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Abstract. The methane chemical sink estimated by atmospheric chemistry models (bottom-up method) is sig-
nificantly larger than estimates based on methyl chloroform (MCF) inversions (top-down method). The dif-
ference is partly attributable to large uncertainties in hydroxyl radical (OH) concentrations simulated by the
atmospheric chemistry models used to derive the bottom-up estimates. In this study, we propose a new ap-
proach based on OH precursor observations and a chemical box model. This approach contributes to improving
the 3D distributions of tropospheric OH radicals obtained from atmospheric chemistry models and reconciling
bottom-up and top-down estimates of the chemical loss of atmospheric methane. By constraining simulated OH
precursors with observations, the global mean tropospheric column-averaged air-mass-weighted OH concen-
tration ([OH]trop-M) is ∼ 10× 105 molec. cm−3 (which is 2× 105 molec. cm−3 lower than the original model-
simulated global [OH]trop-M) and agrees with that obtained by the top-down method based on MCF inver-
sions. With OH constrained by precursor observations, the methane chemical loss is 471–508 Tg yr−1, averaged
from 2000 to 2009. The new adjusted estimate is in the range of the latest top-down estimate of the Global Car-
bon Project (GCP) (459–516 Tg yr−1), contrary to the bottom-up estimates that use the original model-simulated
OH fields (577–612 Tg yr−1). The overestimation of global [OH]trop-M and methane chemical loss simulated by
the atmospheric chemistry models is caused primarily by the models’ underestimation of carbon monoxide and
total ozone column, and overestimation of nitrogen dioxide. Our results highlight that constraining the model-
simulated OH fields with available OH precursor observations can help improve bottom-up estimates of the
global methane sink.
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1 Introduction

Methane (CH4) is a potent greenhouse gas, with its 100-year
global warming potential of 27 (for non-fossil CH4) and 30
(for fossil CH4) times that of CO2 (Forster et al., 2021). The
tropospheric CH4 mixing ratios have increased by more than
1.6 times between the pre-industrial age and the present day,
resulting in 0.54±0.11 W m−2 of radiative forcing from 1750
to 2019 (Forster et al., 2021). After a short-term stabiliza-
tion during 2000–2006, the atmospheric methane mixing ra-
tio rose increasingly quickly from 5 ppbv yr−1 in 2006 to
17 ppbv yr−1 in 2021, based on surface networks (Dlugo-
kencky, 2022). The rapid growth in atmospheric CH4 over
the recent decade further challenges meeting the 1.5–2.0 ◦C
targets of the Paris Agreement (Nisbet et al., 2019) and is
therefore becoming an increasing concern (Jackson et al.,
2020).

Understanding the drivers of atmospheric methane
changes rely on accurate estimates of the global methane
budget, as methane concentrations in the atmosphere are the
net balance between emissions and sinks. To estimate this
budget, the Global Carbon Project (GCP) has established
the global CH4 budget by gathering up-to-date observations
and model information (Kirschke et al., 2013; Saunois et al.,
2016, 2017, 2020). One of the remaining largest uncertain-
ties, as pointed out by the most recent CH4 budget (Saunois
et al., 2020), is the chemical loss of CH4. The chemical loss
of CH4 stems mainly through the reaction of CH4 with hy-
droxyl radical (OH), which is also the most important CH4
sink.

The hydroxyl radical (OH) is a key species in tropospheric
chemistry that reacts with most greenhouse gases and air pol-
lutants (Levy, 1971), being the main oxidant of the lower at-
mosphere. Due to its extremely short lifetime (typically 1 s)
and spatial variability, direct observations do not allow for
the quantification of the global OH distributions. The OH for
calculating the chemical sink of CH4 is thus estimated either
from top-down or bottom-up methods. The top-down method
estimates OH mainly through inversions constrained by inde-
pendent observations of 1-1-1trichloroethane (methyl chlo-
roform, MCF), assuming that emissions of this compound
are well known. Such MCF-based top-down methods have
been widely used in the scientific community to derive OH
trends, but it can only yield the global to latitudinal mean OH
due to the sparse MCF observations and does not represent
the chemical feedback on OH (e.g., Prinn et al., 2001; Bous-
quet et al., 2005; Montzka et al., 2011; Naus et al., 2021;
Patra et al., 2021). Bottom-up approaches on the other hand
simulate the OH by atmospheric chemistry models to account
for the chemical mechanisms that determine OH production
and loss, but their estimates of the global mean OH usually
disagree with MCF-based estimates (Naik et al., 2013; Zhao
et al., 2019).

The global OH estimated by bottom-up model-based
and top-down MCF-based methods are different in mag-

nitudes, interannual variations, and trends, resulting in
large differences in estimated CH4 sinks between the two
methods. In the last global CH4 budget, most of the
OH fields used to estimate the bottom-up CH4 sink were
obtained from the atmospheric chemistry models that par-
ticipated in the International Global Atmospheric Chem-
istry (IGAC)/Stratosphere–troposphere Processes and their
Role in Climate (SPARC) Chemistry–Climate Model Ini-
tiative Phase-1 (CCMI-1) project. However, these mod-
els showed a wide range of 9.4–14.4× 105 molec. cm−3 in
mean tropospheric column-averaged air-mass-weighted OH
([OH]trop-M) (Zhao et al., 2019; Saunois et al., 2020), thus
mostly higher than the values estimated by the MCF-based
inversions (∼ 10×105 molec. cm−3; Prinn et al., 2001; Bous-
quet et al., 2005). Indeed, the mean CH4 chemical loss
for 2000–2009, as calculated by bottom-up approaches, is
595 Tg yr−1 (range 489–749 Tg yr−1), much higher than the
505 Tg yr−1 (range 459–516 Tg yr−1) estimated by top-down
CH4 inversions (Saunois et al., 2020). Those top-down in-
versions using box models indicate that the OH changes may
have influenced recent CH4 trends, although with large un-
certainties (Turner et al., 2017; Rigby et al., 2017), while
more recent 3D inversions show no significant trend in OH
after 2000 (Naus et al., 2021; Patra et al., 2021). In contrast
to top-down MCF-based inversions, atmospheric chemistry
models simulate a positive decadal trend in OH and con-
sequently CH4 chemical loss from the 1980s (Zhao et al.,
2020b).

Reconciling the bottom-up and top-down estimates of the
methane chemical sink is essential for a more accurate es-
timate of the global methane budget and to better attribute
the observed changes in atmospheric growth rates of CH4.
One way to improve the bottom-up estimates of the CH4 sink
and thus reconcile the difference is to correct the OH simu-
lated by atmospheric models using observations of OH pre-
cursors. Indeed, uncertainties in the OH simulated by atmo-
spheric models can be attributed to biases in precursor con-
centrations. For example, Naik et al. (2013) found that an
underestimation of carbon monoxide (CO) in the Northern
Hemisphere can contribute to the overestimation of OH in
this hemisphere; Strode et al. (2015) estimated that remov-
ing the model bias in O3 and water vapor (H2O(g)) and reduc-
ing northern hemispheric nitrogen oxide (NOx = NO+NO2)
emissions can reduce a high bias in the global tropospheric
OH burden by 10 %; Nicely et al. (2017, 2020) found that the
inter-model difference in tropospheric OH is mainly driven
by the difference in model-simulated ultraviolet light flux
to the troposphere, the tropospheric O3, CO, and NOx mix-
ing ratio. In addition, the budget analysis of OH production
and loss showed that about 90 % of OH production is di-
rectly related to stratospheric and tropospheric ozone (O3),
H2O(g), and nitrogen oxide (NO), and ∼ 60 % of OH is re-
moved by reaction with CO, CH4, and formaldehyde (CH2O)
(Lelieveld et al., 2016; Zhao et al., 2020b). Thus, bottom-up
estimates of the CH4 sink from chemistry transport models
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(CTMs) can be improved if one can reduce the biases due to
these OH precursors in modeled OH.

Fortunately, several satellites have collected long-term
continuous observations of the aforementioned OH precur-
sors with global coverage, providing the opportunity to eval-
uate and improve bottom-up estimates of the CH4 sink. The
chemistry reanalysis that assimilates satellite observations
of O3, CO, NO2, nitric acid (HNO3), and CO shows sig-
nificant improvement on both global OH burden and inter-
hemispheric gradient (Miyazaki et al., 2020). Such data-
assimilation methods can well balance the model and obser-
vation uncertainties, but they are not easy to apply to differ-
ent models that simulate the broad range of global OH burden
(Naik et al., 2013; Zhao et al., 2019). In addition, they do not
allow partitioning the OH bias due to each precursor. In this
context, the main objective of this study is to explore a simple
approach to reconcile bottom-up and top-down estimates of
the CH4 sink by (i) improving the simulated atmospheric OH
fields using multiple satellite observations and meteorologi-
cal data from reanalysis and (ii) assessing the contribution
of each main OH precursor to the bias in simulated OH and
CH4 sink. As a result, top-down estimates of CH4 emissions
will also benefit from the improved 3D distributions of OH
(Zhao et al., 2020a; Saunois et al., 2020). We first evaluate
the OH precursors (CO, CH4, O3, CH2O, and NO2, the to-
tal column O3, and H2O(g)) simulated for the year 2010 by
the CESM1–CAM4Chem (Community Earth System Model
using the Community Atmosphere Model version 4 as atmo-
sphere component) and GEOSCCM (Goddard Earth Observ-
ing System Chemistry–Climate Model); these models partic-
ipated in the CCMI-1 project, and they were used to esti-
mate the global methane sink in Saunois et al. (2020) and
represent two different chemical mechanisms. We then esti-
mate the observation-based OH fields by correcting model
biases of the two modeled OH fields due to the abovemen-
tioned OH precursors using the Dynamically Simple Model
of Atmospheric Chemical Complexity (DSMACC). By do-
ing so, we quantify the bias in tropospheric OH attributable
to each precursor. Finally, we estimate the chemical sink of
CH4 using the observation-based OH field and, based on the
uncertainties inferred for OH, we reveal the dominant factors
contributing to the uncertainties in CH4 chemical sink at the
global and regional scales.

2 Method

2.1 Observational data

The total column O3, which mainly influences the O (1D)
photolysis rate, is constrained by the National Aeronautics
and Space Administration (NASA) Solar Backscatter Ultra-
violet (SBUV) Merged Ozone Data Set (MOD) (Frith et al.,
2014). The SBUV MOD column O3 data are derived by
combining observations from nine SBUV-type instruments

aboard NASA’s Aura satellite. The monthly O3 columns are
available for 5◦ zonal mean.

Tropospheric O3 is important in determining OH
production. We constrain its spatial distributions us-
ing the tropospheric column O3 data from the com-
bined Aura Ozone Monitoring Instrument/Microwave Limb
Sounder (OMI/MLS) satellite observations, which are gener-
ated by subtracting the co-located MLS limb measurements
(integrated over the stratosphere to derive stratospheric col-
umn ozone) from total column ozone retrieved by OMI, a
UV–Vis nadir solar backscatter spectrometer (Ziemke et al.,
2006).

The tropospheric nitrogen oxide family (NOx = NO+
NO2) participates in both OH production – reaction of nitro-
gen oxide (NO) with hydroperoxyl radical (HO2) or organic
peroxy radicals (RO2) – and loss (mainly reaction of NO2
with OH). In the Dynamically Simple Model of Atmospheric
Chemical Complexity (DSMACC) used in this study (see
Sect. 2.3), the total reactive nitrogen (NOy) is constrained
by either NO2 or NO concentrations. We constrain the spa-
tial distributions of the boundary layer NOy using satel-
lite observations of NO2 tropospheric vertical column den-
sity (VCD) of the QA4ECV (Quality Assurance for Essen-
tial Climate Variables) OMI NO2 retrieval product (Boersma
et al., 2018). Due to its short lifetime, NOx emitted from the
surface mainly remains within the planetary boundary layer
(PBL). Thus, satellite-retrieved VCDs are widely used in un-
derstanding the NO2 distributions within the boundary layer
instead of the whole troposphere (e.g., Cooper et al., 2020;
Geddes et al., 2017).

We also constrain tropospheric CO, CH4, and CH2O to
better represent OH loss in the troposphere. Distributions
of CO and CH2O are taken from 4D variational data as-
similation of the tropospheric CO column retrieved from the
spaceborne MOPITT v7 instrument (Measurements Of Pol-
lution In The Troposphere v7 TIR-NIR product; Deeter et
al., 2017) and column CH2O from the OMI version3 prod-
uct (González Abad et al., 2015), respectively (Zheng et
al., 2019). The CH4 distributions are taken from data as-
similation of surface CH4 observations (Zhao et al., 2020a),
mainly from the Earth System Research Laboratory of
the US National Oceanic and Atmospheric Administration
(NOAA/ESRL, Dlugokencky et al., 1994). The assimilated
surface CO concentration and CH4 profiles show good agree-
ment with independent ground-based observations and air-
craft observations, respectively (Zheng et al., 2019; Zhao et
al., 2020a).

Meteorological conditions, mainly water vapor (H2O(g))
and air temperature (Ta) can also influence tropospheric OH.
The H2O(g) (represented as specific humidity) and Ta are
constrained by the second Modern-Era Retrospective anal-
ysis for Research and Applications (MERRA-2) reanalysis
data from NASA’s Global Modeling and Assimilation Of-
fice (GMAO) (Gelaro et al., 2017).
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2.2 The 3D atmospheric chemistry model simulations

The 3D distributions of monthly mean OH fields and OH pre-
cursors for the year 2010 are taken from the REF-C1 experi-
ment of the IGAC/SPARC Chemistry–Climate Model Initia-
tive Phase-1 (CCMI-1; Hegglin and Lamarque, 2015; Mor-
genstern et al., 2017). The REF-C1 experiment is driven by
state-of-the-art historical forcings and sea surface tempera-
tures from observations and covers 51 years (1960–2010).

We include simulations from two models with different
chemical mechanisms: (1) the Community Earth System
Model (CESM) using the Community Atmosphere Model
version 4 as atmosphere component (CESM1–CAM4Chem;
Tilmes et al., 2015, 2016) and (2) the GEOS-5 Chemistry Cli-
mate Model (GEOSCCM; Molod et al., 2012, 2015; Oman et
al., 2011, 2013; Nielsen et al., 2017). The tropospheric chem-
istry of CESM1–CAM4Chem is based on MOZART-4 mech-
anisms with minor updates (Emmons et al., 2010; Lamarque
et al., 2012) and the GEOSCCM is based on the Global Mod-
eling Initiative (GMI) chemistry and transport model (Dun-
can et al., 2007), which was originally developed for the
GEOS-Chem model. The CO, NO2, O3, CH4, CH2O mix-
ing ratios, total column O3, and meteorological conditions
including Ta and H2O(g) simulated by CESM1–CAM4Chem
and GEOSCCM in 2010 are compared with the observational
data described in Sect. 2.1 in the Supplement (Figs. S1–S3).
We chose the CESM1–CAM4Chem and GEOSCCM in this
study since (1) their global mean OH concentrations and
OH distributions (both horizontal and vertical) are around
the multi-model mean values given by Zhao et al. (2019), al-
beit not at the extreme of the model distribution; (2) the two
models include multiple primary non-methane volatile or-
ganic compounds (NMVOC) emissions (Morgenstern et al.,
2017); and (3) the chemical box model DSMACC already
includes the MOZART-4 and GEOS-Chem chemical mech-
anisms (Sect. 2.3), which are similar to that used in CESM1
CAM4-Chem and GEOSCCM, respectively.

A detailed description of the two model settings related
to OH and the CCMI-1 model experiments can be found in
Morgenstern et al. (2017) and Zhao et al. (2019).

2.3 The chemical box model DSMACC

Differing from 3D atmospheric chemistry models, which
simulate the OH by gridded emissions inventories of its pre-
cursors, a chemical box model simulates OH by prescrib-
ing precursor concentrations and the meteorological condi-
tions. Thus, one can estimate the sensitivity of OH to dif-
ferent precursor concentrations and meteorological parame-
ters. Here, we use the Dynamically Simple Model of Atmo-
spheric Chemical Complexity (DSMACC; Emmerson and
Evans, 2009) to estimate the sensitivity of OH to chemi-
cal species including CO, NO2, O3, CH4, CH2O, the total
column O3, and meteorological conditions including Ta and
H2O(g), following the approach of Nicely et al. (2018).

The DSMACC model takes advantage of the kinetic pre-
processor (KPP) to generate the FORTRAN code for a cho-
sen chemical mechanism. In this study, the DSMACC model
is compiled with MOZART-4 and GEOS-Chem chemical
mechanisms, respectively, to be consistent with the associ-
ated 3D models CESM1–CAM4Chem and GEOSCCM. The
clear-sky photolysis rates of chemical species are estimated
by the tropospheric ultraviolet and visible (TUV) radiation
model. Forced by meteorological variables (H2O(g), Ta, and
pressure), total column O3, and gas concentrations simulated
by the CESM1–CAM4Chem and GEOSCCM or generated
from observations, and the diurnal cycle of the photolysis
rates estimated by the TUV radiation model, the DSMACC
is run forward until reaching the diurnal steady state of OH.
Nicely et al. (2018) have estimated the response of OH to
changes in OH precursors by conducting DSMACC model
simulations for broad latitude and pressure bins. The results
show that the H2O(g), NOx , total column O3, and tropical
expansion can lead to a positive trend in tropospheric OH,
offsetting most of the negative trend led by the rising CH4
concentrations from 1980 to 2015. Here, for each month, we
run the DSMACC model for each model pixel of the 3D grid
to better represent the heterogeneous spatial distributions
of OH. For example, the CESM1–CAM4Chem has 144 (lon-
gitude)× 96 (latitudes)× 13 (pressure level) model grids in
the troposphere. For each sensitivity experiment (Sect. 2.4),
we therefore conduct 179 712 DSMACC model simulations
(for the CESM1–CAM4Chem grid) each month.

2.4 DSMACC experiments

Table 1 lists the experiments conducted with the DSMACC
chemical box model. The reference experiment (Ref_model
in Table 1) is conducted by running the DSMACC model
with the monthly mean chemical species concentrations
and meteorological conditions simulated by the 3D models
(CESM1–CAM4chem/GEOSCCM) for each pixel in 2010
using the corresponding chemical mechanisms. During the
DSMACC simulation for each month, the meteorological
conditions and chemical species with a lifetime of a few
hours (e.g., NMVOCs) to several years (e.g., CH4) are set
to the monthly mean values from 3D model outputs and
unchanged during the simulation. We estimated the diurnal
steady-state solution for the chemical species with a short
lifetime of a few seconds (e.g., OH and HO2 radicals). Since
most of the CCMI models provide the 3D distributions of
the chemical species on monthly time resolution, the influ-
ence of sub-monthly variations such as the diurnal cycle
for these chemical species and meteorological conditions on
OH concentrations are not represented in the DSMACC sim-
ulations. In the All_obs simulation, the CO, NO2, O3, CH4,
and CH2O, total column O3, Ta, and H2O(g) are replaced
with the available observation-based data for 2010, while
other DSMACC inputs (pressure and other chemical species)
are the same as in the Ref_model simulation. For CO, CH4,
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Table 1. The DSMACC model experiments.

Species Simulations Description

Ref Ref_model Chemical species and meteorological conditions from 3D model simulations for 2010
All All_obs All the chemical species and meteorological conditions listed below adjusted to match observations
NO2 NO2_obs_PBL Adjust boundary layer NO2 to match the OMI QA4ECV product
O3 O3_obs Adjust tropospheric O3 to match OMI/MLS product
CH4 CH4_obs Adjust tropospheric CH4 to match the assimilated data
CO CO_obs Adjust tropospheric CO to match the assimilated data
CH2O CH2O_obs Adjust tropospheric CH2O to match the assimilated data
O3 column O3col_obs Adjust total column ozone to match SBUV MOD data
H2O(g) H2O_obs Adjust water vapor to MERRA-2 data
Ta Ta_obs Adjust air temperature to MERRA-2 data

CH2O, and meteorological conditions, the observation-based
data are taken directly from the monthly mean of the assim-
ilated or reanalysis data as described in Sect. 2.2 (regrid to
model horizontal and vertical grid). For tropospheric NO2
and O3, we use satellite data to generate the observation-
based DSMACC input. The associated uncertainties of us-
ing the satellite observations of O3 and NO2 at overpass time
are discussed in Sect. 4.3. As the satellite observations pro-
vide the tropospheric VCDs, the observation-based concen-
trations are estimated by combining the satellite-observed
tropospheric columns and model-simulated vertical distri-
butions. We estimate the tropospheric column density sim-
ulated by atmospheric chemistry models (Ctrop_model) using
the tropopause pressure estimated based on the WMO (World
Meteorological Organization, 1957) tropopause definition.
Then, we estimate the scaling factor for each model horizon-
tal grid cell as the ratio of satellite observations (Ctrop_obs) to
the modeled tropospheric column density (Ctrop_model). The
observation-based concentration (Cgrid_obs) in each model
pixel, which is used as the DSMACC input, is then estimated
by multiplying the corresponding model-simulated concen-
tration (Cgrid_model) by the scaling factor:

Cgrid_obs = Cgrid_model×
Ctrop_obs

Ctrop_model
. (1)

For O3, we estimate the Cgrid_obs for each 3D model pixel
in the whole troposphere using Eq. (1). For NO2, we only
estimate Cgrid_obs in the boundary layer (the boundary layer
height is from the MERRA-2 reanalysis data) since the NO2
emitted from the surface mainly remains within the boundary
layer.

The Ref_model experiments can well reproduce the spa-
tial distribution of [OH]trop-M simulated by 3D models
(Fig. S4), which indicate that the chemical box model
DSMACC can generally capture the response of OH to
the changes in OH precursor concentrations and me-
teorological conditions. However, the Ref_model exper-
iments overestimate the [OH]trop-M by 7 % and 36 %
when compared with the global [OH]trop-M simulated by
CESM1–CAM4Chem and GEOSCCM, respectively. Thus,

the observation-based OH ([OH]obs) in each 3D model pixel
for two different chemical mechanisms is estimated by cor-
recting OH as simulated by the corresponding 3D mod-
els ([OH]model) by the ratio between OH simulated by DS-
MACC experiments for the All_obs ([OH]DSMACC_all_obs)
and for the Ref_model ([OH]DSMACC_Ref_model) case:

[OH]obs = [OH]model×
[OH]DSMACC_all_obs

[OH]DSMACC_Ref_model
. (2)

Then, we also perform eight sensitivity experiments (xk_obs
in Table 1) that only adjust one individual chemical species
or meteorological condition (here and after represented as xk)
to the observations (obs), keeping the other parameters equal
to the simulated values from the chemistry–climate model.
Because of high computing costs, we conduct the sensitiv-
ity experiments using only CESM1–CAM4C-chem outputs.
The OH biases due to each factor (δ[OH]xk) are estimated by
introducing the OH simulated in the sensitivity experiment
xk_obs ([OH]DSMACC_xk_obs) as:

[OH]xk_obs = [OH]model×
[OH]DSMACC_xk_obs

[OH]DSMACC_Ref_model
, (3)

δ[OH]xk = [OH]model− [OH]xk_obs. (4)

2.5 Chemical loss of CH4

We estimate the yearly tropospheric chemical loss of CH4
through reaction with OH (LCH4+OH) at global and regional
scale from 2000 to 2009 by integrating the reaction of CH4
with OH:

LCH4+OH =
∑
i

∑
t

K (Ta)m (CH4) [OH]δt, (5)

where i is the index of the model pixel in the troposphere and
δt is the integration time step (3 h). The monthly 3D distribu-
tions of CH4 mass (m(CH4)) during 2000–2009 are from data
assimilation of surface CH4 observations from NOAA/ESRL
(Dlugokencky et al., 1994) and the Ta distributions are from
MERRA-2 reanalysis data (see Sect. 2.2). The reaction rate
K(Ta) is a function of Ta as given by Sander et al. (2011):
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Table 2. Modeled and observation-based estimates of global [OH]trop-M, CH4 sink by tropospheric OH (LCH4+OH) averaged during 2000–
2009, and the CH4 lifetime against tropospheric OH (τCH4+OH).

[OH]trop-M LCH4+OH τCH4+OH
(105 molec. cm−3) (Tg yr−1) (yr)

Modeled CESM1–CAM4Chem 11.9 540 9.1
GEOSCCM 12.6 565 8.7

Observation-based CESM1–CAM4Chem 9.9 434 11.4
GEOSCCM 10.4 461 10.7

K (Ta)= 2.45× 10−12e
−

1775
Ta . (6)

The contribution of each factor xk to the bias in chemical
loss of CH4 through reaction with OH (δLCH4+OH_xk) can be
estimated as:

δLCH4+OH_xk =
∑
i

∑
t

K (Ta)m (CH4)δ[OH]xkδt, (7)

with LCH4+OH, we further estimate the CH4 lifetime to re-
action with tropospheric OH (τCH4+OH) through the global
CH4 burden:

τCH4+OH =

∑
j

m (CH4)

LCH4+OH
, (8)

where j is the index of the model pixel in the entire atmo-
sphere.

3 Results

3.1 Observation-based tropospheric OH

3.1.1 Global tropospheric OH burden

The global mean tropospheric column-averaged air-
mass-weighted OH ([OH]trop-M) simulated by CESM1–
CAM4Chem and GEOSCCM in 2010 are 11.9× 105 and
12.6× 105 molec. cm−3, respectively. By adjusting OH pre-
cursors and meteorological conditions (total column
O3, tropospheric O3, CO, CH4, CH2O, boundary layer
NO2, H2O(g), and Ta) to the observations using the
DSMACC model, we estimated the observation-based
[OH]trop-M to be9.9× 105 and 10.4× 105 molec. cm−3

with CESM1–CAM4Chem and GEOSCCM chemical
mechanisms, respectively (Fig. 1 and Table 2). Com-
pared with the original OH fields simulated by CESM1–
CAM4Chem and GEOSCCM, the observation-based
OH fields reduce the model-simulated global [OH]trop-M
by ∼ 2× 105 molec. cm−3. The global [OH]trop-M esti-
mated by the observation-based OH fields in this study
is lower than the value estimated by Spivakovsky et
al. (2000) (11.6× 105 molec. cm−3), which is used in the

chemistry transport model (CTM) intercomparison experi-
ment (TransCom-CH4) after being scaled by a factor of 0.92
(Patra et al., 2011) but consistent with those estimated by
MCF-based inversions (∼ 10× 105 molec. cm−3; Bousquet
et al., 2005; Krol and Lelieveld, 2003). The consistency
with the MCF-based estimates indicates that our approach
(correcting model bias through available observations) is
capable of capturing the global OH burden.

3.1.2 The OH spatial distribution

Figures 1 and 2 show the spatial distribution and zonal av-
erage of the [OH]trop-M, respectively, estimated from the
observation-based and original model-simulated OH fields.
The observation-based OH fields show similar spatial dis-
tributions as their respective original model simulations,
with high [OH]trop-M (10–15× 105 molec. cm−3) over East
Asia, South Asia, and northern Africa, corresponding to
the regions with high tropospheric O3, NO2, and H2O(g)
(Figs. S1 and S3). The lowest [OH]trop-M is found over
the high latitudes (< 4× 105 molec. cm−3) due to less ul-
traviolet radiation and over the Amazon forest (4–8×
105 molec. cm−3) due to high biogenic non-methane volatile
organic compound (NMVOC) emissions. The observation-
based [OH]trop-M averaged over the northern tropics (0–
30◦ N) and northern middle to high latitudes (30–90◦ N) are
> 14×105 and> 7×105 molec. cm−3, respectively, for both
chemical mechanisms, which are higher than those over the
southern tropics (12.2–13.6× 105 molec. cm−3) and south-
ern middle to high latitudes (5.3–5.6× 105 molec. cm−3, Ta-
ble 3 and Fig. 2). The two observation-based OH fields show
similar mean [OH]trop-M over most of the latitudinal bands,
except for the southern tropics (0–30◦ S), where the mean
[OH]trop-M estimated by the GEOSCCM chemical mech-
anism is 1.4× 105 molec. cm−3 higher than the one from
CESM1–CAM4Chem (Table 3 and Fig. 2).

Compared to the original [OH]trop-M simulated by
CESM1–CAM4Chem and GEOSCCM, adjusting to obser-
vations reduces the [OH]trop-M by 2–8× 105 molec. cm−3

over most regions except the tropical forests. The reduc-
tion of mean [OH]trop-M over the northern tropics (0–
30◦ N) and middle to high latitudes (30–90◦ N) are >

3× 105 and > 2× 105 molec. cm−3, respectively, which is
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Figure 1. Spatial distributions of air-mass-weighted tropospheric mean OH ([OH]trop-M) in 2010 from model simulations (a, d) and con-
strained by observations (b, e), and the difference between modeled and observation-based [OH]trop-M (c, f) estimated from CESM1–
CAM4Chem (a–c) and GEOSCCM (d–f) simulations. The global mean values are shown in the inset in molec. cm−3.

Table 3. The modeled and observation-based [OH]trop-M (in 105 molec. cm−3) averaged over latitudinal bands during 2000–2009. The
corresponding tropospheric CH4 sink by OH (LCH4+OH) (in Tg yr−1) is given in brackets.

90–30◦ S 30–0◦ S 0–30◦ N 30–90◦ N

Modeled CESM1–CAM4Chem 5.9 (49) 14.2 (173) 17.8 (226) 9.4 (93)
GEOSCCM 6.2 (50) 16.1 (192) 18.5 (229) 9.6 (94)

Observation-based CESM1–CAM4Chem 5.3 (42) 12.2 (144) 14.5 (178) 7.2 (69)
GEOSCCM 5.6 (46) 13.6 (161) 14.9 (183) 7.4 (72)

larger than that over the southern tropics (0–30◦ S by ∼ 2×
105 molec. m−3) and middle to high latitudes (30–90◦ S by
0.6×105 molec. cm−3). The Northern Hemisphere to South-
ern Hemisphere (N/S) ratios of the simulated OH fields are
reduced from 1.35 to 1.24 for CESM1–CAM4Chem and
1.26 to 1.15 for GEOSCCM. Although the N/S ratios of
the observation-based OH fields are still higher than the 1,
which is obtained from MCF-based inversions (Bousquet et
al., 2005; Patra et al., 2014), incorporating available observa-
tions has significantly reduced the model-simulated N/S ra-
tio.

The spatial distribution of the observation-based OH of
this study is different from the OH field estimated by Spi-
vakovsky et al. (2000). The OH field estimated by Spi-
vakovsky et al. (2000) shows a high [OH]trop-M over the re-
gions with biomass burning emissions (Fig. S5). Instead of
considering the detailed spatial distributions of nitrogen ox-
ides, Spivakovsky et al. (2000) use a series of NOy profiles
for land and ocean over large regions (Fig. S6). As shown
in Figs. S5 and S6, the highest [OH]trop-M over South Amer-
ica and Africa estimated by Spivakovsky et al. (2000) corre-
spond to high NOy mixing ratios over these two regions. The
OH shows high positive sensitivity to NOy in the free tropo-

sphere due to low VOCs and NOy mixing ratios (Fig. S7).
Using satellite observations, Choi et al. (2014) showed that
the high NO2 mixing ratios in the free troposphere are mainly
located near polluted urban regions (e.g., North America, Eu-
rope, and Asia), which is more similar to the NO2 distribu-
tion simulated by 3D atmospheric models (Fig. S1). Thus,
although the OH field estimated by Spivakovsky et al. (2000)
gives an N/S ratio of 1, its spatial distribution may have bi-
ases due to the simplification in the NOy distributions.

3.2 Contribution from individual factors to model biases
in [OH]trop-M

By conducting the sensitivity simulations listed in Table 1,
we estimate the contribution of individual factors to model
biases based on Eqs. (3) and (4). The sensitivity of OH to
model biases in tropospheric O3, stratospheric O3, H2O(g),
and NOx emissions have been tested in Strode et al. (2015)
using GEOSCCM. In this section, we extend the procedure
of Strode et al. (2015) by including more factors: Ta, CO,
CH2O, CH4, and NO2 in the boundary layer.
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Figure 2. (a) Zonal-averaged [OH]trop-M of modeled (solid lines)
and observation-based OH field (dashed lines) estimated from
CESM1–CAM4Chem (yellow) and GEOSCCM (blue) simula-
tions. (b) Difference of zonal-averaged [OH]trop-M between mod-
eled and observation-based OH fields. (c) Difference between
CESM1–CAM4Chem simulated and observation-based zonal-
averaged [OH]trop-M (black line) and the contribution from each
OH precursor (colored bars) to zonal-averaged difference. (d–
f) Same as (a–c) but for the tropospheric CH4 sink by reaction
with OH.

Table 4 summarizes the contribution of each chemical
precursor and meteorological condition to the difference
between CESM1–CAM4Chem simulated and observation-
based global [OH]trop-M. On the global scale, the total con-
tribution of the eight individual factors to the difference in
[OH]trop-M estimated from the simulation xk_obs is 2.0×
105 molec. cm−3 (Table 4), consistent with that estimated
from the simulation All_obs (Table 2). On the regional scale,
they show small differences (usually < 10 % of the signal,
Fig. S8), which can be attributed to the nonlinear chemistry.
Indeed, although the atmospheric OH is produced and re-
moved through complex nonlinear chemical reactions, one
can infer the large-scale [OH]trop-M changes by roughly sum-
ming the influence from individual factors.

3.2.1 Contribution from CO

CO is the largest OH sink in the troposphere (Lelieveld et
al., 2016; Zhao et al., 2020b). The sensitivity simulation
CO_obs shows that a 1 ppbv increase in CO can result in
a decrease in OH by up to more than 3× 104 molec. cm−3

(Fig. S7). Compared with the CO distributions from inver-

Table 4. Contributions from individual factors to the difference in
global [OH]trop-M and tropospheric CH4 sink by reaction with OH
between CESM1–CAM4Chem simulated and the corresponding
observation-based OH fields (modeled–observation-based).

[OH]trop-M CH4 sink
(105 molec. cm−3) (Tg yr−1)

H2O(g) 0.1 10
Ta 0 0
Column O3 0.4 22
CO 1.3 60
O3 −0.3 −17
NO2 0.3 22
CH4 0.1 5
CH2O 0.1 6

Total 2.0 108

sions that assimilated MOPITT observations, the CESM1–
CAM4Chem underestimates the global tropospheric mean
CO mixing ratio by 24 ppbv (Fig. S1). Based on the DS-
MACC simulations CO_obs and Ref_CESM (Table 1), we
find that the negative bias in CO contributes most to the dif-
ference in the modeled versus observation-based [OH]trop-M
(1.3× 105 molec. cm−3; Table 4 and Fig. 3). The underes-
timation of CO is common in atmospheric models and was
treated either as a cause or an effect of the overestimated OH
in previous studies (Naik et al., 2013; Monks et al., 2015;
Strode et al., 2015). For example, based on the Atmospheric
Chemistry and Climate Model Intercomparison Project (AC-
CMIP) simulations, Naik et al. (2013) found that the posi-
tive bias in OH was most likely due to the underestimation
of CO when compared with both satellite and surface obser-
vations. In contrast, Strode et al. (2015) did sensitivity simu-
lations using the GEOSCCM model and showed that reduc-
ing OH bias could improve the accuracy of modeled CO. In
this study, we do not intend to solve the cause-and-effect is-
sue between CO and OH since the discrepancy in [OH]trop-M
of 1.3× 105 molec. cm−3 could also be understood as the
global tropospheric [OH] changes that would be needed to
simulate the observed CO.

The underestimation of the CO mixing ratio is larger over
the Northern Hemisphere (30 ppbv) than over the South-
ern Hemisphere (18 ppbv) (Fig. S1). The largest bias in
[OH]trop-M induced by CO is found over the northern tropics
(1.9× 105 molec. cm−3) followed by those over the north-
ern middle to high latitude regions and the southern tropics
(1.2× 105 molec. cm−3; Fig. 2). Naik et al. (2013) demon-
strated that the model bias in CO contributes to the over-
estimation of the modeled N/S ratio in [OH]trop-M. In this
study, although the underestimation of CO leads to a larger
positive bias of [OH]trop-M over the Northern Hemisphere
than the Southern Hemisphere, the observation-based ad-
justment only reduces the positive bias of the N/S ratio

Atmos. Chem. Phys., 23, 789–807, 2023 https://doi.org/10.5194/acp-23-789-2023



Y. Zhao et al.: Reconciling the bottom-up and top-down estimates of the methane chemical sink 797

Figure 3. Spatial distributions of the contribution of individual factors to the difference between CESM1–CAM4Chem simulated and
observation-based (modeled–observation-based) [OH]trop-M. The global mean values are shown inset in molec. cm−3.

by 0.02. This means that the N/S difference of the CO bias
is not sufficient to explain the inconsistency between the
CESM1–CAM4Chem simulated and MCF-based N/S ratio
in [OH]trop-M.

3.2.2 Contribution from tropospheric O3

Tropospheric O3 can contribute to both primary and sec-
ondary OH production. Compared to satellite observations
from OMI, CESM1–CAM4Chem simulations show a large
overestimation of tropospheric O3 over the 15–60◦ N region
(up to 14 DU, 40 %) and an underestimation (14 DU, 40 %)
over the tropics and Southern Hemisphere (Fig. S1).

At the global scale, the model bias in O3 leads to a negative
bias on [OH]trop-M by 0.3× 105 molec. cm−3, much smaller
than that caused by CO (Table 4). However, at the regional
scale, The CESM1–CAM4Chem simulated [OH]trop-M is en-
hanced by ∼ 1× 105 molec. cm−3 over the tropics (15◦ S–
15◦ N) and ∼ 0.5× 105 molec. cm−3 over the mid-Southern
Hemisphere (15–60◦ S), while it is reduced by 0.1–0.3×
105 molec. cm−3 over the mid-Northern Hemisphere (15–
60◦ N) when adjusted to OMI/MLS tropospheric column O3
(Fig. 2). The adjustment reduces the N/S ratio of [OH]trop-M
by 0.07; however, it still cannot explain the overestimation
of the N/S ratio but leads to a larger correction than the one
with CO alone.

3.2.3 Contribution from boundary layer NO2

The sensitivity of OH to NO2 is highly variable. We esti-
mate that a 1 ppbv increase in NO2 can lead to a change
of OH ranging from −3× 106 molec. cm−3 to more than
+10× 106 molec. cm−3, depending on the mixing ratio

of NMVOCs (represented as HCHO+isoprene) and NO2
(Fig. S7). Compared to the QA4ECV NO2 retrieval prod-
uct, CESM1–CAM4Chem overestimates tropospheric NO2
over most regions except northern China and tropical forests
(Fig. S1).

At the global scale, the overestimation of NO2 leads
to a positive bias in [OH]trop-M by 0.3× 105 molec. cm−3

(Table 4). At the regional scale, correcting for the PBL
NO2 does not influence the N/S ratio of OH. As shown
in Fig. 3, the overestimation of PBL NO2 results in a pos-
itive bias in [OH]trop-M over most of the continental re-
gions. Over tropical and temperate oceans, one can also
see that the slight overestimation in NO2 leads to a sig-
nificate positive bias in OH by 0.5–1× 105 molec. cm−3

since the sensitivity of [OH]trop-M to NO2 can be very high
(107 molec. cm−3 ppbv−1 NO2) over the regions with low
NOx and NMVOC mixing ratios. Over northern China, al-
though the model shows a large underestimation in NO2
(Fig. S1), the [OH]trop-M is slightly smaller after adjustment.
This is because the OH is not sensitive to an increase in NO2
over high NO2 regions or even shows a negative response
(Fig. S7).

3.2.4 Contribution from total column O3

Total column O3 mainly influences O1(D) photolysis through
absorbing UV radiation. The CESM1–CAM4Chem simula-
tion mainly underestimates the total O3 columns by up to
∼ 10 DU over tropical regions compared with the SBUV
MOD observations (Fig. S2). On a global scale, the under-
estimation of the total column O3 can lead to an overestima-
tion of the [OH]trop-M by 0.4×105 molec. cm−3 (Table 4 and
Fig. 3), comparable with that due to tropospheric O3.
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3.2.5 Contribution from CH4 and CH2O

In CCMI-1 simulations, atmospheric chemistry models pre-
scribe the lower boundary conditions for CH4 following
the Representative Concentration Pathway (RCP6.0). Com-
pared to the posterior CH4 fields from inversions by as-
similating the surface CH4 observations, the tropospheric
mean CH4 mixing ratios used in the CESM–CAM4Chem are
∼ 80 ppbv lower over the tropical and extratropical regions
with high biomass burning and anthropogenic emissions and
∼ 40 ppbv lower over other regions. However, due to the low
sensitivity of [OH] to CH4 changes (Fig. S1), the underesti-
mation in CH4 only leads to a small positive bias in the global
mean [OH]trop-M by 0.1× 105 molec. cm−3.

The CESM1–CAM4Chem overestimates CH2O by more
than 50 % over land but slightly underestimates CH2O over
tropical oceans (Fig. S1). Since CH2O contributes to only a
small part (6 %) of the total OH loss (Zhao et al., 2020b),
the large bias in the CESM1–CAM4Chem simulated CH2O
only leads to a small positive bias global mean [OH]trop-M by
0.1× 105 molec. cm−3 (Fig. 3).

3.2.6 Contribution from meteorological conditions

H2O(g) is a major OH precursor that contributes to the
primary production of OH and Ta can influence OH pro-
duction and loss rates. Compared to MERRA-2 reanalysis
data, CESM1–CAM4Chem overestimates zonally averaged
H2O(g) mixing ratios near the surface and around 800 hPa
by ∼ 1.5 g kg−1 (Fig. S3). The sensitivity experiments show
that a change in specific humidity by 1 g kg−1 can lead
to a change in OH by > 3× 105 molec. cm−3 over the re-
gions with high O(1D) photolysis and low NMVOC mix-
ing ratios (Fig. S7). As shown in Table 4 and Fig. 3, glob-
ally, the model bias in H2O(g) only leads to a small bias
(0.1×105 molec. cm−3) [OH]trop-M, but regionally, the model
bias in H2O(g) can lead to a bias in [OH]trop-M by the mag-
nitude of 5× 105 molec. cm−3, even larger than that induced
by the bias in CO. For Ta, the model only shows a small bias
(< 1 ◦C) compared with MERRA-2 reanalysis data (Fig. S3).
Thus, model bias in [OH]trop-M induced by Ta is negligible
(Fig. 3).

3.3 Chemical sinks of CH4 as estimated by
observation-based OH fields

3.3.1 Global and regional OH chemical sink of CH4

Using the observation-based OH field, we estimate that
the global tropospheric CH4 loss by reaction with tropo-
spheric OH (LCH4+OH) averaged during the period 2000
through 2009 is 434 and 461 Tg yr−1 for CESM1–
CAM4Chem and GEOSCCM, respectively. These estimates
are about 105 Tg yr−1 lower than estimated by the original
model-simulated OH fields (540 and 565 Tg yr−1, respec-
tively; Table 2). The corresponding CH4 lifetimes against tro-

pospheric OH loss estimated by the two observation-based
OH fields are 11.4 and 10.7 year for CESM1–CAM4Chem
and GEOSCCM, respectively, well within the range esti-
mated by Prather et al. (2012) based on the MCF-inversions
(11.2± 1.3 yr) and much longer than estimated by the orig-
inal model-simulated OH fields (9.1 years for CESM1–
CAM4Chem and 8.7 years for GEOSCCM).

As shown in Table 3, more than 70 % of the tropospheric
LCH4+OH occurs over tropical regions mainly due to both
high OH and Ta. Constraining the tropospheric OH by pre-
cursor concentrations reduces the tropospheric LCH4+OH by
∼ 30 Tg yr−1 (16 %) over the southern tropics, ∼ 50 Tg yr−1

(21 %) over the northern tropics, and ∼ 25 Tg yr−1 (25 %)
over the northern middle to high latitude as estimated by
both CESM1–CAM4Chem and GEOSCCM OH fields. Over
the southern middle- to high-latitude regions, there are only
limited changes (∼ 5 Tg yr−1) in tropospheric LCH4+OH.
Thus, constraining tropospheric OH by precursor concentra-
tions changes the inter-hemispheric distribution of LCH4+OH.
The values of LCH4+OH estimated by the observation-
based OH fields are ∼ 35 and ∼ 75 Tg yr−1 lower than that
estimated by the corresponding original model-simulated
OH fields over the Southern and Northern Hemisphere,
respectively (Table 3). Thus, the inter-hemispheric differ-
ence of LCH4+OH (north–south) estimated by observation-
based OH fields (60 Tg yr−1 by CESM1–CAM4Chem and
48 Tg yr−1 by GEOSCCM) is ∼ 40 % lower than estimated
by the original model-simulated OH fields (98 Tg yr−1 by
CESM1–CAM4Chem and 81 Tg yr−1 by GEOSCCM).

3.3.2 Global total chemical sink of CH4

We estimate the global total CH4 chemical sink for 2000–
2009 by gathering (1) the tropospheric LCH4+OH estimated
using the original model-simulated and observation-based
OH fields, (2) the CH4 loss in the stratosphere (26 Tg yr−1

estimated by CESM1 CAM4-chem and 36 Tg yr−1 estimated
by GEOSCCM simulations) and CH4 oxidized by chlorine
(11 Tg yr−1) given by Saunois et al. (2020). We then com-
pare the chemical sink estimated in this study with that es-
timated by the bottom-up and top-down methods given by
the previous GCP global CH4 budget (Saunois et al., 2016,
2020).

As shown in Fig. 4, the bottom-up estimates in the GCP
global CH4 budget (blue bars) have a large range (483–
738 Tg yr−1 in Saunois et al., 2016 and 489–749 Tg yr−1

in Saunois et al., 2020), much higher than those from
the top-down method (514 Tg yr−1 in Saunois et al., 2016
and 459–516 Tg yr−1 in Saunois et al., 2020). The CH4
sinks simulated by CESM1–CAM4Chem (549 Tg yr−1) and
GEOSCCM (585 Tg yr−1) were included in the bottom-
up estimates in Saunois et al. (2020) (green bar) and are
slightly lower than the average value estimated using differ-
ent OH fields (595 Tg yr−1).
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Figure 4. Global total chemical loss of CH4 estimated by the bottom-up and top-down methods from the previous GCP global CH4 budget
(blue bars; Saunois et al., 2016, 2020), simulated by GEOSCCM and CESM1–CAM4Chem which is included in the bottom-up estimates
in Saunois et al. (2020) (green bar), and that estimated in this study using the model-simulated and observation-based OH fields and CH4
distributions assimilated surface observations (black bars). The colored bar shows the contribution of individual factors to the difference in
the chemical loss of CH4 between CESM1–CAM4Chem simulated and the corresponding observation-based OH. The blue, green, and black
bars correspond to the left axis, and the colored bar corresponds to the right axis.

In this study, the global total CH4 chemical sinks esti-
mated using the originally simulated tropospheric OH and
constrained CH4 mixing ratios are 577 and 612 Tg yr−1

for CESM1–CAM4Chem and GEOSCCM for 2000–2009,
respectively, close to the mean values estimated by the
bottom-up method (around 600 Tg yr−1) using different OH
fields but much higher than the top-down estimates (around
500 Tg yr−1) (Fig. 4). It should be noted that in the bottom-up
estimates of the chemical loss of CH4 in the previous GCP,
global CH4 sinks were calculated using model-simulated
CH4 mixing ratios (Saunois et al., 2020). The CH4 mixing
ratios simulated by CESM1–CAM4Chem and GEOSCCM
are lower than that used in this study (Fig. S1). Thus, the
chemical sink of CH4 estimated in this study is higher than
that estimated in Saunois et al. (2020) by∼ 30 Tg yr−1. After
adjusting the main OH precursors to observations, the global
chemical sink of CH4 for 2000–2009 is 471–508 Tg yr−1, as
estimated using the two observation-based OH fields, more
consistent with top-down method estimates (∼ 500 Tg yr−1).

The above analyses show that the large uncertainties in
the bottom-up estimates of the CH4 chemical sink are at-
tributable to the use of the model-simulated OH fields with
known biases. Constraining the OH field with available pre-
cursor observations to correct the global OH, the magnitude
of the methane loss is more in line with top-down methane
inversions. Therefore, we partly reconcile the bottom-up and
top-down estimates of the CH4 sink. Although only two of
seven bottom-up models synthesized in Saunois et al. (2020)
are considered in this study, our approach can be general-
ized to other chemistry–climate models. Instead of directly
using the OH fields simulated from an atmospheric chem-
istry model, the bottom-up estimates can use the precursor
observations and box-model based approach proposed here
to reduce model biases of OH fields.

3.3.3 Contribution from the model biases of individual
OH precursors to chemical sink of CH4

We further quantify the influence of model biases in indi-
vidual OH precursors on the bottom-up estimates of CH4
chemical sink (δLCH4+OH_xk). At the global scale, the un-
derestimation of CO and total column O3 and the over-
estimation of NO2 by the CESM1–CAM4Chem lead to a
positive bias of 60 Tg yr−1 (11 %), 22 Tg yr−1 (4 %), and
22 Tg yr−1 (4 %) in tropospheric LCH4+OH (Fig. 4 and Ta-
ble 4), respectively, while an underestimation of tropospheric
O3 leads to a negative bias of 17 Tg yr−1 (3 %) in tropo-
spheric LCH4+OH. Although the model bias of [OH]trop-M
induced by H2O(g) is negligible on the global scale, the
observation-based adjustment of H2O(g) leads to a reduc-
tion in tropospheric LCH4+OH by 10 Tg yr−1 (2 %), since
the model overestimation of H2O(g) is concentrated over the
middle- to low-latitude regions where tropospheric CH4 oxi-
dation mainly occurs (Fig. S3). The model bias in CH2O and
CH4 itself leads to a small positive bias of∼ 1 % respectively
on LCH4+OH.

As the tropospheric LCH4+OH mainly occurs over the
middle- to low-latitude regions, the biases in [OH]trop-M over
the high latitudes (north of 60◦ N or south of 60◦ S) due
to an overestimation of CO and underestimation of H2O(g)
do not substantively contribute to the bias in LCH4+OH
(Fig. 2). Over the regions north of 15◦ N, nearly all the pre-
cursors considered in this study contribute to the overes-
timation of LCH4+OH (55 Tg yr−1 in total), of which 47 %
(26 Tg yr−1) is contributed by model underestimation of CO.
South of 15◦ N, the underestimation of tropospheric O3
results in an underestimation of LCH4+OH by 22 Tg yr−1,
partly offsetting the overestimation of LCH4+OH induced
by CO (34 Tg yr−1) and other precursors (40 Tg yr−1 in to-
tal) (Fig. 2). As previously mentioned, the inter-hemispheric
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difference of LCH4+OH derived from the observation-based
OH fields is 48 Tg yr−1 smaller than estimated using the OH
field originally simulated by CESM1–CAM4Chem. The bi-
ases in CO, tropospheric O3, and boundary layer NO2, lead to
an overestimation of the inter-hemispheric difference of tro-
pospheric LCH4+OH by 15, 15, and 9 Tg yr−1, respectively,
dominating the bias in the inter-hemispheric difference in
tropospheric LCH4+OH.

4 Conclusions and discussion

In this study, we aim to reconcile the top-down and bottom-
up estimates of the major global CH4 sink and to quantify
the contribution of each factor to the overestimation of tropo-
spheric OH that is generally found in atmospheric chemistry
models and to the consequent overestimation of CH4 chemi-
cal loss in the bottom-up studies. To do so, we propose a new
approach based on precursor observations and a chemical
box model to improve the 3D distributions of tropospheric
OH radicals issued from atmospheric chemistry models.

4.1 Conclusions for OH

We estimate two 3D observation-based OH fields based on
three components: (i) simulated tropospheric OH and re-
lated chemical species from global 3D atmospheric chem-
istry models (here CESM1–CAM4Chem and GEOSCCM),
(ii) sensitivities of tropospheric OH to its precursors in each
model grid cell estimated by the chemical box model DS-
MACC using a chemical mechanism similar to the 3D model,
and (iii) observations of chemical species related to OH pro-
duction and loss (CO, O3, boundary layer NO2, CH4, CH2O,
and total column O3) and meteorological conditions (H2O(g)
and Ta). The chemical box model DSMACC can be compiled
using different chemical mechanisms, making it possible to
apply this approach to other atmospheric chemistry models
and improve their representation of OH.

The global [OH]trop-M estimated from observation-
based OH fields is ∼ 10× 105 molec. cm−3 in 2010 based
on two different chemical mechanisms, which is 2×
105 molec. cm−3 lower than the original model-simulated
global [OH]trop-M, consequently reaching consistency with
the value derived by MCF-based inversions (around 10×
105 molec. cm−3; Bousquet et al., 2005; Krol and Lelieveld,
2003). The observation-based adjustments also change the
latitudinal distribution of OH, reducing its north–south ra-
tios from 1.35 and 1.26 to 1.24 and 1.15 for CESM1–
CAM4Chem and GEOSCCM, respectively, closer to, albeit
not as low as, the one obtained from MCF-based inversions
(slightly smaller than 1).

Based on the simulations from CESM1–CAM4Chem,
globally, the overestimation of [OH]trop-M arises mainly from
the underestimation of CO and total column O3, and the over-
estimation of boundary layer NO2, which contribute 1.3×
105, 0.4×105, and 0.3×105 molec. cm−3, respectively, to the

bias in [OH]trop-M. For the N/S ratio of [OH]trop-M, the pos-
itive bias in [OH]trop-M over the Northern Hemisphere (0.1–
0.3× 105 molec. cm−3) and the negative bias over the trop-
ics and Southern Hemisphere (0.5–1.0× 105 molec. cm−3)
due to tropospheric O3 dominate the higher N/S ratio of
[OH]trop-M estimated by the CESM1–CAM4Chem than the
observation-based OH field. At the regional scale, the model
bias in H2O(g) can lead to bias in [OH]trop-M even larger than
that induced by CO.

4.2 Conclusions for the CH4 sink

The global CH4 loss by reaction with tropospheric OH
(LCH4+OH) estimated from the observation-based OH fields
is 434 and 461 Tg yr−1 for CESM1–CAM4Chem and
GEOSCCM, respectively, averaged over 2000 to 2009,
which is lower than that estimated from the original model-
simulated OH fields by around 105 Tg yr−1. Based on the
results from CESM1–CAM4Chem, at the global scale, the
underestimation of CO and total column O3, and overestima-
tion of NO2 lead to positive biases in tropospheric LCH4+OH
by 60 Tg yr−1 (11 %), 22 Tg yr−1 (4 %), and 22 Tg yr−1

(4 %), respectively, while an underestimation of tropospheric
O3 leads to a negative bias in tropospheric LCH4+OH by
17 Tg yr−1 (3 %). The inter-hemispheric difference in the tro-
pospheric LCH4+OH is therefore reduced by 40 % (around
35 Tg yr−1) when estimated using the observation-based
OH field. Although the bias in the N/S ratio of [OH]trop-M
is dominated by the tropospheric O3 concentration, the pos-
itive bias in the inter-hemispheric difference of LCH4+OH
is determined together by the biases in CO (15 Tg yr−1),
tropospheric O3 (15 Tg yr−1), and boundary layer NO2
(9 Tg yr−1).

Using the tropospheric LCH4+OH estimated with our
observation-based OH fields, the global total CH4 chemi-
cal sink is 471–508 Tg yr−1. This quantification is more con-
sistent with top-down estimates in the previous GCP global
CH4 budget (459–516 Tg yr−1, Saunois et al., 2016, 2020)
than it was before the adjustment (577–612 Tg yr−1). The
bottom-up method in the previous GCP global CH4 budget
estimated the CH4 chemical sink directly using the OH fields
simulated by atmospheric chemistry models. However, the
uncertainties in the model-simulated OH lead to an unreli-
able range in the bottom-up estimated CH4 chemical sink,
much higher than that estimated by the top-down method.
Our results highlight that constraining the OH fields using
available precursor observations can improve the bottom-up
estimates of the CH4 sink and help reconcile the difference
between the top-down and bottom-up estimates of the CH4
sink.

4.3 Discussion

Although the observation-based 3D OH fields presented in
this study can capture the global tropospheric OH burden and
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chemical loss of CH4, unresolved uncertainties and limita-
tions remain.

1. The method presented in this study cannot improve the
chemical mechanisms in the models and does not fully
explain the overestimation of the N/S ratios of OH.

The differences in global [OH]trop-M between the two
observation-based OH fields estimated from CESM1–
CAM4Chem and GEOSCCM simulations is 0.5×
105 molec. cm−3. Besides precursor concentrations, the
inter-model difference in tropospheric OH is partly at-
tributable to their differences in chemical mechanisms
(Nicely et al., 2018, 2020). As discussed by Murray
et al. (2021), the oxidative efficiency of NMVOCs
and lifetime of NOx simulated by different models
can largely determine inter-model differences in tro-
pospheric OH and their responses to changes in pre-
cursors. Reducing the uncertainties due to the modeled
chemical mechanisms relies on additional observations
to improve the simulation of the oxidative efficiency of
NMVOCs and NOx lifetime, which is beyond the scope
of our study.

The N/S ratio of [OH]trop-M after observation-based
adjustment is still higher than the one obtained from
MCF-inversions (less than 1.0). This difference indi-
cates that the overestimation of the N/S ratio by at-
mospheric models cannot be fully explained by the un-
derestimation of CO and overestimation of O3 over the
Northern Hemisphere as mentioned in previous studies
(Naik et al., 2013). The overestimation of the N/S ra-
tio may also be attributable to chemical mechanisms
included in the atmospheric chemistry models. Both
CESM1–CAM4Cchem and GEOSCCM do not include
the OH recycling by isoprene and simulate low OH val-
ues in regions with high NMVOC emissions, such as
rain forests in the Southern Hemisphere (Zhao et al.,
2019). Including the chemical mechanism such as OH
recycling by isoprene (Lelieveld et al., 2008) would
help to further reduce the N/S ratio for model-simulated
OH fields.

2. The constraints brought on tropospheric OH are limited
by quality of observations and time resolution of avail-
able model outputs.

Data constraining the OH precursors come mainly from
satellite observations and reanalysis data, the uncer-
tainties of which are not considered in this study. For
example, the MERRA-2 reanalysis data significantly
overestimate H2O(g) in the upper troposphere (Jiang et
al., 2015); The QA4ECV tropospheric NO2 VCD is
lower compared with surface observations under the ex-
tremely high-pollution case compared with surface ob-
servations (Compernolle et al., 2020). The performance
of this method depends on the accuracy of observations

used to constrain individual factors. Data products reg-
ularly improve and, since the sensitivity of OH to each
precursor is estimated by the chemical box model, we
can easily improve the OH using the updated observa-
tional datasets.

The OMI measures concentrations of chemical species
around local time 13:30 LT, but most of the CCMI mod-
els only provide monthly means for 3D distribution of
chemical concentrations. The monthly mean NO2 and
O3 concentrations simulated by 3D models are there-
fore constrained only by such afternoon observations.
For O3, of which the tropospheric mean lifetime is
23.4± 2.2 d (Young et al., 2013), we assume that not
considering diurnal variations only has a small influ-
ence. This is not the case for NO2 with a much shorter
lifetime (∼ 1 d, Jaffe et al., 2003). By comparing the
tropospheric NO2 VCDs observed by SCIAMACHY
(SCanning Imaging Absorption SpectroMeter for At-
mospheric Chartography; overpass time around local
time 10:00 LT) with OMI, previous studies show that the
tropospheric NO2 VCDs have significant diurnal varia-
tions (Boersma et al., 2008, 2009). Diurnal variations of
NO2 VCDs are controlled by complex factors including
local emissions, photochemistry, deposition, advection,
etc., and vary among different seasons over different re-
gions (Boersma et al., 2008, 2009). Considering the di-
urnal cycle of NO2 photolysis, tropospheric NO2 VCDs
over remote regions should be lower during daytime
than nighttime (Cheng et al., 2019). Constraining the
model-simulated monthly mean NO2 VCDs with satel-
lite data at the overpass time leads to an overestimation
of the high bias of modeled tropospheric NO2 VCDs.
Thus, the 0.3×105 molec. cm−3 estimated in this study
gives an upper limit of the high bias in global [OH]trop-M
due to boundary layer NO2.

Since we only have the tropospheric NO2 VCDs, an-
other key factor that could influence the tropospheric
OH burden but is unconstrained in this study is NO2 in
the free troposphere. Although the NO2 mixing ratio is
usually less than 1 ppbv in the free troposphere, the sen-
sitivity of OH to NO2 can be very high in low NO2 re-
gions. However, a potential model bias due to lightning
NOx emissions, which had proven to contribute signif-
icantly to the upper-tropospheric OH burden (Murray
et al., 2013; Turner et al., 2018), is not adjusted in our
study. Satellite retrievals for upper-tropospheric NO2
(e.g., Belmonte Rivas et al., 2015; Marais et al., 2021)
could help quantify OH biases due to free tropospheric
NO2 and the contribution of lightning NOx emissions.

4.4 Future developments

The new approach proposed here to improve the
3D OH fields and chemical loss of CH4 can be applied
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broadly. It relies on observations of OH precursor concen-
trations that can be applied efficiently to any atmospheric
chemistry model with a box model (0D) available. Here, we
only apply this method to two models for 1 year (2010), and
both of them agree with MCF-based inversions in terms of
the global OH burden. One future research development is to
generate observation-based OH fields for all the atmospheric
chemistry models included in the GCP global CH4 budget
and over a longer time period, especially for the models that
simulate extremely high or low OH. This will allow us to see
whether our results can be generalized with a larger range
of OH and CH4 losses and to see if a higher consistency
can also be achieved on longer timescales. It will also be
important to assess how much uncertainty in OH means and
trends can be further reduced and achieved in detail.

The CH4 emissions from top-down approaches mostly
used a single OH field from Spivakosky et al. (2000),
which relies on climatological data without any interannual
variations. Some CH4 inversions used the OH fields from
chemistry–climate or chemistry transport models with the
known aforementioned biases that may lead to bias in the
inverted surface CH4 fluxes. Our OH product could be used
instead in CH4 inversions to better infer CH4 emissions and
reduce the uncertainties in the global methane budget. Each
modeling group could also generate their own corrected OH
for the purpose of methane atmospheric inversions. Further
work is necessary to consider the interannual changes in our
observation-based estimates.
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