Supplement of

Airborne observations of peroxy radicals during the EMeRGe campaign in Europe

Midhun George et al.

Correspondence to: Midhun George (m.george@leeds.ac.uk) and Maria Dolores Andrés Hernández (lola@iup.physik.unibremen.de)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary information

I. Reactions and rate coefficients used in the current study

The temperature dependent rate coefficients of the bimolecular reactions are calculated using the Arrhenius expression:
$k(T)=A \times e^{(-E / R T)}$
5 The low-pressure-limiting rate coefficients for termolecular reactions are given in the form:
$\mathrm{k}_{0}(\mathrm{~T})=\mathrm{k}_{0^{298}} \times(\mathrm{T} / 298)^{-\mathrm{n}} \mathrm{cm}^{6}$ molecules $^{-2} \mathrm{~s}^{-1}$
The high-pressure-limiting rate coefficients for termolecular reactions are given in the form:
$\mathrm{k}_{\infty}(\mathrm{T})=\mathrm{k}_{\infty} 298 \times(\mathrm{T} / 298)^{-\mathrm{m}} \mathrm{cm}^{3}$ molecules ${ }^{-1} \mathrm{~s}^{-1}$
The following formula calculates the effective second-order rate coefficients for a given condition of temperature and pressure (altitude) (Burkholder et al., 2019).
$10 \quad k_{f}(T,[M])=\left\{\frac{k_{\infty}(T) k_{0}(T)[M]}{k_{\infty}(T)+k_{0}(T)[M]}\right\} 0.6^{\left\{1+\left[\log _{10}\left(\frac{k_{0}(T)[M]}{k_{\infty}(T)}\right)\right]^{2}\right\}^{-1}}$
Eq. S4

Where $[\mathrm{M}]$ is the total gas concentration.
All the reaction rate constants used in this work were calculated for the ambient temperature and pressure measured on-board during the flights.
Table S1: Reactions and corresponding rate coefficients taken from Burkholder et al., 2019. The radical intermediate formed during OVCO oxidation and photolysis are assumed to be converted to $\mathrm{RO}_{2}{ }^{*}$, and the oxidation reaction or the photolysis is taken as the rate-determining step.

Number	Reaction	A-Factor	E/R	$\begin{gathered} \mathrm{k}(298 \mathrm{~K}) \\ \text { or } \\ \mathrm{k}_{\text {total }}(298 \mathrm{~K}, 1 \mathrm{~atm}) \end{gathered}$	$\begin{gathered} \mathrm{k}_{0}(\mathrm{~T})= \\ \mathrm{k}_{0^{298} \times(\mathrm{T} / 298)^{-\mathrm{n}}} \end{gathered}$		$\begin{gathered} \mathrm{k}_{\infty}(\mathrm{T})= \\ \mathrm{k}_{\infty^{298} \times(\mathrm{T} / 298)^{-\mathrm{m}}} \end{gathered}$	
					$\mathrm{k}_{0}{ }^{298}$	n	$\mathrm{k}_{\infty}{ }^{298}$	m
R1	${ }^{(a)} \mathrm{O}_{3}+\mathrm{h} \nu \rightarrow \mathrm{O}\left({ }^{\text {d }} \mathrm{D}\right)+\mathrm{O}_{2}$							
R2a	$\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}$	1.63×10^{-10}	-60	2.0×10^{-10}				

[^0]| Number | Reaction | A-Factor | E/R | $\begin{gathered} \mathrm{k}(298 \mathrm{~K}) \\ \text { or } \\ \mathrm{k}_{\text {total }}(298 \mathrm{~K}, 1 \mathrm{~atm}) \end{gathered}$ | $\begin{gathered} \mathrm{k}_{0}(\mathrm{~T})= \\ \mathrm{k}_{0^{298} \times(\mathrm{T} / 298)^{-\mathrm{n}}} \end{gathered}$ | | $\begin{gathered} \mathrm{k}_{\infty}(\mathrm{T})= \\ \mathrm{k}_{\infty^{298} \times(\mathrm{T} / 298)^{-\mathrm{m}}} \end{gathered}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | $\mathrm{k}_{0}{ }^{298}$ | n | $\mathrm{k}_{\infty}{ }^{298}$ | m |
| R2b | $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{O}_{2} \rightarrow \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{O}_{2}$ | 3.3×10^{-11} | -55 | 3.95×10^{-11} | | | | |
| R2c | $\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{N}_{2} \rightarrow \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{N}_{2}$ | 2.15×10^{-11} | -110 | 3.1×10^{-11} | | | | |
| R3 | $\mathrm{HONO}+\mathrm{h} v \rightarrow \mathrm{OH}+\mathrm{NO}$ | | | | | | | |
| R4 | $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{h} \nu \rightarrow 2 \mathrm{OH}$ | | | | | | | |
| R5 | $\mathrm{OH}+\mathrm{O}_{3} \rightarrow \mathrm{HO}_{2}+\mathrm{O}_{2}$ | 1.7×10^{-12} | 940 | 7.3×10^{-14} | | | | |
| R6 | $\mathrm{OH}+\mathrm{CO}+\mathrm{O}_{2} \xrightarrow{M} \mathrm{HO}_{2}+\mathrm{CO}_{2}$ | | | 2.4×10^{-13} | 6.9×10^{-33} | 2.1 | 1.1×10^{-12} | -1.3 |
| R7 | ${ }^{(b)} \mathrm{OH}+\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ | 2.45×10^{-12} | 1775 | 6.3×10^{-15} | | | | |
| R8 | ${ }^{(c)} \mathrm{HCHO}+\mathrm{h} v+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{HO}_{2}+\mathrm{CO}$ | | | | | | | |
| R9 | ${ }^{(d)} \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{h} \nu+2 \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{O}_{2}+\mathrm{HO}_{2}+\mathrm{CO}$ | | | | | | | |
| R10a | ${ }^{(e)} \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}+\mathrm{h} v+2 \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{O}_{2}+\mathrm{CH}_{3} \mathrm{O}_{2}$ | | | | | | | |
| R10b | $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}+\mathrm{h} v+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CH}_{3} \mathrm{O}_{2}+\mathrm{CO}$ | | | | | | | |
| R11 | $\mathrm{CHOCHO}+\mathrm{h} v+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{HO}_{2}+2 \mathrm{CO}$ | | | | | | | |
| R12a | $\mathrm{OH}+\mathrm{HCHO}+\mathrm{O}_{2} \rightarrow \mathrm{HO}_{2}+\mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$ | 5.5×10^{-12} | -125 | 8.5×10^{-12} | | | | |
| R12b | ${ }^{(f)} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{O}_{2} \xrightarrow{M} \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$ | 4.63×10^{-12} | -350 | 1.5×10^{-11} | | | | |
| R12c | ${ }^{(\mathrm{g})} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$ | | | See note | | | | |
| R12d | $\mathrm{OH}+\mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}+\mathrm{H}_{2} \mathrm{O}$ | 2.9×10^{-12} | 345 | 9.1×10^{-13} | | | | |
| R12e | $\mathrm{OH}+\mathrm{CHOCHO}+\mathrm{O}_{2} \rightarrow \mathrm{HO}_{2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{CO}$ | 1.15×10^{-11} | 0 | 1.15×10^{-11} | | | | |
| R13 | ${ }^{\text {(h) }} \mathrm{O}_{3}+\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{CH}_{2} \rightarrow$ products | 1.1×10^{-14} | 2000 | 1.3×10^{-17} | | | | |

Number	Reaction	A-Factor	E/R	$\begin{gathered} \mathrm{k}(298 \mathrm{~K}) \\ \text { or } \\ \mathrm{k}_{\text {total }}(298 \mathrm{~K}, 1 \mathrm{~atm}) \end{gathered}$	$\begin{gathered} \mathrm{k}_{0}(\mathrm{~T})= \\ \mathrm{k}_{0^{298}} \times(\mathrm{T} / 298)^{-\mathrm{n}} \end{gathered}$		$\begin{gathered} \mathrm{k}_{\infty}(\mathrm{T})= \\ \mathrm{k}_{\infty^{298}} \times(\mathrm{T} / 298)^{-\mathrm{m}} \end{gathered}$	
					$\mathrm{k}_{0}{ }^{298}$	n	$\mathrm{k}_{\infty}{ }^{298}$	m
R14	$\begin{aligned} { }^{(i)} \mathrm{HO}_{2}+\mathrm{HO}_{2} & \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \\ & \xrightarrow{M} \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \end{aligned}$	$\begin{gathered} 3.0 \times 10^{-13} \\ 2.1 \times 10^{-33}[\mathrm{M}] \end{gathered}$	$\begin{aligned} & \hline-460 \\ & -920 \end{aligned}$	$\begin{gathered} 1.4 \times 10^{-12} \\ 4.6 \times 10^{-32}[\mathrm{M}] \end{gathered}$	See note			
R15	$\mathrm{HO}_{2}+\mathrm{CH}_{3} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OOH}+\mathrm{O}_{2}$	4.1×10^{-13}	-750	5.2×10^{-12}				
R16a	${ }^{(\mathrm{j})} \mathrm{CH}_{3} \mathrm{O}_{2}+\mathrm{CH}_{3} \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCHO}+\mathrm{O}_{2}$	9.5×10^{-14}	-390	3.5×10^{-13}				
R16b	$\mathrm{CH}_{3} \mathrm{O}_{2}+\mathrm{CH}_{3} \mathrm{O}_{2} \rightarrow 2 \mathrm{CH}_{3} \mathrm{O}+\mathrm{O}_{2}$	9.5×10^{-14}	-390	3.5×10^{-13}				
R17	$\mathrm{OH}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$	4.8×10^{-11}	-250	1.1×10^{-10}				
R18a	$\mathrm{OH}+\mathrm{OH} \xrightarrow{M} \mathrm{H}_{2} \mathrm{O}_{2}$			6.3×10^{-12}	6.9×10^{-31}	1.0	2.6×10^{-11}	0
R18b	$\mathrm{OH}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}\left({ }^{3} \mathrm{P}\right)$	1.8×10^{-12}	0	1.8×10^{-12}				
R19	$\mathrm{OH}+\mathrm{NO} \xrightarrow{M} \mathrm{HONO}$			7.4×10^{-12}	7.1×10^{-31}	2.6	3.6×10^{-11}	0.1
R20	$\mathrm{OH}+\mathrm{NO}_{2} \xrightarrow{M} \mathrm{HNO}_{3}$			1.1×10^{-11}	1.8×10^{-30}	3.0	2.8×10^{-11}	0
R21	$\mathrm{OH}+\mathrm{HONO} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}$	3.0×10^{-12}	-250	6.9×10^{-12}				
R22	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{NO} \xrightarrow{M} \mathrm{CH}_{3} \mathrm{ONO}$			2.9×10^{-11}	2.3×10^{-29}	2.8	3.8×10^{-11}	0.6
R23	${ }^{(k)} \mathrm{HO}_{2}+\mathrm{NO} \rightarrow \mathrm{OH}+\mathrm{NO}_{2}$	3.44×10^{-12}	-260	8.2×10^{-12}				

\square

Number	Reaction	A-Factor	E/R	$\begin{gathered} \mathrm{k}(298 \mathrm{~K}) \\ \text { or } \\ \mathrm{k}_{\text {total }}(298 \mathrm{~K}, 1 \mathrm{~atm}) \end{gathered}$	$\begin{gathered} \mathrm{k}_{0}(\mathrm{~T})= \\ \mathrm{k}_{0^{298} \times(\mathrm{T} / 298)^{-\mathrm{n}}} \end{gathered}$		$\begin{gathered} \mathrm{k}_{\infty}(\mathrm{T})= \\ \mathrm{k}_{\infty^{298} \times(\mathrm{T} / 298)^{-\mathrm{m}}} \end{gathered}$	
					$\mathrm{k}_{0}{ }^{298}$	n	$\mathrm{k}_{\infty}{ }^{298}$	m
R24	$\mathrm{HO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{OH}+2 \mathrm{O}_{2}$	1.0×10^{-14}	490	1.9×10^{-15}				
R25	${ }^{(1)} \mathrm{CH}_{3} \mathrm{O}_{2}+\mathrm{NO} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{NO}_{2}$	2.8×10^{-12}	-300	7.7×10^{-12}				
R26	$\mathrm{CH}_{3} \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{O}+\mathrm{HO}_{2}$	3.9×10^{-14}	900	1.9×10^{-15}				

(a) The O_{3} photolysis has a second channel $\mathrm{O}_{3}+\mathrm{hv}(\lambda<320 \mathrm{~nm}) \rightarrow \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{O}_{2}$. So, only the photolysis rate for R 1 is used in the calculation
(b) Reaction OH with CH_{4} produces CH_{3} and $\mathrm{H}_{2} \mathrm{O}$. The CH_{3} formed further reacts with O_{2} to form $\mathrm{CH}_{3} \mathrm{O}_{2}$. The formation of $\mathrm{CH}_{3} \mathrm{O}_{2}$ is assumed to be much faster than the CH_{3} formation due to the high amount of O_{2} present in the atmosphere. So the reaction of OH with CH_{3} is taken as the rate-determining step for R 7 .
(c) The HCHO photolysis has a second channel, $\mathrm{HCHO}+\mathrm{hv}(\lambda<320 \mathrm{~nm}) \rightarrow \mathrm{H}_{2}+\mathrm{CO}$. So, only the photolysis rate for R 8 is used in the calculation.
(d) $\mathrm{The}^{\mathrm{CH}_{3} \mathrm{CHO}}$ photolysis has a second channel $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{hv}(\lambda<320 \mathrm{~nm}) \rightarrow \mathrm{CH}_{4}+\mathrm{CO}$. So, only the photolysis rate for R 9 is used in the calculation.
(e) To simplify the calculation, the $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{O}_{2}$ produced is treated as a $\mathrm{CH}_{3} \mathrm{O}_{2}$ molecule during the calculation.
 faster than the $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})$ formation due to the high amount of O_{2} present in the atmosphere. So the reaction of OH with $\mathrm{CH}_{3} \mathrm{CHO}$ is taken as the rate-determining step for R 12 b . To simplify the calculation, the $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})$
O_{2} produced is treated as a $\mathrm{CH}_{3} \mathrm{O}_{2}$ molecule during the calculation.
The temperature-dependent reaction rate coefficient is given by: $\mathrm{k}_{12 \mathrm{c}}(\mathrm{T})=1.33 \times 10^{-13}+3.82 \times 10^{-11} \times \mathrm{e}^{(-2000 / \mathrm{T})} \mathrm{cm}^{3} \mathrm{molecules}^{-1} \mathrm{~s}^{-1} . \mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$ formed reacts with O_{2} in a three-body reaction to form $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}_{2}$. The formation of $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}_{2}$ is assumed to be much faster than the $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2}$ formation due to the high amount of O_{2} present in the atmosphere. So the reaction of OH with $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$ is taken as the rate-determining step for R12c. To simplify the calculation, the $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{O}_{2}$ produced is treated as a $\mathrm{CH}_{3} \mathrm{O}_{2}$ molecule during the calculation.
(h) The reaction R13 shows an example of an ozonolysis reaction. To simplify the calculation, the ozonolysis reactions are not considered in this study.
(i) Reaction R 14 exhibits a dependence on $\mathrm{H}_{2} \mathrm{O}$ concentration. So the overall rate coefficient is given by the sum of the bimolecular component and a pressure-dependent termolecular component multiplied
by the $\mathrm{H}_{2} \mathrm{O}$ enhancement term. i.e.,
$\left(1.4 \times 10^{-12}+4.6 \times 10^{-32}[\mathrm{M}]\right)\left(1+1.4 \times 10^{-21}\left[\mathrm{H}_{2} \mathrm{O}\right] \exp ^{(2200 / \mathrm{T})}\right)$.
(j) The $\mathrm{CH}_{3} \mathrm{O}_{2}$ self-reaction has a second channel with relative product yield, $\frac{k_{16 b}}{k_{16 a}}=(26.2 \pm 6.6) e^{(-1130 \pm 240) / \mathrm{T}}$ (Tyndall et al., 2001).
(k) Note that the $\mathrm{HO}_{2}+\mathrm{NO}$ reaction have another channel producing HNO_{3}. The probability of this channel is less than 1% and therefore negligible.
(l) Note that the $\mathrm{CH}_{3} \mathrm{O}_{2}+\mathrm{NO}$ reaction have another channel producing $\mathrm{CH}_{3} \mathrm{ONO}_{2}$. The probability of this channel is less than 0.5% and therefore negligible.

35 II. Derivation of Eq. 5

An analytical equation to calculate $\mathrm{RO}_{2}{ }^{*}$ was derived, assuming the primary source of $\mathrm{RO}_{2}{ }^{*}$ production is precursor photolysis and the loss of $\mathrm{RO}_{2}{ }^{*}$ is only through $\mathrm{RO}_{2}{ }^{*}-\mathrm{RO}_{2}{ }^{*}$ reactions. The production of $\mathrm{RO}_{2}{ }^{*}$ from the photolysis of $\mathrm{H}_{2} \mathrm{O}_{2}$ and ozonolysis of alkenes were excluded from this study because $\mathrm{H}_{2} \mathrm{O}_{2}$ and alkenes were not measured. As a first approach, RO_{2} is assumed to consist only of $\mathrm{CH}_{3} \mathrm{O}_{2}$ to reduce the complexity of the calculations by considering only $\mathrm{CH}_{3} \mathrm{O}_{2}$ reaction rate constants.

40 Under these assumptions and based on the reactions in Table S1

- The rate of change of $\left[\mathrm{RO}_{2}{ }^{*}\right]$ is given by
$\frac{d}{d t}\left(\left[R O_{2}^{*}\right]\right)=\frac{d}{d t}\left([\mathrm{OH}]+\left[\mathrm{CH}_{3} \mathrm{O}\right]+\left[\mathrm{HO}_{2}\right]+\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]\right)$
$\begin{aligned} \frac{d}{d t}\left(\left[R O_{2}^{*}\right]\right)= & 2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]+2 j_{8}[\mathrm{HCHO}]+2 j_{11}[\mathrm{CHOCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]-2 k_{15}\left[\mathrm{HO}_{2}\right]\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]-2 k_{14}\left[\mathrm{HO}_{2}\right]^{2} \\ & -2 k_{16 a}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}\end{aligned}$
Eq. S5
Where β is the fraction of $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ reacts with $\mathrm{H}_{2} \mathrm{O}$ to form OH and is given by $\beta=\left(\frac{k_{2 a}\left[\mathrm{H}_{2} \mathrm{O}\right]}{k_{2 a}\left[\mathrm{H}_{2} \mathrm{O}\right]+k_{2 b}\left[O_{2}\right]+k_{2 c}\left[\mathrm{~N}_{2}\right]}\right)$
Now substituting $\left[\mathrm{HO}_{2}\right]=\delta\left[\mathrm{RO}_{2}{ }^{*}\right]$ and $\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]=(1-\delta)\left[\mathrm{RO}_{2}{ }^{*}\right]$ in Eq. S5

$$
\begin{aligned}
\frac{d}{d t}\left(\left[R O_{2}^{*}\right]\right)= & 2 j_{1}\left[O_{3}\right] \beta+j_{3}[\mathrm{HONO}]+2 j_{8}[\mathrm{HCHO}]+2 j_{11}[\mathrm{CHOCHO}]+2 j_{9}\left[C H_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} C(O) C H_{3}\right]-2 k_{15} \delta(1-\delta)\left[R O_{2}^{*}\right]^{2} \\
& -2 k_{16 a}\left((1-\delta)\left[R O_{2}^{*}\right]\right)^{2}-2 k_{14}\left(\delta\left[R O_{2}^{*}\right]\right)^{2}
\end{aligned}
$$

50 Under photostationary steady-state (PSS)
$\frac{d}{d t}\left(\left[R O_{2}^{*}\right]\right)=0$
$\Rightarrow 2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]+2 j_{8}[\mathrm{HCHO}]+2 j_{11}[\mathrm{CHOCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]=2 k_{15} \delta(1-\delta)\left[R O_{2}^{*}\right]^{2}+$ $2 k_{16 a}\left((1-\delta)\left[R O_{2}^{*}\right]\right)^{2}+2 k_{14}\left(\delta\left[R O_{2}^{*}\right]\right)^{2}$

Eq. S6
Eq. S6 is a quadratic equation of $\left[\mathrm{RO}_{2}{ }^{*}\right]$ without a linear term. The solution is given by
$55 \quad\left[\mathrm{RO}_{2}^{*}\right]_{\mathrm{c}}=\sqrt[2]{\mathrm{P}_{\mathrm{RO}_{2}^{*}} / 2 \mathrm{k}_{\mathrm{RO}_{2}^{*}}}$
$k_{R O_{2}^{*}}=\left(k_{15} \delta(1-\delta)+k_{16 a}(1-\delta)^{2}+k_{14} \delta^{2}\right)$
$\mathrm{P}_{\mathrm{RO}_{2}^{*}}=2 \mathrm{j}_{1}\left[\mathrm{O}_{3}\right] \beta+\mathrm{j}_{3}[\mathrm{HONO}]+2 \mathrm{j}_{8}[\mathrm{HCHO}]+2 \mathrm{j}_{11}[\mathrm{CHOCHO}]+2 \mathrm{j}_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(\mathrm{j}_{10 \mathrm{a}}+\mathrm{j}_{10 \mathrm{~b}}\right)\left[\mathrm{CH}_{3} \mathrm{C}(0) \mathrm{CH}_{3}\right]$
Since the amount of OH and RO is much smaller than that of HO_{2} and RO_{2} in the atmosphere, $\mathrm{RO}_{2}{ }^{*}$ to a good approximation is the sum of HO_{2} and RO_{2} radicals.

III. Derivation of Eq. 6 and Eq. 9

60 If the $\mathrm{RO}_{2}{ }^{*}$ effective yields from VOC oxidation by OH and radical losses through HONO and HNO_{3} formation are considered, then

- The rate of change of $[\mathrm{OH}]$ is given by
$\frac{\mathrm{d}}{\mathrm{dt}}([\mathrm{OH}])=2 \mathrm{j}_{1}\left[\mathrm{O}_{3}\right] \beta+\mathrm{j}_{3}[\mathrm{HONO}]+\mathrm{k}_{23}\left[\mathrm{HO}_{2}\right][\mathrm{NO}]+\mathrm{k}_{24}\left[\mathrm{HO}_{2}\right]\left[\mathrm{O}_{3}\right]-[\mathrm{OH}]\left(\mathrm{k}_{5}\left[\mathrm{O}_{3}\right]+\mathrm{k}_{6}[\mathrm{CO}]+\mathrm{k}_{7}\left[\mathrm{CH}_{4}\right]+\mathrm{k}_{12 \mathrm{a}}[\mathrm{HCHO}]+\mathrm{k}_{12 \mathrm{~b}}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+\right.$ $\left.\mathrm{k}_{12 \mathrm{c}}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+\mathrm{k}_{12 \mathrm{~d}}\left[\mathrm{CH}_{3} \mathrm{OH}\right]+\mathrm{k}_{12 \mathrm{e}}[\mathrm{CHOCHO}]+\mathrm{k}_{17}\left[\mathrm{HO}_{2}\right]+\mathrm{k}_{19}[\mathrm{NO}]+\mathrm{k}_{20}\left[\mathrm{NO}_{2}\right]+\mathrm{k}_{21}[\mathrm{HONO}]\right)-2\left(\mathrm{k}_{18 \mathrm{a}}+\mathrm{k}_{18 \mathrm{~b}}\right)[\mathrm{OH}]^{2}$

Under photostationary steady-state
$65 \quad \frac{d}{d t}([\mathrm{OH}])=0$
i.e.,
$2 \mathrm{j}_{1}\left[\mathrm{O}_{3}\right] \beta+\mathrm{j}_{3}[\mathrm{HONO}]+\mathrm{k}_{23}\left[\mathrm{HO}_{2}\right][\mathrm{NO}]+\mathrm{k}_{24}\left[\mathrm{HO}_{2}\right]\left[\mathrm{O}_{3}\right]=[\mathrm{OH}]\left(\mathrm{k}_{5}\left[\mathrm{O}_{3}\right]+\mathrm{k}_{6}[\mathrm{CO}]+\mathrm{k}_{7}\left[\mathrm{CH}_{4}\right]+\mathrm{k}_{12 \mathrm{a}}[\mathrm{HCHO}]+\mathrm{k}_{12 \mathrm{~b}}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+\mathrm{k}_{12 \mathrm{c}}\left[\mathrm{CH}_{3} \mathrm{C}(0) \mathrm{CH}_{3}\right]+\right.$ $\left.\mathrm{k}_{12 \mathrm{~d}}\left[\mathrm{CH}_{3} \mathrm{OH}\right]+\mathrm{k}_{12 \mathrm{e}}[\mathrm{CHOCHO}]+\mathrm{k}_{17}\left[\mathrm{HO}_{2}\right]+\mathrm{k}_{19}[\mathrm{NO}]+\mathrm{k}_{20}\left[\mathrm{NO}_{2}\right]+\mathrm{k}_{21}[\mathrm{HONO}]\right)-2\left(\mathrm{k}_{18 \mathrm{a}}+\mathrm{k}_{18 \mathrm{~b}}\right)[\mathrm{OH}]^{2}$

Since the atmospheric $[\mathrm{OH}]$ and $\left[\mathrm{HO}_{2}\right] \ll[\mathrm{NO}]$ and $\left[\mathrm{NO}_{2}\right]$, as a first approximation, the reactions $\mathrm{R} 18(\mathrm{OH}-\mathrm{OH}$ reaction) and $\mathrm{R} 17(\mathrm{OH}-\mathrm{HO} 2$ reaction $)$ are assumed to be negligible in the loss process of OH compared to the $\mathrm{OH}-\mathrm{NO}_{\mathrm{x}}$ reactions. So Eq. S9 can be modified as:
$[\mathrm{OH}]=\frac{2 \mathrm{j}_{1}\left[\mathrm{O}_{3}\right] \beta+\mathrm{j}_{3}[\mathrm{HONO}]+\mathrm{k}_{23}\left[\mathrm{HO}_{2}\right][\mathrm{NO}]+\mathrm{k}_{24}\left[\mathrm{HO}_{2}\right]\left[\mathrm{O}_{3}\right]}{\left(\mathrm{k}_{5}\left[\mathrm{O}_{3}\right]+\mathrm{k}_{6}[\mathrm{CO}]+\mathrm{k}_{7}\left[\mathrm{CH}_{4}\right]+\mathrm{k}_{12 \mathrm{a}}[\mathrm{HCHO}]+\mathrm{k}_{12 \mathrm{~b}}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+\mathrm{k}_{12 \mathrm{c}}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+\mathrm{k}_{12 \mathrm{~L}}\left[\mathrm{CH}_{3} \mathrm{OH}\right]+\mathrm{k}_{12 \mathrm{e}}[\mathrm{CHOCHO}]+\mathrm{k}_{19}\left[\mathrm{NO}^{2}\right]+\mathrm{k}_{20}\left[\mathrm{NO}_{2}\right]+\mathrm{k}_{21}[\mathrm{HONO}]\right)}$
Eq. S10

- The rate of change of $\left[\mathrm{CH}_{3} \mathrm{O}\right]$ is given by
$\frac{d}{d t}\left(\left[\mathrm{CH}_{3} \mathrm{O}\right]\right)=2 k_{16 b}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}+k_{25}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right][\mathrm{NO}]-\left[\mathrm{CH}_{3} \mathrm{O}\right]\left(k_{22}[\mathrm{NO}]+k_{26}\left[\mathrm{O}_{2}\right]\right)$
Under PSS

$75 \quad \frac{d}{d t}\left(\left[\mathrm{CH}_{3} \mathrm{O}\right]\right)=0$
$\Rightarrow\left[\mathrm{CH}_{3} \mathrm{O}\right]=\frac{2 k_{16 b}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}+\mathrm{k}_{25}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right][\mathrm{NO}]}{\left(k_{22}[\mathrm{NO}]+k_{26}\left[\mathrm{O}_{2}\right]\right)}$
Eq. S12
- The rate of change of $\left[\mathrm{HO}_{2}\right]$ is given by
$\frac{d}{d t}\left(\left[\mathrm{HO}_{2}\right]\right)=2 j_{8}[\mathrm{HCHO}]+j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2 j_{11}[\mathrm{CHOCHO}]+[\mathrm{OH}]\left(k_{5}\left[\mathrm{O}_{3}\right]+k_{6}[\mathrm{CO}]+k_{12 a}[\mathrm{HCHO}]+k_{12 d}\left[\mathrm{CH}_{3} \mathrm{OH}\right]+k_{12 e}[\mathrm{CHOCHO}]\right)+$
$k_{26}\left[\mathrm{CH}_{3} \mathrm{O}\right]\left[\mathrm{O}_{2}\right]-\left[\mathrm{HO}_{2}\right]\left(k_{15}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]+k_{17}[\mathrm{OH}]+k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{O}_{3}\right]\right)-2 k_{14}\left[\mathrm{HO}_{2}\right]^{2}$
80 Based on the assumption made for Eq. S 10 , the reaction R 17 ($\mathrm{OH}-\mathrm{HO}_{2}$ reaction) is assumed to have a negligible contribution in the HO_{2} loss process. So $\frac{d}{d t}\left(\left[\mathrm{HO}_{2}\right]\right)=2 j_{8}[\mathrm{HCHO}]+j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2 j_{11}[\mathrm{CHOCHO}]+[\mathrm{OH}]\left(k_{5}\left[\mathrm{O}_{3}\right]+k_{6}[\mathrm{CO}]+k_{12 a}[\mathrm{HCHO}]+k_{12 d}[\mathrm{CH} 3 \mathrm{OH}]+k_{12 e}[\mathrm{CHOCHO}]\right)+$ $k_{26}\left[\mathrm{CH}_{3} \mathrm{O}\right]\left[\mathrm{O}_{2}\right]-\left[\mathrm{HO}_{2}\right]\left(k_{15}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]+k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{O}_{3}\right]\right)-2 k_{14}\left[\mathrm{HO}_{2}\right]^{2}$
- The rate of change of $\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]$ is given by
$\frac{d}{d t}\left(\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]\right)=j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2 j_{11}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+[\mathrm{OH}]\left(\mathrm{k}_{7}\left[\mathrm{CH}_{4}\right]+k_{12 b}[\mathrm{CHOCHO}]+k_{12 c}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]\right)-\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]\left(k_{15}\left[\mathrm{HO}_{2}\right]+k_{25}[\mathrm{NO}]\right)-$
$2\left(k_{16 a}+k_{16 b}\right)\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}$
Eq. S14
- If $\mathrm{CH}_{3} \mathrm{O}_{2}$ is assumed as a surrogate for all RO_{2}, then the rate of change of $\left[\mathrm{RO}_{2}{ }^{*}\right]$ is given by
$\frac{d}{d t}\left(\left[R O_{2}^{*}\right]\right)=\frac{d}{d t}\left(\left[\mathrm{HO}_{2}\right]+\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]\right)$
$=2 j_{8}[\mathrm{HCHO}]+j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2 j_{11}[\mathrm{CHOCHO}]+[\mathrm{OH}]\left(k_{5}\left[\mathrm{O}_{3}\right]+k_{6}[\mathrm{CO}]+k_{12 a}[\mathrm{HCHO}]+k_{12 d}\left[\mathrm{CH}_{3} \mathrm{OH}\right]+k_{12 e}[\mathrm{CHOCHO}]\right)+k_{26}\left[\mathrm{CH}_{3} \mathrm{O}\right]\left[\mathrm{O}_{2}\right]-$
$\left[\mathrm{HO}_{2}\right]\left(k_{15}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]+k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{O}_{3}\right]\right)-2 k_{14}\left[\mathrm{HO}_{2}\right]^{2}+j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(\mathrm{j}_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+[\mathrm{OH}]\left(\mathrm{k}_{7}\left[\mathrm{CH}_{4}\right]+k_{12 b}[\mathrm{CHOCHO}]+\right.$
$\left.k_{12 c}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]\right)-\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]\left(k_{15}\left[\mathrm{HO}_{2}\right]+k_{25}[\mathrm{NO}]\right)-2\left(k_{16 a}+k_{16 b}\right)\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}$
Eq. S15
Since OH and $\mathrm{CH}_{3} \mathrm{O}$ are not measured on-board during EMeRGe, Eq. S10 and Eq. S12 are substituted in Eq. S15 and on rearranging.
$\frac{d}{d t}\left(\left[\mathrm{RO}_{2}^{*}\right]\right)=2 j_{8}[\mathrm{HCHO}]+j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2 j_{11}[\mathrm{CHOCHO}]+j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+$
$\frac{2 \mathrm{j}_{1}\left[\mathrm{O}_{3}\right] \mathrm{B+j}_{3}\left[\mathrm{HONO}^{2}\right]+\mathrm{k}_{23}\left[\mathrm{HO}_{2}\right][\mathrm{NO}]+\mathrm{k}_{24}\left[\mathrm{HO}_{2}\right]\left[\mathrm{O}_{3}\right]}{\left(\mathrm{k}_{5}\left[\mathrm{O}_{3}\right]+\mathrm{k}_{6}[\mathrm{CO}]+\mathrm{k}_{7}\left[\mathrm{CH}_{4}\right]+\mathrm{k}_{12 \mathrm{a}}[\mathrm{HCHO}]+\mathrm{k}_{12 \mathrm{~b}}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+\mathrm{k}_{12 \mathrm{C}}\left[\mathrm{CH}_{3} \mathrm{C}(0) \mathrm{CH}_{3}\right]+\mathrm{k}_{12 \mathrm{~d}}\left[\mathrm{CH}_{3} \mathrm{OH}\right]+\mathrm{k}_{12}[\mathrm{CHOCHO}]+\mathrm{k}_{19}[\mathrm{NO}]+\mathrm{k}_{20}\left[\mathrm{NO}_{2}\right]+\mathrm{k}_{21}[\mathrm{HONO}]\right)}\left(k_{5}\left[\mathrm{O}_{3}\right]+k_{6}[\mathrm{CO}]+k_{7}\left[\mathrm{CH}_{4}\right]+\right.$
$\left.k_{12 a}[\mathrm{HCHO}]+k_{12 b}[\mathrm{CHOCHO}]+k_{12 \mathrm{C}}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+k_{12 d}\left[\mathrm{CH}_{3} \mathrm{OH}\right]+k_{12 e}[\mathrm{CHOCHO}]\right)+k_{26} \frac{2 k_{166}\left[\mathrm{CH}_{3} \mathrm{O}^{2}\right]^{2}+k_{25}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right][\mathrm{NO}]}{\left(k_{22}[\mathrm{NO}]+k_{26}\left[\mathrm{O}_{2}\right]\right)}\left[\mathrm{O}_{2}\right]-$
$\left[\mathrm{HO}_{2}\right]\left(k_{15}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]+k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{O}_{3}\right]\right)-2 k_{14}\left[\mathrm{HO}_{2}\right]^{2}-\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]\left(k_{15}\left[\mathrm{HO}_{2}\right]+k_{25}[\mathrm{NO}]\right)-2\left(k_{16 a}+k_{16 b}\right)\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}$
Eq. S16
\qquad

Now substituting
$(1-\rho)=\frac{\left(k_{5}\left[\mathrm{O}_{3}\right]+k_{6}[\mathrm{CO}]+\mathrm{k}_{7}\left[\mathrm{CH}_{4}\right]+k_{122}[\mathrm{HCHO}]+\mathrm{k}_{12 \mathrm{~L}}[\mathrm{CHOCHO}]+k_{12 c}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+k_{12 d}[\mathrm{CH} \mathrm{OH}]+k_{12 e}[\mathrm{CHOCHO}]\right)}{\left(\mathrm{k}_{5}\left[\mathrm{O}_{3}\right]+\mathrm{k}_{6}[\mathrm{CO}]+\mathrm{k}_{7}\left[\mathrm{CH}_{4}\right]+\mathrm{k}_{12 \mathrm{a}}[\mathrm{HCHO}]+\mathrm{k}_{12 \mathrm{~b}}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+\mathrm{k}_{12 \mathrm{c}}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+\mathrm{k}_{12 \mathrm{~d}}\left[\mathrm{CH}_{3} \mathrm{OH}\right]+\mathrm{k}_{122}[\mathrm{CHOCHO}]+\mathrm{k}_{19}\left[\mathrm{NOO}^{2}\right]+\mathrm{k}_{20}\left[\mathrm{NO}_{2}\right]+\mathrm{k}_{21}[\mathrm{HONO}]\right)}$ in Eq. S16 gives

$$
\frac{d}{d t}\left(\left[R O_{2}^{*}\right]\right)=2 j_{8}[\mathrm{HCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2 j_{11}[\mathrm{CHOCHO}]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+\left(2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]+k_{23}\left[\mathrm{HO} \mathrm{H}_{2}\right][\mathrm{NO}]+\right.
$$

$$
\left.k_{24}\left[\mathrm{HO}_{2}\right]\left[\mathrm{O}_{3}\right]\right)(1-\rho)+k_{26} \frac{2 k_{16 b}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}+k_{25}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right][\mathrm{NO}]}{\left(k_{22}[\mathrm{NO}]+k_{26}\left[\mathrm{O}_{2}\right]\right)}\left[\mathrm{O}_{2}\right]-\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]\left(k_{15}\left[\mathrm{HO}_{2}\right]+k_{25}[\mathrm{NO}]\right)-2\left(k_{16 a}+k_{16 b}\right)\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}-\left[\mathrm{HO}_{2}\right]\left(k_{15}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]+\right.
$$

$$
\left.100 k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{O}_{3}\right]\right)-2 k_{14}\left[\mathrm{HO}_{2}\right]^{2}
$$

Where ρ accounts for the effective yield of $\mathrm{HONO}, \mathrm{HNO}_{3}$ and $\mathrm{H}_{2} \mathrm{O}$ through reactions R 19 to R 21 and the $\mathrm{HO}_{2}+\mathrm{NO}^{2}$ and $\mathrm{HO}_{2}+\mathrm{O}_{3}$ reactions (R 23 and R 24 respectively)

On rearranging

$$
\begin{aligned}
\frac{d}{d t}\left(\left[R O_{2}^{*}\right]\right)= & \left(2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]\right)(1-\rho)+2 j_{8}[\mathrm{HCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+2 j_{11}[\mathrm{CHOCHO}] \\
& +\left[\mathrm{HO}_{2}\right]\left(k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{O}_{3}\right]\right)(1-\rho)+k_{26} \frac{2 k_{16 b}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}+k_{25}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right][\mathrm{NO}]}{\left(k_{22}[\mathrm{NO}]+k_{26}\left[\mathrm{O}_{2}\right]\right)}\left[\mathrm{O}_{2}\right]-\left[\mathrm{HO}_{2}\right]\left(k_{23}\left[\mathrm{NO}^{2}\right]+k_{24}\left[\mathrm{O}_{3}\right]\right)-k_{15}\left[\mathrm{HO}_{2}\right]\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right] \\
& -k_{15}\left[\mathrm{HO}_{2}\right]\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]-\left(2 k_{16 b}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}+k_{25}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right][\mathrm{NO}]\right)-2 k_{16 a}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}-2 k_{14}\left[\mathrm{HO}_{2}\right]^{2}
\end{aligned}
$$

Combining common terms indicated by the same colours gives

$$
\begin{aligned}
& \frac{d}{d t}\left(\left[R O_{2}^{*}\right]\right)=\left(2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]\right)(1-\rho)+2 j_{8}[\mathrm{HCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+2 j_{11}[\mathrm{CHOCHO}]- \\
& {\left[\mathrm{HO}_{2}\right]\left(k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{O}_{3}\right]\right) \rho-\left(2 k_{16 b}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}+k_{25}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right][\mathrm{NO}]\right)\left(\frac{k_{22}[\mathrm{NO}]}{\left(k_{22}[\mathrm{NO}]+k_{26}\left[\mathrm{O}_{2}\right]\right)}\right)-2 k_{15}\left[\mathrm{HO}_{2}\right]\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]-2 k_{16 a}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}-2 k_{14}\left[\mathrm{HO}_{2}\right]^{2}}
\end{aligned}
$$

110 Since the rate of R_{22} in the atmosphere compared to that of R_{26} is negligible, i.e. $\left(\frac{k_{22}[\mathrm{NO}]}{\left(k_{22}[\mathrm{NO}]+k_{26}\left[\mathrm{O}_{2}\right]\right)}\right) \approx 0$. Applying this gives

$$
\begin{aligned}
& \frac{d}{d t}\left(\left[R O_{2}^{*}\right]\right)=\left(2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]\right)(1-\rho)+2 j_{8}[\mathrm{HCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+2 j_{11}[\mathrm{CHOCHO}]- \\
& {\left[\mathrm{HO}_{2}\right]\left(k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{O}_{3}\right]\right) \rho-2 k_{15}\left[\mathrm{HO}_{2}\right]\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]-2 k_{16 a}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}-2 k_{14}\left[\mathrm{HO}_{2}\right]^{2}}
\end{aligned}
$$

Eq. S18
Under steady-state

$$
\begin{array}{ll}
& \frac{d}{d t}\left(\left[\mathrm{RO}_{2}^{*}\right]\right)=0 \\
& 115 \quad \\
\Rightarrow\left(2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]\right)(1-\rho)+2 j_{8}[\mathrm{HCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH} \mathrm{H}_{3}\right]+2 j_{11}[\mathrm{CHOCHO}]=\left[\mathrm{HO}_{2}\right]\left(k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{KO}_{3}\right]\right) \rho+ \\
2 k_{15}\left[\mathrm{HO}_{2}\right]\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]+2 k_{16 a}\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]^{2}+2 k_{14}\left[\mathrm{HO}_{2}\right]^{2} & \mathrm{Eq.} \text { S19 }
\end{array}
$$

Now substituting $\left[\mathrm{HO}_{2}\right]=\delta\left[\mathrm{RO}_{2}{ }^{*}\right]$ and $\left[\mathrm{CH}_{3} \mathrm{O}_{2}\right]=(1-\delta)\left[\mathrm{RO}_{2}{ }^{*}\right]$ in Eq. S19
$\left(2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]\right)(1-\rho)+2 j_{8}[\mathrm{HCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+2 j_{11}[\mathrm{CHOCHO}]=\delta\left[R O_{2}^{*}\right]\left(k_{23}[\mathrm{NO}]+k_{24}\left[\mathrm{O}_{3}\right]\right) \rho+$
$2 k_{15} \delta(1-\delta)\left[R O_{2}^{*}\right]^{2}+2 k_{16 a}\left((1-\delta)\left[R O_{2}^{*}\right]\right)^{2}+2 k_{14}\left(\delta\left[R O_{2}^{*}\right]\right)^{2}$

Eq. S 20 is a quadratic equation of $\left[\mathrm{RO}_{2}{ }^{*}\right]$. The solution is given by
$\left[R O_{2}^{*}\right]=\frac{-\left(-L_{R O_{2}^{*}}\right)-\sqrt[2]{L_{R O_{2}^{*}}^{2}-4\left(-2 k_{R O_{2}^{*}}\right) P_{R O_{2 g}^{*}}}}{2\left(-2 k_{R O_{2}^{*}}\right)}$
Eq. S21

Where
$k_{R O_{2}^{*}}=\left(k_{16 a}(1-\delta)^{2}+k_{15} \delta(1-\delta)+k_{14} \delta^{2}\right)$
$L_{R O_{2}^{*}}=\left(\delta\left(k_{23}[N O]+k_{24}\left[O_{3}\right]\right) \rho\right)$
$P_{R O_{2 g}^{*}}=\left(2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]\right)(1-\rho)+2 j_{8}[\mathrm{HCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right]+2\left(j_{10 a}+j_{10 b}\right)\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+2 j_{11}[\mathrm{CHOCHO}]$
where $\mathrm{k}_{\mathrm{RO}_{2}^{*}}$ is a weighed rate coefficient of $\mathrm{RO}_{2}{ }^{*}$ self reactions for a $1: 1$ mixture of HO_{2} and $\mathrm{CH}_{3} \mathrm{O}_{2}, \mathrm{LRO}^{*}$ comprises the formation of HONO and HNO_{3} and $\mathrm{P}_{\mathrm{RO}}{ }_{2 \mathrm{~g}}^{*}$ is the gross production of $\mathrm{RO}_{2}{ }^{*}$.

- Special case I

When $\mathrm{k}_{19}[\mathrm{NO}]+\mathrm{k}_{20}\left[\mathrm{NO}_{2}\right]+\mathrm{k}_{21}[\mathrm{HONO}] \ll k_{5}\left[\mathrm{O}_{3}\right]+k_{6}[\mathrm{CO}]+k_{7}\left[\mathrm{CH}_{4}\right]+k_{12 a}[\mathrm{HCHO}]+k_{12 b}[\mathrm{CHOCHO}]+k_{12 c}\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]+$

$$
\left(2 j_{1}\left[\mathrm{O}_{3}\right] \beta+j_{3}[\mathrm{HONO}]\right)+2 j_{8}[\mathrm{HCHO}]+2 j_{9}\left[\mathrm{CH}_{3} \mathrm{CHO}\right.
$$

IV. Figure S1: Ambient $\left[\mathrm{H}_{2} \mathrm{O}\right]$ versus $\left[\mathrm{H}_{2} \mathrm{O}\right]$ in the DUALER inlet during EMeRGe in Europe

Figure S1 shows the humidity measured in the DUALER during the EMeRGe campaign in Europe. As the pressure in the DUALER inlet is lower than the ambient, $\left[\mathrm{H}_{2} \mathrm{O}\right]_{\text {inlet }}<\left[\mathrm{H}_{2} \mathrm{O}\right]_{\text {ambient }}$. However, the humidity is still significant and affects the eCL in the DUALER. Therefore, the eCL was corrected using the equation eCL ${ }_{\text {wet }}=$ $e L_{\text {dry }} \times \mathrm{A}^{\left(\left[\mathrm{H}_{2} \mathrm{O}\right] \times 10^{-16}\right)}$ obtained from the laboratory characterisation of the eCL water dependence, where $\mathrm{A}=0.973$ for the NO number concentration added to the DUALER inlet during EMeRGe campaign in Europe (George, 2022, PhD thesis).

The $\left[\mathrm{H}_{2} \mathrm{O}\right]$ in the inlet was lower than 1×10^{17} molecules cm^{-3} for 60% of measurements during EMeRGe in Europe, for which the $\mathrm{eCL}_{\text {wet }}=76 \%$ of eCL dry. At the highest humidity observed during the campaign, i.e., $\left[\mathrm{H}_{2} \mathrm{O}\right]_{\text {inlet }}=2 \times 10^{17}$ molecules cm^{-3}, the $\mathrm{eCL}_{\text {wet }}$ is 55% of $\mathrm{eCL}_{\text {dry }}$.

Figure S 1 : Ambient $\left[\mathrm{H}_{2} \mathrm{O}\right]$ versus $\left[\mathrm{H}_{2} \mathrm{O}\right]$ measured in the DUALER inlet during the EMeRGe campaign in Europe, colour-coded with altitude.
\qquad

V.Figure S2: vertical profiles of $\mathbf{P}_{\mathbf{R O}}^{\mathbf{*}}$

145 Figure S2: Composite average vertical profiles of $\mathrm{P}_{\mathrm{RO}_{2}^{*}}$. The measurements are binned over 500 m altitude. The error bars are the $\pm 1 \sigma$ standard deviation of each bin. Median values (red triangles) and the number of individual measurements, n, for each bin (in green) are additionally plotted.

The measurements below 2000 m were carried out in the outflow of MPCs, which are expected to contain significant amounts of $\mathrm{RO}_{2}{ }^{*}$ precursors. As a result, the highest production rate is observed below 2000 m for the data considered in this study. As mentioned in Section 4.2 , a decrease in $\mathrm{P}_{\mathrm{RO}}^{2}$ with altitude is observed, as a consequence to the decrease in $\mathrm{H}_{2} \mathrm{O}$ and other radical precursor concentrations with altitude.
\qquad 11

Figure $\mathrm{S} 3: \mathrm{P}_{\mathrm{RO}_{2}^{*}}$ as a function of latitude and altitude for the EMeRGe measurements in Europe.
The $P_{R O_{2}^{*}}$ latitudinal distribution shows higher production rates south of $47^{\circ} \mathrm{N}$ likely due to the higher insolation conditions during the measurement flights over southern Europe.
\qquad
VII. Figure S4: $\mathrm{RO}_{2}{ }^{*}{ }_{\mathrm{m}}$ and $\mathrm{RO}_{2}{ }^{*}{ }_{\mathrm{c}}$ mixing ratios during EMeRGe in Europe as a function of latitude and altitude

Figure S4: Latitudinal and altitudinal distribution of a) $\mathrm{RO}_{2}{ }_{\mathrm{m}}{ }^{\text {and }}$ b) $\mathrm{RO}_{2}{ }^{*}{ }_{\mathrm{c}}$ mixing ratios calculated using Eq. 9 for $\delta=0.5$.
VIII.Figure S5: $\mathbf{R O}_{2}{ }_{\mathrm{m}}{ }^{\mathbf{w}}$ versus $\mathrm{RO}_{2}{ }^{\mathbf{*}}{ }_{\mathrm{c}}$ for $\boldsymbol{\delta}=\mathbf{0 . 5}$

Figure $\mathrm{S} 5: \mathrm{RO}_{2}{ }_{\mathrm{m}}{ }^{*}$ versus $\mathrm{RO}_{2}{ }^{*}$ c calculated using Eq. 9 for $\delta=0.5$. The data points are colour-coded for a) photolysis frequency of O_{3}; b) altitude. The 1-minute (small circles), the mean of the binned $\mathrm{RO}_{2}{ }^{*}{ }_{\mathrm{m}}$ over $10 \mathrm{pptv} \mathrm{RO}_{2}{ }^{*} \mathrm{c}$ intervals (large circles), and the median of each bin (grey triangles) are shown. The error bars indicate the standard error of each bin. The linear regression for the binned values (solid line) and the $1: 1$ relation (dashed line) are also depicted for reference.

IX.Figure S6: flight track of E-EU-03 11 July 2017 along the western coast of Italy

Figure S6: Map of the flight track of E-EU-03 11 July 2017 along the western coast of Italy over the Tyrrhenian Sea colour-coded with $\mathrm{RO}_{2}{ }^{*}$ measurements.

[^0]: $\sqrt{1}$

