseline experiments,
respectively. Statistics for the 12, 4, and 1.3 km resolution domains were computed using hourly data from all stations located on the 1.3 km
resolution domain during 22 May–22 June 2017. The actual RMSEs for the baseline experiments (gray boxes) are also shown. Blue (orange)
shading indicates a negative (positive) bias for a given experiment in panel (a), whereas blue (orange) shading depicts a smaller (larger)
RMSE in a given experiment relative to the AP-XM and YNT baseline experiments in panels (b) and (c). (d–f) Same as panels (a)–(c),
except for showing statistics for the 2 m mixing ratio. (g–i) Same as panels (a)–(c), except for showing statistics for the 10 m wind speed.

larger and smaller biases occurred elsewhere across the do-
main.

Inspection of the YNT sensitivity experiments shows
that the smallest RMSEs occurred during the YNT_SOIL,
YNT_SSN, and YNT_SSNG simulations, with the aver-
age RMSE reduced by 30.32 % to 32.5 % relative to the
EPA baseline (Fig. 3b) and from 6.0 % to 9.0 % relative
to the already greatly improved YNT baseline (Fig. 3c).
On an individual basis, the high-resolution soil dataset
(YNT_SOIL) had the largest positive impact at most stations
(Fig. 4d), whereas slightly larger RMSEs were observed
when using nudging (YNT_N2KM) (Fig. 4j). Comparison
of the YNT_SSN and YNT_SSNG simulations (Fig. 4l, p)
shows that inclusion of the VIIRS GVF dataset during the
YNT_SSNG simulation led to slightly larger RMSE for sta-
tions near the lakeshore but similar or smaller errors for sta-
tions located further inland.

The bias pattern for the YNT simulations is more
complex. Overall, the bias was largest (0.67 K) in the
YNT_N2KM simulation, with the smallest biases occurring
in the YNT_GVF (−0.03 K) and YNT_SSN (−0.09 K) sim-
ulations (Fig. 3a). Switching from the AP-XM to YNT base-
line configurations led to larger biases across most of the do-
main, especially along the southwestern shoreline of Lake
Michigan (Fig. 4e–f). The high-resolution SST dataset had
a minimal impact on the biases (Fig. 4g), whereas they
were smaller in the YNT_SOIL (Fig. 4h) and YNT_GVF
(Fig. 4m) simulations relative to the YNT baseline. The use
of these two land datasets, however, led to much larger neg-
ative biases along the eastern shoreline of Lake Michigan.
When 2 km analysis nudging was used (YNT_N2KM), larger
positive biases occurred from Chicago to Milwaukee, with
smaller biases along the eastern shoreline (Fig. 4n). The in-
creased RMSE and bias near the western shoreline compared
to locations further inland during the YNT_N2KM simula-
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Figure 4. Maps showing the 2 m temperature (K), root mean square error (RMSE), and bias for each station on the 1.3 km domain computed
using hourly data from 22 May–22 June 2017. Statistics for the EPA, YNT, YNT_SST, and YNT_SOIL experiments are shown in panels (a)–
(h), whereas results for the YNT_GVF, YNT_N2KM, YNT_SSN, and YNT_SSNG experiments are shown in panels (i)–(p).

tion suggests that the modified nudging routine (applied to
heights above 2 km instead of above the PBL) may not work
well for areas near Lake Michigan due to the moderating in-
fluence of the lake on the PBL. Because the PBL tends to be
more stable and shallower for locations over and near Lake
Michigan due to the cooler surface temperatures, this means
that confining analysis nudging to above 2 km limits its abil-
ity to constrain the evolution of the lower troposphere dur-
ing the YNT_N2KM simulation. This behavior could also be
due to deficiencies in the YNT configuration over complex
urban–lake transition zones.

3.2.2 The 2 m water vapor evaluation

For the 2 m water vapor mixing ratio, switching to the YNT
physics suite led to a reduction of nearly 15 % in the station-
averaged RMSE during the YNT simulation relative to the
AP-XM baseline (Fig. 3e), with additional incremental re-
ductions occurring in all sensitivity experiments, except for
YNT_N2KM (Fig. 3f). The lower RMSE in all of the YNT
simulations is primarily due to the large reduction in bias
(Fig. 3d). Whereas the AP-XM configuration had a large
moist bias (0.60 g kg−1), the YNT bias was much smaller and
also became negative (−0.20 g kg−1). The bias was further
reduced during most of the sensitivity experiments, with only
a slight increase during the YNT_SSNG simulation. Overall,
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the YNT_SSN simulation had the smallest RMSE and a bias
close to zero when averaged across all of the stations.

Looking more closely at the individual stations (Fig. 5),
it is evident that most of them have a positive (e.g., moist)
bias when the AP-XM configuration is used (Fig. 5e). The
largest biases are located in the southern portion of the do-
main, especially for stations near the lakeshore. In contrast,
about two-thirds of the stations exhibit a negative bias during
the YNT simulation (Fig. 5f). The spatial pattern of the bi-
ases is similar during all of the YNT sensitivity experiments;
however, their magnitudes are generally smaller, which is
consistent with the overall statistics (Fig. 3d). For RMSE, the
largest errors in the AP-XM simulation occur primarily along
the southern end of Lake Michigan, with generally smaller
errors in the northern half of the domain (Fig. 5a). The RMSE
during the YNT simulation is smaller at most locations, es-
pecially along the shoreline, though a few stations near the
western shoreline have larger errors (Fig. 5b). The use of the
SOIL and GVF datasets reduced the errors at these nearshore
locations (Fig. 5d, i), with the smallest errors at most stations
occurring during the combination experiments (YNT_SSN
and YNT_SSNG). As was the case with 2 m temperature, the
most accurate 2 m water vapor analyses were obtained during
the YNT_SSN simulation.

3.2.3 The 10 m wind speed evaluation

Compared to the temperature and water vapor fields, changes
to the 10 m wind speed statistics were much more modest
during the YNT simulations. Switching from the AP-XM
configuration to the YNT configuration led to a 3.26 % re-
duction in the RMSE but a larger bias that also changed
sign from negative to positive (Fig. 3g). For the YNT ex-
periments, the average RMSE was slightly smaller during
the YNT_SOIL and YNT_N2KM simulations (−1.21 % and
−1.78 %, respectively) but slightly larger (0.95 %) during
the YNT_SST simulation compared to the YNT baseline
(Fig. 3i). The use of the GVF surface dataset led to a
7.64 % increase in the RMSE during the YNT_GVF simu-
lation, primarily due to a larger wind speed bias. Overall, the
most accurate wind speed analyses were achieved during the
YNT_SSN simulation, with an RMSE reduction of 6.47 %
across all stations.

Spatially, there is a latitudinal gradient in wind speed er-
rors during the AP-XM simulation. The largest RMSEs are
located across the southern part of the domain (Fig. 6a), with
mostly negative wind speed biases (up to 2 m s−1) in the
same region transitioning to a mix of negative and positive
biases in northern Wisconsin and Michigan (Fig. 6e). The
RMSE and bias were much smaller for stations around the
southern shoreline of Lake Michigan during the YNT sim-
ulation; however, slightly larger RMSEs are present across
inland locations in the northern part of the domain (Fig. 6b).
A similar spatial pattern of changes relative to the AP-XM
baseline occurred during the YNT sensitivity experiments,

though the errors are generally larger during the YNT_GVF
simulation (Fig. 6i, m) and smaller during the YNT_SOIL
(Fig. 6d, h) and YNT_N2KM (Fig. 6j, n) simulations. The
poor performance of the YNT_GVF and YNT_SSNG simu-
lations is primarily due to larger errors across inland areas of
Wisconsin, where there are large positive wind speed biases
(Fig. 6m, p), with similar errors elsewhere in the domain.

3.2.4 Diurnal error characteristics

Figure 7 shows the diurnal evolution of RMSE and bias for
2 m temperature, 2 m water vapor mixing ratio, and 10 m
wind speed at hourly intervals starting at 19:00 local stan-
dard time (LST). The time series were computed by averag-
ing over data from all stations on the 1.3 km domain. Overall,
it is apparent that the AP-XM simulation contains very dif-
ferent diurnal error patterns than the YNT simulations. For
example, the 2 m temperature bias exhibits a prominent diur-
nal cycle (Fig. 7b) characterized by large positive and warm
(negative and cool) biases during the night (day), resulting
in an overall damping of the diurnal temperature cycle. The
warm biases exceed 2.0 K during most of the night (22:00–
03:00 LST), and the cold biases are < −2 K for several hours
during the daytime (09:00–13:00 LST). These results indi-
cate that the small temperature bias in the summary statistics
for the AP-XM simulation (Fig. 3a) is misleading because it
obscures the presence of substantial biases of opposite signs
during the day and night. The RMSE is also much larger dur-
ing the AP-XM simulation (Fig. 7a), with local maxima of
3.5 K at 11:00 and 23:00 LST, respectively, corresponding to
peaks in the temperature biases. Switching to the YNT base-
line greatly reduces the temperature RMSE, and the bias time
series is no longer characterized by the highly amplified di-
urnal pattern seen in the AP-XM simulation. Examination
of the YNT sensitivity experiments shows similar error pat-
terns to the YNT baseline. The largest differences occur at
night when the use of the GVF and SOIL datasets leads to
smaller biases. In contrast, confining the analysis nudging to
above 2 km a.g.l. (above ground level; YNT_N2KM) slightly
increases the RMSE and bias during the nighttime relative to
the YNT baseline.

For water vapor, the AP-XM simulation again exhibits a
larger bias and RMSE than the other simulations (Fig. 7c, d).
It has a large moist bias that ranges from 0.2 g kg−1 shortly
after sunrise to 0.9 g kg−1 near 19:00 LST, before decreasing
to a relatively stable bias of 0.6 g kg−1 during the night. The
RMSE is smaller in the YNT baseline simulation, with a dry
bias evident for all but the evening hours (19:00–22:00 LST).
As is the case for temperature, the RMSE is smallest dur-
ing the late-night hours and then steadily increases during
the day before reaching its maximum in the evening. All
of the YNT sensitivity experiments have similar RMSE and
bias patterns to the YNT baseline, with the smallest (largest)
spread between simulations occurring during the nighttime
(daytime) hours, possibly due to differences in the PBL depth
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Figure 5. Same as Fig. 4, except for 2 m water vapor mixing ratio (g kg−1).

and surface energy balance (see Fig. 8). Comparison of the
10 m wind speed time series reveals that the AP-XM simu-
lation has the smallest bias (∼ 0.15 m s−1) during the night
but that the wind speeds are weaker than observed during the
daytime, with the largest biases (−0.95 m s−1) occurring at
noon (Fig. 7f). This diurnal pattern in the AP-XM simulation,
characterized by winds that are too strong (weak) during the
night (day), stands in contrast to the mostly positive biases in
the YNT simulations. The biases are tightly clustered in all
of the YNT experiments during the nighttime hours (22:00–
07:00 LST), with the exception of the two simulations em-
ploying the GVF dataset (YNT_GVF and YNT_SSNG) that
are characterized by persistently larger positive biases. These
two simulations also have the largest RMSE (Fig. 7e). Fur-
ther research is necessary to determine why the incorpora-

tion of the high-resolution GVF dataset leads to larger sur-
face wind speed errors.

3.2.5 Surface energy budget considerations

Near-surface atmospheric conditions can be strongly im-
pacted by the partitioning of net surface radiation into sen-
sible, latent, and ground heat fluxes (Santanello et al., 2018).
To examine this more closely, Fig. 8 shows a time series de-
picting the average diurnal evolution of the PBL height, net
surface radiation, and sensible, latent, and ground heat fluxes
during 22 May–22 June 2017 computed using data from sta-
tions on the 1.3 km domain to maintain consistency with ear-
lier results. Because in situ flux and PBL height observa-
tions are not available across the entire domain, the aim is
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Figure 6. Same as Fig. 4, except for 10 m wind speed (m s−1).

not to examine the accuracy of the simulated surface energy
fluxes and PBL height but rather to use these variables to
help explain differences in the near-surface temperature, wa-
ter vapor, and wind speed errors in the model simulations.
All of the variables were obtained directly from the WRF
output files. The net surface radiation is defined as the sum
of the upward and downward shortwave and longwave radi-
ation fluxes at the surface.

Inspection of Fig. 8 reveals large differences between
the AP-XM and YNT simulations. The PBL is ∼ 50–
150 m deeper in the AP-XM simulation during the night-
time but then becomes much shallower than the YNT sim-
ulations from mid-morning through the afternoon (10:00–
16:00 LST), with the daytime maximum in PBL height oc-
curring ∼ 2 h later (Fig. 8a). The AP-XM simulation is

also characterized by a smoother and less amplified diur-
nal evolution. For the YNT simulations, the PBL heights
are tightly clustered during the night (21:00–07:00 LST)
but begin to diverge during the morning and reach their
largest differences during the afternoon. In particular, sim-
ulations employing the high-resolution soil moisture anal-
yses (YNT_SOIL, YNT_SSN, and YNT_SSNG) have av-
erage PBL heights that are ∼ 100 m lower than the other
YNT simulations. These three simulations also have slightly
lower sensible heat flux (Fig. 8c) and higher latent heat flux
during the afternoon (Fig. 8d), which is consistent with the
wetter and cooler topsoil layer in the SPoRT LIS analyses
(Fig. 2g–l) and cooler 2 m temperatures (Figs. 3a, 7b). Using
the SST and GVF datasets and confining analysis nudging to
above 2 km had minimal impact on the PBL heights in the
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Figure 7. Time series showing the diurnal evolution of (a–b) 2 m temperature (K), root mean square error (RMSE), and bias, (c–d) 2 m
water vapor mixing ratio (g kg−1), RMSE, and bias, and (e–f) 10 m wind speed (m s−1), RMSE, and bias at hourly intervals starting at
19:00 LST. Errors were computed for each model simulation using observations from all stations located on the 1.3 km resolution domain
during 22 May–22 June 2017.
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Figure 8. Time series showing the diurnal evolution of the (a) planetary boundary layer height (m), (b) net radiation (W m−2), (c) sensible
heat flux (W m−2), (d) latent heat flux (W m−2), and (e) ground heat flux (W m−2) at hourly intervals starting at 19:00 LST, averaged over
all stations on the 1.3 km domain during 22 May–22 June 2017. Results are shown individually for each of the model simulations.
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YNT_SST, YNT_GVF, and YNT_N2KM simulations; how-
ever, sensible and latent heat fluxes are slightly smaller dur-
ing the afternoon in the YNT_GVF simulation.

Comparison of the AP-XM and YNT simulations also re-
veals large differences in the surface energy flux time series.
For example, the AP-XM simulation has much smaller sen-
sible heat flux during the daytime (Fig. 8c), and the latent
heat flux remains relatively large during the night (Fig. 8d).
Though the AP-XM and YNT simulations produce similar
magnitudes of latent heat flux during the day, the afternoon
maximum is delayed by 2 h in the AP-XM simulation. The
combination of a shallower PBL during the day (Fig. 8a) and
higher latent heat flux at night likely contributes to the persis-
tently large moist bias in the 10 m water vapor mixing ratio
(Figs. 3d, 7d) during the AP-XM simulation. Another note-
worthy feature of the AP-XM simulation is that the ground
heat flux remains negative at all times. This unphysical be-
havior stands in sharp contrast to the more realistic evolution
during the YNT simulations, where the positive (negative)
ground heat flux during the night (day) indicates that heat
is being transferred from (toward) the ground toward (from)
the atmosphere due to cooler (warmer) surface temperatures.
These results indicate that the poor performance of the AP-
XM simulation on the 1.3 km domain, when assessed using
near-surface moisture, temperature, and wind observations,
is likely due to the presence of vastly different and some-
times unphysical surface energy fluxes.

The lower accuracy of the AP-XM simulation could be
due to limitations in the parameterization schemes when used
at higher spatial resolution. This possibility is supported by
Fig. 9, which shows the evolution of the PBL height and sur-
face fluxes on the 12 km domain computed using simulated
data from all stations on the 1.3 km domain. Differences be-
tween the AP-XM and YNT simulations are much smaller
both in timing and magnitude on the 12 km domain. For ex-
ample, the time series for PBL height, sensible heat flux, and
latent heat flux are very similar for all of the simulations.
Though the ground heat flux time series for the AP-XM sim-
ulation continues to be an outlier at this resolution, it now
has the correct diurnal cycle with positive (negative) values
during the night (day). The improved simulation of surface
fluxes on the 12 km domain likely contributes to the more
accurate temperature and wind speed analyses in the AP-XM
simulation at that resolution (Fig. 3a–b and g–h). The pres-
ence of persistently higher latent heat flux (Fig. 9d) leads to a
positive moisture bias in the AP-XM simulation (Fig. 3d–e);
however, the bias is smaller on the 12 km domain than it was
on the 1.3 km domain. Inspection of the surface energy fluxes
and PBL height on the 4 km domain revealed larger differ-
ences between the AP-XM and YNT simulations (not shown)
but not as large as those on the 1.3 km domain. Though it is
not the focus of this research, differences in the PBL height
between the AP-XM and YNT simulations could be due to
differences in the vertical mixing strength and entrainment
flux in the AMC2 and YSU PBL schemes (e.g., Hu et al.,

2010). Together, these results show that the AP-XM simula-
tion performs well at 12 km resolution but that its accuracy
decreases with increasing model resolution.

4 Discussion and conclusions

In this study, eight WRF model simulations were performed
to assess the impact of different parameterization schemes,
surface datasets, and analysis nudging on the simulation of
surface energy fluxes and near-surface atmospheric condi-
tions in the Lake Michigan region during a 1-month period
(22 May–22 June 2017) corresponding to the Lake Michi-
gan Ozone Study field campaign. The simulations employed
a triple-nested domain configuration containing 12, 4, and
1.3 km resolution grids, respectively. Two baseline simula-
tions (AP-XM and YNT) employing different sets of param-
eterization schemes were performed to assess the importance
of different physics suites. The YNT configuration addition-
ally served as the baseline for six sensitivity simulations that
were used to assess the impact of three satellite- and model-
derived surface datasets and analysis nudging. Simulations
were run, where standard climatological or coarse-resolution
surface datasets were replaced by high-resolution, real-time
datasets depicting lake surface temperatures, GVF, and soil
moisture–soil temperature. Near-surface temperature, water
vapor, and wind observations were used to assess the accu-
racy of each model simulation.

The AP-XM configuration generally produced more ac-
curate near-surface analyses on the 12 km domain, with the
exception of a moist bias in the 2 m water vapor mixing ratio,
but its relative performance decreased with a finer model grid
resolution. Evaluation of the AP-XM simulation showed that
the diurnal evolution of the sensible and latent heat fluxes
was similar to the YNT simulation on the 12 km domain
but differed greatly on the 1.3 km nested domain, where it
had much smaller sensible heat flux during the daytime and
a larger latent heat flux at night. The increased latent heat
flux combined with a shallower PBL contributed to the large
moist bias in the 2 m water vapor mixing ratio. The evolu-
tion of the AP-XM ground heat flux was physically unreal-
istic on the 1.3 km domain because it remained negative at
all times rather than changing signs between day and night
(as seen during the YNT simulations). Because the evolu-
tion of the surface energy fluxes was more realistic on the
12 km domain, the poorer performance on the 4 and 1.3 km
domains suggests that the Pleim–Xiu LSM is unable to ad-
equately represent surface fluxes at higher resolutions. This
could be due to its use of two soil layers, including a very
shallow (1 cm) topsoil layer, that make it difficult to fully rep-
resent fine-scale features and soil heat fluxes. Increasing the
number of soil layers in the Pleim–Xiu LSM could poten-
tially improve its ability to simulate energy fluxes on high-
resolution domains. In addition, use of observation nudging
and soil moisture and soil temperature nudging as used in
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Figure 9. Same as Fig. 8, except for showing results on the 12 km domain. Time series were computed using simulated data from all stations
located on the 1.3 km domain.
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Torres-Vazquez et al. (2022) would also help constrain the
evolution of this simulation. Though these specialized nudg-
ing techniques were not employed in our study due to their
added complexity and confounding influence on the model
evaluations because the same observations used in the nudg-
ing procedure would also be used to assess the accuracy of
the simulations, their utility could be assessed in future work.

Inspection of the YNT statistics revealed a pattern in
which the percentage change in the RMSEs for 2 m tempera-
ture, 2 m water vapor mixing ratio, and 10 m wind speed rela-
tive to the AP-XM baseline improved as the model resolution
increased from 12 to 1.3 km. Switching to the YNT configu-
ration led to substantial decreases in RMSE for 2 m tempera-
ture (25.8 %) and 2 m water vapor mixing ratio (14.9 %), and
a more modest 3.3 % reduction in the RMSE for 10 m wind
speed, when assessed using all stations on the 1.3 km domain.
Despite the already large error reductions when using the
YNT parameterization suite, additional improvements oc-
curred in most variables when the high-resolution surface
datasets were incorporated into the modeling platform. Eval-
uation of the YNT sensitivity experiments showed that the
high-resolution soil dataset had the largest positive impact
on temperature and water vapor errors and the second-largest
impact on wind speed. Use of the GVF and SST datasets
also led to more accurate temperature and water vapor sim-
ulations but some degradations in the wind speed, especially
when using the GVF dataset. Only the simulation employ-
ing analysis nudging above 2 km produced more accurate
10 m wind speed analyses; however, 2 m temperature errors
were larger along the western shoreline of Lake Michigan
when the nudging was confined to levels above 2 km in-
stead of above the PBL. This suggests that the modified
nudging approach may not work well for areas near Lake
Michigan where the PBL tends to be shallower because it
reduces its ability to constrain the evolution of the lower
troposphere. Despite this limitation, the most accurate near-
surface simulations were obtained during the experiment that
employed analysis nudging above 2 km, combined with the
high-resolution SST and soil datasets. A slight degradation
occurred when the satellite GVF dataset was included.

With these differences in near-surface temperature, humid-
ity, and wind across model configurations and inputs, we can
expect ensuing differences in the accuracy of model simula-
tions of the production and transport of ozone precursors, in
addition to the production of ozone. In Part 2 of this study
(Pierce et al., 2023), we evaluate these impacts on ozone
forecasts in the Lake Michigan region using meteorological
analyses obtained from the baseline AP-XM and optimized
WRF model configurations as input to CMAQ model simu-
lations.
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