
Atmos. Chem. Phys., 23, 725–741, 2023
https://doi.org/10.5194/acp-23-725-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

How adequately are elevated moist layers represented in
reanalysis and satellite observations?

Marc Prange1,2, Stefan A. Buehler1, and Manfred Brath1

1Meteorologisches Institut, Universität Hamburg, Bundesstraße 55, 20146 Hamburg, Germany
2International Max Planck Research School on Earth System Modelling (IMPRS-ESM),

Bundesstraße 53, 20146 Hamburg, Germany

Correspondence: Marc Prange (marc.prange@uni-hamburg.de)

Received: 4 August 2022 – Discussion started: 25 August 2022
Revised: 13 November 2022 – Accepted: 16 November 2022 – Published: 17 January 2023

Abstract. We assess the representation of elevated moist layers (EMLs) in ERA5 reanalysis, the Infrared At-
mospheric Sounding Interferometer (IASI) L2 retrieval Climate Data Record (CDR) and the Atmospheric In-
frared Sounder (AIRS)-based Community Long-term Infrared Microwave Combined Atmospheric Product Sys-
tem (CLIMCAPS)-Aqua L2 retrieval. EMLs are free-tropospheric moisture anomalies that typically occur in the
vicinity of deep convection in the tropics. EMLs significantly affect the spatial structure of radiative heating,
which is considered a key driver for meso-scale dynamics, in particular convective aggregation. To our knowl-
edge, the representation of EMLs in the mentioned data products has not been explicitly studied – a gap we
start to address in this work. We assess the different datasets’ capability of capturing EMLs by collocating them
with 2146 radiosondes launched from Manus Island within the western Pacific warm pool, a region where EMLs
occur particularly often. We identify and characterise moisture anomalies in the collocated datasets in terms of
moisture anomaly strength, vertical thickness and altitude. By comparing the distributions of these character-
istics, we deduce what specific EML characteristics the datasets are capturing well and what they are missing.
Distributions of ERA5 moisture anomaly characteristics match those of the radiosonde dataset quite well, and
remaining biases can be removed by applying a 1 km moving average to the radiosonde profiles. We conclude
that ERA5 is a suitable reference dataset for investigating EMLs. We find that the IASI L2 CDR is subject to
stronger smoothing than ERA5, with moisture anomalies being on average 13 % weaker and 28 % thicker than
collocated ERA5 anomalies. The CLIMCAPS L2 product shows significant biases in its mean vertical humid-
ity structure compared to the other investigated datasets. These biases manifest as an underestimation of mean
moist layer height of about 1.3 km compared to the three other datasets that yields a general mid-tropospheric
moist bias and an upper-tropospheric dry bias. Aside from these biases, the CLIMCAPS L2 product shows a
similar, if not better, capability of capturing EMLs compared to the IASI L2 CDR. More nuanced evaluations
of CLIMCAPS’ capabilities may be possible once the underlying cause for the identified biases has been found
and fixed. Biases found in the all-sky scenes do not change significantly when limiting the analysis to clear-sky
scenes. We calculate radiatively driven vertical velocities ωrad derived from longwave heating rates to estimate
the dynamical effect of the moist layers. Moist-layer-associated ωrad values derived from Global Climate Ob-
serving System Reference Upper-Air Network (GRUAN) soundings range between 2 and 3 hPa h−1, while mean
meso-scale pressure velocities from the EUREC4A (Elucidating the Role of Clouds-Circulation Coupling in Cli-
mate) field campaign range between 1 and 2 hPa h−1, highlighting the dynamical significance of EMLs. Subtle
differences in the representation of moisture and temperature structures in ERA5 and the satellite datasets create
large relative errors in ωrad on the order of 40 % to 80 % with reference to GRUAN, indicating limited usefulness
of these datasets to assess the dynamical impact of EMLs.
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1 Introduction

The vertical structure of water vapour in the troposphere is
a key driver for meso-scale processes, such as the develop-
ment and maintenance of convective systems. In particular,
it determines the vertical structure of radiative heating due
to water vapour’s strong ability to absorb and emit infrared
(IR) radiation. The spatial structure of radiative heating in the
vicinity of convection is capable of driving circulations that
contribute to the maintenance of the convection (Muller and
Bony, 2015; Wing et al., 2017; Schulz and Stevens, 2018;
Muller et al., 2022). Hence, understanding the vertical struc-
ture of water vapour is key for our understanding of convec-
tive aggregation, which remains a large contributor of uncer-
tainty to climate projections (Bony et al., 2015).

A common meso-scale phenomenon affecting the verti-
cal humidity structure in the tropics is elevated moist lay-
ers (EMLs) in the lower troposphere to mid-troposphere,
which frequently occur either in the vicinity of deep con-
vection or in association with extratropical dry air intru-
sions (Villiger et al., 2022). EMLs can extend horizontally
over several hundred kilometres and have lifetimes of about
a day (Stevens et al., 2017; Johnson et al., 1996). In the
convection-dominated regions near the Intertropical Conver-
gence Zone (ITCZ), especially over the western Pacific warm
pool, EMLs are particularly common and manifest as a sec-
ondary maximum of relative humidity (RH) in the climato-
logical profile near the melting level at around 5 km altitude
(Romps, 2014).

It is important to capture EMLs in observational and re-
analysis datasets, which serve as reference for modelling
studies (Lang et al., 2021; Eyring et al., 2016; Teixeira et al.,
2014; Ferraro et al., 2015; Brands et al., 2013; Jiang et al.,
2012). In particular, Lang et al. (2021) highlight the impor-
tance of reducing uncertainties in clear-sky mid-tropospheric
humidity in global storm-resolving models that yield signif-
icant differences in the models’ radiation budgets. Hence,
having suitable global and long-term satellite and reanalysis
datasets to assess such model differences is of great value.

In a case study, Stevens et al. (2017) found strong limita-
tions of passive satellite-based humidity retrievals to resolve
an EML, suggesting a somewhat fundamental EML blind
spot for such observations. This is particularly surprising for
the advanced hyperspectral IR instruments such as AIRS (At-
mospheric Infrared Sounder) or IASI (Infrared Atmospheric
Sounding Interferometer), which offer rich vertical informa-
tion content about temperature and water vapour. In our re-
cent study (Prange et al., 2021), we found a physical explana-
tion for the apparent EML blind spot, suggesting that the lim-
ited temperature information available with the particular re-
trieval setup deployed by Stevens et al. (2017) is responsible
for the inability to resolve the EML with IASI. In the same
article, we showed that EMLs do not pose an inherent blind

spot for hyperspectral IR retrievals based on simulated obser-
vations. In this work we follow up on our previous analysis
with an evaluation of EMLs in operational hyperspectral IR
retrieval products based on the IASI and AIRS instruments.
With hyperspectral IR observations being a significant data
contribution to reanalysis products (Cardinali, 2009; Dahoui
et al., 2017, e.g.), we also assess EMLs in ERA5 (ECMWF
Reanalysis v5). To our knowledge, EMLs have not been ex-
plicitly studied based on any of these data products. We start
addressing this gap in this study by conducting an assessment
of the one-dimensional vertical structure of EMLs based on
reference data from the western Pacific warm pool region.

The western Pacific warm pool region is particularly suited
to study EMLs because of the frequent occurrence of deep
convection. Hence, as reference dataset we use the GRUAN
(Global Climate Observing System Reference Upper-Air
Network) radiosondes launched on Manus Island from 2011
to 2014. We collocate the datasets within 50 km in space and
30 min in time to make the data directly comparable. We first
assess the mean profiles of humidity, temperature and static
stability to quantify the mean atmospheric state in the study
region for the different datasets. We then apply the mois-
ture anomaly identification and characterisation method of
Prange et al. (2021) to statistically quantify the EMLs of the
collocated datasets. This method allows for a dedicated com-
parison of EML characteristics such as EML strength, thick-
ness and height. It also enables a direct quantification of the
moisture anomalies’ effect on the radiative heating rate, the
spatial structure of which is a key driver for the meso-scale
dynamics of the atmosphere. We do this quantification by
calculating moist-layer-associated radiatively driven vertical
velocities, which we compare to meso-scale measurements
of pressure velocities from the EUREC4A (Elucidating the
Role of Clouds-Circulation Coupling in Climate) field cam-
paign (Stevens et al., 2021).

2 Data

We investigate the vertical moisture characteristics of
GRUAN radiosonde data, ERA5 reanalysis and of two satel-
lite retrieval products based on the IASI and AIRS instru-
ments. We chose two retrieval datasets that have the scope
of being useful for climate applications by applying long-
term consistent algorithms. In contrast, operational retrieval
algorithms meant for the near-real-time production of geo-
physical fields, such as IASI L2 or NUCAPS (NOAA Unique
Combined Atmospheric Processing System), do not have the
scope of being a consistent CDR (EUMETSAT, 2017; Berndt
et al., 2020). In the following, we highlight the most impor-
tant properties of these datasets for the context of this work.
This includes brief descriptions of the datasets’ spatial and
temporal sampling characteristics, a brief summary of their
underlying algorithms and our own processing steps. Fig-
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ure 1 provides a spatial overview of the research region and
the typical sampling over 1 d. Note that one processing step
we apply to all datasets, except GRUAN, is to filter out data
points over land to assure homogeneous surface conditions.

2.1 GRUAN radiosondes

The GRUAN (Global Climate Observing System Reference
Upper-Air Network) measurement programme consists of
a network of about 30 quality-controlled radiosonde mea-
surement sites around the world to detect trends in essen-
tial climate variables such as temperature and humidity (Sei-
del et al., 2009; Dirksen et al., 2014). Here we pick out
the GRUAN site on Manus Island, where radiosondes were
launched from January 2011 to July 2014, run by the Atmo-
spheric Radiation Measurement programme (Ackerman and
Stokes, 2003). This is a particularly suited reference dataset
for the scope of our work for two reasons. Firstly, Manus Is-
land is located at about 2◦ S in the western Pacific warm pool,
a region where EMLs are expected to occur frequently due
to their link to deep convective events. Secondly, the stan-
dard radiosonde launch times at 00:00 and 12:00 UTC with a
local time shift of UTC+10 h turn out to coincide well with
IASI overpasses at the fixed Equator crossing time (ECT) of
the Metop satellites at around 09:30 local time.

The GRUAN sounding data used in this work are ob-
tained from the RS92-GDP.2 data archive. Uncertainty es-
timates are 6 % for relative humidity (RH) and between 0.15
and 0.6 K for temperature depending on daytime and alti-
tude (Dirksen et al., 2014). When binning the launch times
of the full sounding dataset into hourly intervals, about 60 %
of the soundings occur around the 00:00 and 12:00 UTC
launch times. A significant anomaly in radiosonde launch
times occurred from 24 September 2011 to 31 March 2012
with launches every 3 h as part of the DYNAMO campaign
(Yoneyama et al., 2013).

As a first step of preparing the GRUAN sounding data
for our processing, relative humidity values are transformed
from being defined with respect to the saturation vapour pres-
sure above water (GRUAN standard) to a mixed phase ap-
proach as described by ECMWF (2018). We then linearly
interpolate the sounding dataset to a fixed altitude grid rang-
ing from 0 m at the surface to 15 km altitude at 10 m inter-
vals. In the event of missing values in the original data, we
interpolate over intervals of up to 100 m and leave the miss-
ing values for larger intervals. We then deduce H2O volume
mixing ratios (VMRs) from RH, temperature and pressure.

2.2 ERA5

We use the ECMWF Reanalysis v5 (ERA5) high-resolution
atmospheric data on a 31 km spaced horizontal grid, on 137
vertical levels and in hourly intervals. Detailed descriptions
of spatial and temporal discretisation of ERA5 are provided

in the overview paper and in the IFS (version Cy41r2) docu-
mentation (Hersbach et al., 2020; ECMWF, 2016).

We use a total of 21 ERA5 pixels around Manus Island as
depicted in Fig. 1. The data are originally stored on a T639
spectral grid or a reduced Gaussian grid depending on the
variable. We transform the grids of all variables to a 0.25◦

evenly spaced latitude–longitude grid using bilinear interpo-
lation. We deduce H2O VMR as our main humidity quan-
tity from the specific humidity that is originally provided in
ERA5. We deduce altitudes for each ERA5 profile by assum-
ing a hydrostatic atmosphere and using the fixed pressure
grid and the temperature profiles as input.

2.3 IASI L2 Climate Data Record

The IASI Level 2 retrieval dataset used in this work is called
the “IASI All Sky Temperature and Humidity Profiles – Cli-
mate Data Record Release 1.1 – Metop-A and -B” and is
provided by EUMETSAT (2022). We use only data from
Metop-A. We refer to this dataset as the IASI L2 CDR in
the frame of this study. The dataset is aimed to be a consis-
tently reprocessed long-term dataset based on the most recent
version of the statistical piecewise linear regression (PWLR)
EUMETSAT retrieval algorithm. Data of the near-real-time
operational IASI L2 retrieval are subject to significant jumps
over the years due to algorithm updates (EUMETSAT, 2017).
Since the algorithm of the period between 2011 to 2014 is
not representative of today’s standard, we use the reprocessed
IASI L2 CDR.

Details about the IASI L2 CDR are provided in the product
user guide (EUMETSAT, 2022). Here we summarise some
of its main properties. The retrieval algorithm makes use
of IASI spectra and radiances observed by the microwave
sounders AMSU-A (Advanced Microwave Sounding Unit-
A) and MHS (Microwave Humidity Sounder) aboard the
same satellite to also retrieve information about atmospheric
temperature and humidity in the presence of clouds. The re-
trieval is conducted on the native pixel resolution of IASI
with a pixel diameter of about 12 km at nadir. Only AMSU-
A information is available on 2× 2 arrays of IASI pixels. To
train the PWLR retrieval algorithm, global sensing data of 4 d
of each month of the years 2015 and 2016 are matched with
ERA5 temperature, humidity and ozone profiles on 137 ver-
tical levels. Cloudy scenes are included in the training step of
the algorithm to allow for the retrieval of atmospheric quan-
tities in all-sky scenes. The retrieval is conducted on 137 at-
mospheric levels and an additional surface level. All-sky re-
trievals are conducted for atmospheric temperature and spe-
cific humidity profiles as well as for surface temperature and
total column water vapour. A cloud fraction estimate is also
provided based on AVHRR (Advanced Very High Resolu-
tion Radiometer) data that are integrated over the retrieval’s
field of view. The dataset also comes with uncertainty es-
timates for temperature and humidity profile retrievals that
reflect the mean uncertainty of the surface level and the mid-

https://doi.org/10.5194/acp-23-725-2023 Atmos. Chem. Phys., 23, 725–741, 2023



728 M. Prange et al.: Moist layers in satellite retrievals and ERA5

Figure 1. Maps show the geographical location of Manus Island and spatial sampling over 1 d (28 March 2012) of the four investigated
datasets. The satellite data are split into ascending and descending node data. Radiosonde pathways are shown as lines. Their mean position
is indicated by grey crosses that are used as collocation locations. The transparent grey circle visually indicates the collocation radius of
50 km.

troposphere (EUMETSAT, 2022). These uncertainties are
provided in units of kelvin in temperature and dew point tem-
perature. As recommended in the user guide, we filter cases
considered highly defective with uncertainties > 4 K. This
filtering only removes about 1 % of data. We want to high-
light that we repeated our analysis based on more strict filter-
ing criteria with uncertainties < 1 K but found no significant
changes to our results.

The only variable we add in our own processing is the
height associated with the retrieval’s vertical levels. For this
purpose we assume a hydrostatic atmosphere and use profiles
of pressure and temperature as input.

2.4 CLIMCAPS-Aqua L2 product

The Community Long-term Infrared Microwave Combined
Atmospheric Product System (CLIMCAPS)-Aqua Level 2
product is based on AIRS spectra and AMSU-A radiances.
The processing uses a sophisticated stepwise optimal estima-
tion procedure following the formalism of Rodgers (2000)
of various atmospheric quantities such as temperature, mois-
ture, cloud heights and fractions, and concentrations of trace
gas species O3, CO, CH4, CO2, HNO3 and SO2. The retrieval
is conducted on about 50 km spatial pixels at nadir (150 km at
scan edge). One pixel is referred to as field of regard (FOR)
and is made up of 9 (3×3) AIRS field of views (FOVs). The
retrieval procedure and a characterisation of retrieval errors
are described by Smith and Barnet (2019). In an evaluation of
the CLIMCAPS observing capability, it is found that CLIM-
CAPS has sensitivity to multiple narrow tropospheric layers
in temperature and humidity – a promising premise for our
study (Smith and Barnet, 2020).

We limit our use of available CLIMCAPS variables to the
retrieved surface temperature, temperature and humidity pro-
files, the total cloud fraction, the geopotential height, and the
respective quality control flags and error estimates. Tempera-
ture profiles are provided on 100 fixed vertical pressure levels

from the surface to the top of atmosphere, and specific hu-
midity profiles are provided on 66 levels from the surface to
about 50 hPa. Since surface pressure is not a retrieval quan-
tity and instead MERRA2 (Modern-Era Retrospective anal-
ysis for Research and Applications, Version 2) surface pres-
sures are used as input to the retrieval, we calculate surface
values of humidity following the boundary layer adjustment
procedure that is described in the CLIMCAPS science appli-
cation guide (Smith et al., 2021). Surface values of humidity
are important for our method of analysing moisture anomaly
characteristics that is described in Sect. 4.

The quality control flags are provided for each variable on
all vertical levels. They subdivide the retrieval into “best”,
“good” and “rejected” quality. We filter cases where the spe-
cific humidity quality control flag of the level closest to
MERRA2 surface pressure is labelled “rejected” and cases
with more than 10 “rejected” vertical levels in humidity be-
tween 900 and 100 hPa. These criteria are quite stringent as
they filter about 90 % of the data. However, we do not aim
to analyse data that are already flagged as being of deficient
quality.

A significant difference between the IASI L2 product and
the CLIMCAPS product lies in the estimation of the total
cloud fraction and the way cloudy scenes are handled. While
for the IASI L2 product cloud fraction is estimated based on
an independent instrument (AVHRR), CLIMCAPS estimates
cloud fraction based on a subset of cloud-sensitive AIRS
channels. CLIMCAPS does so for each AIRS FOV and pro-
vides a derived FOR-integrated total cloud fraction, i.e. over
3×3 FOVs. To retrieve atmospheric quantities in cloudy con-
ditions, the CLIMCAPS and IASI retrieval products deploy
conceptually different methods. While the IASI product at-
tempts retrieval through the cloud on the native IASI pixel
size of 12 km, CLIMCAPS deploys a cloud-clearing tech-
nique where information from the 3× 3 AIRS FOV spec-
tra are combined to represent the atmospheric state around
the clouds throughout the total retrieval FOR. For the IASI
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L2 CDR, a retrieval through the cloud can only be achieved
through the water vapour and temperature information avail-
able from the microwave sounders since IR sounders do not
yield information through clouds. We specifically compare
the retrievals’ capabilities to resolve vertical moisture struc-
tures in all-sky and clear-sky conditions in Sect. 5.1 and 5.2.

2.5 Collocation procedure

We collocate the datasets pairwise in space and time to seek
high direct comparability of the investigated scenes. This is
done using a collocation toolkit that is freely available as
part of the “typhon” collection of Python functions for at-
mospheric science (https://www.radiativetransfer.org/tools/,
last access: 3 January 2023). We want to highlight that di-
rect comparability of the datasets is inherently limited due
to different horizontal resolutions of the datasets in the pres-
ence of inhomogeneous atmospheric fields. By still compar-
ing the datasets’ vertical humidity structures directly, we im-
plicitly assume that differences in the datasets’ effective ver-
tical resolution are significantly higher than the averaging ef-
fect of different horizontal resolutions on the vertical mois-
ture structure. We would argue that, if for any of the com-
pared datasets, this assumption may break for some cases of
point source GRUAN radiosonde comparisons to ERA5 or
IASI/AIRS retrievals. However, as shown in Sect. 5.1, we
find ERA5 to match EML characteristics of GRUAN quite
well, indicating that horizontal resolution mismatches are not
the significant error source in the conducted comparisons.

We conduct the collocation for four dataset pairs, namely
ERA5/GRUAN, IASI/GRUAN, IASI/ERA5 and CLIMCAP-
S/ERA5. With GRUAN being the gold standard reference
dataset, we use it as reference where sufficient collocations
are available. The standard launch times at 00:00 UTC and
12:00 UTC in conjunction with a local time difference on
Manus Island of UTC+10 h yield launches at local times of
about 10:00 and 22:00, matching up well with the IASI Equa-
tor crossing time of about 09:30 and 21:30. Unfortunately
for the AIRS-based CLIMCAPS retrieval, there is a system-
atic offset of about 4 h in GRUAN radiosonde launch time
and the Equator crossing time of the Aqua satellite at around
01:30 and 13:30. We decide to choose rather conservative
collocation criteria of 50 km and 30 min. The temporal cri-
terion of 30 min is chosen due to the expected 30 min offset
of IASI overpasses and regular radiosonde launches. In addi-
tion, 30 min assures temporal collocation with ERA5, which
has hourly sampling. These collocation criteria still yield a
high number of matches between IASI, GRUAN and ERA5
while disabling matches between CLIMCAPS and GRUAN.
Although previous case studies of EMLs suggest EML life-
times of about a day (e.g. Stevens et al., 2017; Villiger et al.,
2022), we prefer to use quite strict collocation criteria since
atmospheric variability over the course of hours can still be
significant (Buehler et al., 2012). In addition, while retaining
tight collocation criteria, we find that an evaluation of CLIM-

CAPS retrievals is still possible with respect to ERA5, which
we find to represent EMLs reasonably well when compared
to GRUAN (see Sect. 5.1).

For collocation pairs where the secondary dataset has
higher spatial resolution than our spatial collocation radius
of 50 km, several pixels of the secondary dataset can match
with one pixel of the reference dataset. This is frequently the
case for all collocation pairs because the lowest-resolution
dataset CLIMCAPS has a 50 km pixel diameter while the
collocation diameter is 100 km. In these cases, we randomly
select one of the matching pixels. In cases where the spatial
resolution of the reference dataset is higher than our spatial
collocation radius, it can occur that the same data points of
the collocated secondary dataset collocate with several data
points in the reference dataset. This is the case for the col-
locations with reference to ERA5. We reject cases where the
same data point of the secondary dataset would be used more
than once to assure that all collocations are truly independent
data pairs.

Applying the described collocation criteria and the
dataset-specific filtering criteria described above, we ob-
tain 1921 ERA5/GRUAN collocations, 648 IASI/GRUAN
collocations, 37 491 IASI/ERA5 collocations and 2500
AIRS/ERA5 collocations. The strong discrepancy in the
number of collocations has several reasons. First, matches
with ERA5 within our collocation criteria are available for
all data points of the other datasets, yielding a high number
of collocations for every dataset with reference to ERA5. The
reason for the number of IASI/ERA5 and AIRS/ERA5 collo-
cations deviating significantly lies in the different reduction
of data points in IASI and AIRS retrievals when applying the
quality criteria described in Sects. 2.3 and 2.4.

3 Climatological mean

To get a first overview of the vertical structure of humidity
and temperature in the vicinity of Manus Island and possi-
ble biases between the different datasets, we take a look at
the mean profiles over the 4 years of available data. Figure 2
shows (a) water vapour volume mixing ratio (H2O VMR),
(b) relative humidity (RH), (c) the deviation of potential tem-
perature (2) from a moist adiabat and (d) the static stability
calculated as

s =−
T

2

d2

dp
. (1)

Static stability describes the ability of an air mass at rest
to become vertically laminar or turbulent due to effects of
buoyancy. It is mainly controlled by the vertical gradient of
temperature, where an increase with height corresponds to a
stable stratification while a decrease with height corresponds
to an unstable stratification. We use it here as a measure to
better assess differences in temperature stratification of the
data products, in particular near the melting level. In addi-
tion, static stability is used in Sect. 6 to transform radiative
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heating rate to vertical velocities, assuming a constant verti-
cal temperature structure.

Since all datasets can be collocated with ERA5 data, we
base the analysis of the mean profiles on the collocation
datasets with reference to ERA5 to assure good comparabil-
ity. This leaves us with three different subsets of ERA5 data
that collocate with the other respective data products. We in-
vestigated how the mean profiles of ERA5 vary among these
subsets and find the variation to not be significant compared
to differences between the data products (not shown). Hence,
for the ERA5 mean profiles depicted in Fig. 2, we choose
the collocations with reference to IASI since they contain the
most cases.

The mean vertical humidity structure depicted in Fig. 2a
and b shows the typical moist conditions throughout the tro-
posphere that are expected in a deep convective region. RH
values rarely drop below 70 % in any of the datasets. A tri-
modal vertical RH structure is apparent in all datasets with
maxima near the surface, in the mid-troposphere and near
the tropopause. This vertical structure is in line with previous
studies of the vertical distribution of humidity, clouds and de-
trainment in the ITCZ region (Johnson et al., 1996, 1999;
Mapes and Zuidema, 1996; Posselt et al., 2008; Romps,
2014). Here, we target the mid-tropospheric humidity struc-
ture as the primary research object, where the presence of an
RH maximum highlights the climatological significance of
EMLs in our research region.

Comparing the mean RH profiles of the different datasets,
the particularly good agreement of ERA5 and IASI sticks
out. Since the IASI L2 retrieval is trained based on ERA5
data, it is not surprising that the means of the two datasets
are so similar. The additional good agreement with GRUAN
shows that the datasets are not only self-consistent but also
close to reference data. However, good agreement in the
mean is not indicative of the datasets’ capability to resolve
vertical moisture variability, which we investigate separately
in Sect. 5.1.

AIRS on the other side shows significant biases in RH
against the other three datasets. The mid-tropospheric peak in
RH is shifted towards a significantly lower altitude while the
lower RH peak of the boundary layer is shifted a bit upwards.
This yields a moist bias of AIRS between about 600 and
800 hPa. We view the vertical shift of the mid-tropospheric
RH maximum to most likely not be caused by resolution-
induced errors, with vertical resolution being estimated be-
tween 1 and 4 km for CLIMCAPS (Smith and Barnet, 2020).
While for individual profiles limited vertical resolution may
yield some error in the height of moisture features, we do
not see how resolution-induced errors would yield a consis-
tent downward shift of the mid-tropospheric RH maximum
of more than 1 km that is evident in the mean profile. If at all,
we would expect an upward shift in the mid-tropospheric RH
maximum associated with this effect because vertical resolu-
tion is typically better in higher altitudes, which may cause a
shift in a moisture anomaly’s centre of mass upwards where

there is less smoothing. As a possible reason to explain the
altitude shifts in humidity features, we investigated whether
mean humidity profiles are different when we deduce them
from the original retrieval quantities, namely the column den-
sity fields that are provided on 100 pressure layers. When
manually transforming this variable to specific and relative
humidity, we found no difference to the specific and relative
humidity variables in CLIMCAPS that are provided on 66
pressure levels. Hence, we can exclude this transformation
as a possible cause for the identified biases, suggesting that
the biases arise within the retrieval process.

In the upper troposphere, we identify a dry bias within
CLIMCAPS. Taking the plots of H2O VMR (Fig. 2a) and
2 (Fig. 2b) into consideration, the mid-tropospheric bias in
RH can be attributed to both a positive bias in humidity and
a negative bias in temperature. The upper-tropospheric dry
bias in RH is mostly caused by a bias in humidity since 2

shows no clear bias against the other three datasets in the up-
per troposphere. AIRS also shows some unphysical RH and
2 variability in the upper troposphere. This is particularly
apparent in static stability since vertical gradients associated
with this variability are strong between vertical levels. We
suggest that this variability may be caused by a numerical
artefact that is described in the CLIMCAPS science appli-
cation guide (Smith et al., 2021). There, the authors find an
unphysical zigzag pattern in the temperature profile retrieval
error that increases in magnitude with height, and they at-
tribute this pattern to their employed data compression meth-
ods.

We highlight differences in the vertical structure of po-
tential temperature 2 between the datasets by subtracting a
moist adiabat (Fig. 2c). We adopt this methodology of com-
paring the tropical vertical temperature structure across dif-
ferent datasets from Keil et al. (2021), who applied this to
CMIP6 data, ERA5 and long-term tropical radiosonde data.
It offers an interesting view since the moist adiabat estimates
the thermal structure in the tropics set by moist convection
quite well. As a difference to Keil et al. (2021), we sub-
tract the same moist adiabat from all datasets and initiate it
at the 800 hPa level of the GRUAN mean 2 profile instead
of 700 hPa. This allows for a better assessment of biases be-
tween the datasets and a comparison at lower levels at the
cost of losing some ability to assess the profiles’ resemblance
of a moist adiabat, which is fine for our purpose.

We find similar vertical structures in 2-2moist as Keil et al.
(2021) in their radiosonde and ERA5 results with negative
deviations throughout the free troposphere and strongly in-
creasing positive deviations towards the tropopause. We also
reproduce the vertical bias structure between ERA5 and ra-
diosonde data of Keil et al. (2021) with almost no bias up
to 550 hPa and then an increase to an almost constant 0.6 K
bias up to the tropopause. Taking a look at the static stabil-
ity profiles (Fig. 2d) of ERA5 and GRUAN, we see that they
are in good agreement, except for a distinct increase in sta-
bility of ERA5 around 550 hPa, which is not present in the
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Figure 2. Mean profiles of (a) H2O volume mixing ratio (VMR), (b) relative humidity (RH), (c) deviation of potential temperature (2) from
moist adiabat (2moist) based on mean 2 at 700 hPa of GRUAN data and (d) the static stability s in the vicinity of Manus Island based on the
four investigated datasets. Only collocated data with ERA5 are used. For the ERA5 profiles, collocated data with IASI are used.

radiosonde data and causes the bias in 2 of the two datasets
aloft. The stability bump found in ERA5 at this level appears
plausible due to diabatic cooling associated with melting of
ice particles at this level. As outlined in Sect. 1, previous
studies showed that preferred detrainment of moist air from
deep convection due to increased stability near the melting
level is what causes the mid-tropospheric humidity peak be-
neath the stable layer (Johnson et al., 1996; Stevens et al.,
2017; Villiger et al., 2022). Hence, it is surprising to find the
stable layer at 550 hPa less pronounced in GRUAN than in
the ERA5 data. The IASI L2 retrieval shows a slightly in-
creased stability around 550 hPa compared to the radiosonde
data but not as strong of a bump as ERA5. On the other
side, the AIRS CLIMCAPS retrieval shows a significant sta-
bility increase at around 650 hPa, which coincides with the
lower mid-tropospheric RH maximum compared to the other
datasets.

4 Moisture anomaly identification and
characterisation

To assess vertical humidity structures in different datasets,
comparing their mean profiles only gives limited informa-
tion. Positive and negative anomalies can average out, and
sharp gradients are smoothed. Hence, we assess the rep-
resentation of elevated moist layers (EMLs) by identifying
them in each dataset and characterising them on a case-
by-case basis. We do so through metrics that describe the
moist layer strength, vertical thickness and height. Quanti-
fying these properties of vertical moisture structures in the
different datasets before applying averaging operators yields
more targeted information about vertical moisture variability
than averaging directly.

Figure 3a shows an example of a radiosonde humidity
profile and the identified moisture anomalies marked by the

blue shading. The anomalies are identified and characterised
through the method introduced by Prange et al. (2021). The
method relies on fitting a second-order polynomial refer-
ence profile (dashed red line) against the logarithmic H2O
VMR and identifying layers of positive moisture anomaly.
These moisture anomalies are characterised by their thick-
ness, height and strength, defined as the vertical integral over
the anomalous H2O VMR divided by the layer thickness. The
formal definitions of these moisture anomaly characteristics
are given by Prange et al. (2021). We only consider moisture
anomalies that do not intersect with the 900 and 100 hPa lev-
els and that have a minimum pressure thickness of 50 hPa.
This way we constrain our analysis to the free troposphere
and make the method less susceptible to small-scale varia-
tions that are particularly present in the radiosonde data. Our
method identifies two moist layers in the example humidity
profile depicted in Fig. 3a (blue shading).

Besides the moisture characteristics described above, we
also link the moist layers to their impact on the radiative
heating rate (Fig. 3b), where local maxima in cooling are
found at the positions of the moist layers. We calculate
longwave radiative heating rates with the radiative transfer
model RRTMG (Rapid Radiative Transfer Model for GCMs,
Mlawer et al., 1997) through its implementation in the radia-
tive convective equilibrium model konrad (Kluft and Dacie,
2020). The strong cooling of the moist layers can be trans-
lated into locally increased subsidence rates, which we quan-
tify through the radiatively driven vertical velocity

ωrad =−
Q

s
, (2)

where s is the static stability defined in Eq. (1). Since s stands
in the denominator of ωrad and fluctuates strongly on small
vertical scales about values near zero, ωrad also fluctuates
strongly. To distill out the radiatively driven dynamical ef-
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Figure 3. GRUAN sounding from 15 February 2012 at 12:00 UTC of (a) H2O volume mixing ratio (VMR), (b) longwave heating rate,
(c) static stability and (d) radiatively driven vertical velocity. The dashed red line in panel (a) is the reference humidity profile against which
moisture anomalies are identified, which are highlighted by blue shaded regions. Thin grey lines in panels (b), (c) and (d) indicate raw data
and thick lines 500 m moving averages.

fects in Fig. 3 on the vertical scale of the moist layers, we ap-
ply an evenly weighted 500 m moving average to s and Q and
calculate ωrad based on the smoothed profiles. This way, local
maxima are clearly visible in ωrad in the identified moist lay-
ers. It is also apparent that the static stability within the moist
layer is a key contributing factor for the magnitude of subsi-
dence. Although the upper-tropospheric moist layer is associ-
ated with weaker radiative cooling than the mid-tropospheric
one, the lower stability in the upper-tropospheric moist layer
results in a stronger subsidence rate.

By calculating moist-layer-associated heating rates, static
stabilities and ωrad, we estimate the dynamical effect of moist
layers in the different datasets and characterise possible dif-
ferences in Sect. 6.

5 Comparison of moisture anomaly characteristics

We compare the distributions of moisture anomaly character-
istics for the four collocation pairs. To start off, the compari-
son is based on all-sky scenes. In a next step, we distinguish
clear-sky from cloudy cases to assess whether cloudiness af-
fects the datasets’ capability of capturing moisture anoma-
lies. This is of particular interest for the satellite retrieval
datasets, which employ different cloud handling schemes as
described in Sect. 2.

5.1 All sky

The moisture anomaly identification and characterisation
method introduced in Sect. 4 is applied to the humidity pro-
files of the four collocation datasets. Figure 4 shows the re-
sulting distributions of moisture anomaly characteristics for
the four collocation pairs. In the following, we discuss what
these results tell us about the different datasets’ ability to cap-
ture EMLs. We start off with ERA5, then go to IASI and fi-
nally to AIRS.

As a first indicator of a dataset’s ability to capture mois-
ture anomalies, we compare the number of detected moisture
anomalies to the reference dataset, i.e. the areas under the
distributions depicted in Fig. 4. ERA5 captures about 99 %
as many anomalies as collocated GRUAN data, indicating a
good amount of vertical water vapour variability in ERA5
(Fig. 4, first row). Moisture anomalies in ERA5 are about
50 % weaker and 28 % thicker than moisture anomalies in
the collocated GRUAN dataset. Moist layers that are less
than 2 km in thickness are particularly underrepresented by
ERA5, while moist layers with thickness > 3 km occur more
often. These biases suggest that ERA5 is subject to some de-
gree of smoothing due to limited vertical resolution, which
we quantify in the following.

To investigate to what extent smoothing alone can explain
the biases between the moisture anomaly characteristics of
ERA5 and GRUAN, we apply a running mean with vertical
window size of 1 km and constant weighting to the GRUAN
profiles. The resulting distributions are shown as thick lines
in the first row of Fig. 4. They show that biases in all three
moisture anomaly characteristics can mostly be eliminated
through the artificial smoothing. This indicates an effective
vertical resolution of the ERA5 humidity profiles in the free
troposphere of about 1 km. We conclude that ERA5 captures
vertical humidity structures on scales of 1 km and greater
well as no systematic deviations from the GRUAN distribu-
tions are apparent. Hence, we argue that ERA5 is a suitable
reference for assessing the satellite retrieval datasets.

We assess the IASI L2 CDR by comparing it to GRUAN
data (Fig. 4, row 2) and ERA5 data (Fig. 4, row 3). The IASI
L2 CDR captures about 75 % as many moisture anomalies as
in collocated GRUAN data and about 79 % as many mois-
ture anomalies as in collocated ERA5 data. This is a first
indicator that the IASI L2 CDR captures less vertical water
vapour variability than ERA5. In addition, the maximum in
moisture anomaly thickness at around 2 km altitude detected
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Figure 4. Distributions of moist layer characteristics (columns) for the four collocation datasets (rows). Moist layer characteristics are
defined by Prange et al. (2021). The thin grey lines refer GRUAN profiles on 10 m vertical resolution, while the thick grey lines represent
GRUAN profiles with an applied running mean with a 1 km evenly weighed vertical window.

in both GRUAN and ERA5 data is missing in the IASI L2
CDR. Instead, the anomaly thickness distribution is shifted
towards significantly higher values with differences in the
means of 85 % against GRUAN and 28 % against ERA5.
Moisture anomalies are also significantly weaker in the IASI
L2 CDR, with mean differences of 53 % and 10 % against
GRUAN and ERA5 data, respectively. At this point we want
to highlight the added value of assessing the vertical mois-
ture structures of a dataset through moisture characteristics
opposed to just comparing the mean profiles (Fig. 2). While
we find a strikingly good agreement of the IASI, ERA5 and
GRUAN humidity profiles on the mean, quite significant bi-
ases become apparent when applying the moist layer charac-
terisation method and then taking a statistical look at how the
resulting metrics compare.

As for ERA5, we investigate whether the found biases
in anomaly strength and thickness against GRUAN can be
explained by smoothing. We apply a 1 km moving average
to the GRUAN profiles collocated with the IASI L2 CDR
and obtain the moisture anomaly distributions represented by
the thick lines (Fig. 4, row 2). While the biases in anomaly
strength and height against the IASI dataset are significantly
reduced, a strong bias remains in the anomaly thickness. We
also attempted to adapt the smoothing window width to dif-
ferent values between 1 and 5 km but do not find the anomaly
thickness distribution to approach the one of the IASI dataset
much more (not shown). Hence, the bias in anomaly thick-
ness originates from some other source of error in the IASI
dataset than smoothing. We come back to this in the next
subsection when concentrating on the clear sky.
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Figure 5. Cloud fraction distributions of the two collocation datasets (a) IASI/ERA5 and (b) AIRS/ERA5 after applying a cloud fraction
threshold of 0.2 based on the IASI and AIRS cloud fraction estimates.

To assess the AIRS CLIMCAPS retrieval, we rely only
on ERA5 as a reference as outlined in Sect. 2.5. The AIRS
CLIMCAPS retrieval captures about 92 % as many mois-
ture anomalies as collocated ERA5 data, which is signifi-
cantly more than the IASI L2 CDR. Moisture anomalies in
the AIRS CLIMCAPS retrieval are on average 26 % stronger
and 5 % less thick than those in collocated ERA5 data. Also,
moist layers in the AIRS CLIMCAPS retrieval are typically
found significantly lower in the troposphere compared to the
three other datasets; in particular, there are many more moist
layer cases below 5 km compared to ERA5. The mean moist
layer height is about 1.3 km lower in the AIRS CLIMCAPS
retrieval compared to ERA5. We already saw this bias in
terms of a shift of the mid-tropospheric humidity peak to-
wards lower altitudes when comparing the dataset mean pro-
files in Fig. 2. Moisture anomaly strength is a somewhat
height-dependent quantity with generally stronger anomalies
in the lower troposphere than further up (Prange et al., 2021).
Hence, the increased strength of moist layers in the AIRS
CLIMCAPS retrieval is to some degree also caused by a
bias in moisture anomaly height. Nonetheless, the number of
moisture anomalies in the AIRS CLIMCAPS retrieval speaks
towards a good capability of the dataset to capture vertical
moisture variability – more so than the IASI L2 CDR.

These findings are coherent with the notion of previ-
ous case studies that optimal-estimation-based retrievals are
more capable of capturing vertical moisture structures than
regression-based retrievals (Smith et al., 2012; Weisz et al.,
2013; Smith and Weisz, 2018; Zhou et al., 2009; Calbet et al.,
2006; Chazette et al., 2014; Prange et al., 2021). A plausi-
ble explanation for the superiority of the optimal-estimation-
based AIRS CLIMCAPS retrieval is that capturing EMLs is
not sufficiently emphasised in the training of the regression-
based IASI retrieval. The AIRS CLIMCAPS retrieval is con-
strained by a priori assumptions about mean and variability
of the atmospheric state, but if the optimal estimation setup is

tweaked well, deviations from the mean state can be captured
well with this method.

5.2 Clear sky

The satellite retrieval products do operate in the presence
of clouds, but information content is limited with increased
cloudiness and cloud depth, in particular from the infrared in-
struments. Hence, we are interested in whether our analysis
of moisture anomaly characteristics yields different results
when limited to clear-sky scenes compared to the previously
investigated all-sky scenes. Possible differences could then
potentially be linked to the different cloud handling schemes
deployed by the retrieval products (Sect. 2).

The AIRS CLIMCAPS and IASI L2 retrievals come with
an estimate of total cloud fraction for each retrieval pixel,
which are obtained based on quite different methods as out-
lined in Sect. 2. ERA5 also provides a total cloud frac-
tion variable, which we show in addition but do not base
our further analysis on since it appears quite biased against
the satellite-derived cloud fractions. As suggested in the
CLIMCAPS science application guide, we use a cloud frac-
tion threshold of 0.2 to distinguish clear-sky from cloudy
scenes (Smith et al., 2021). For the two collocation datasets
IASI/ERA5 and AIRS/ERA5, this leaves about 22 % of the
all-sky amount of data. For the IASI/GRUAN comparison,
sampling becomes too limited, which is why we limit this
analysis to the satellite collocations with ERA5.

Figure 5 shows the resulting cloud fraction distributions of
the two collocation datasets. It is striking that when limiting
satellite-based cloud fractions to 0.2, ERA5 cloud fraction
estimates show maxima near cloud fractions of 1. Without
any applied thresholds, both satellite datasets also have their
global maxima near cloud fractions of 1 (not shown). How-
ever, the secondary maximum near 0 found in both satellite
datasets is not at all present in ERA5. Compared to CLIM-
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Figure 6. Same as Fig. 4 but with cloud fraction < 0.2 in AIRS and IASI datasets. Collocations with reference to GRUAN are omitted due
to limited clear-sky sampling. Vertical dashes indicate the means.

CAPS, we would have expected a stronger bimodality be-
tween high and low cloud fractions in ERA5 due to the higher
spatial resolution of ERA5 of 31 km compared to about
50 km in the nadir view of the CLIMCAPS product. How-
ever, since cloud fraction requires subgrid-scale knowledge,
it is difficult to define this variable in a model framework.
Hence, finding significant differences to satellite-derived es-
timates is not completely surprising.

Figure 6 shows the resulting moisture anomaly charac-
teristics after application of the clear-sky filter. All datasets
consistently show an increase in mean anomaly strength of
about 20 % compared to the all-sky results. Note that our
method for quantifying anomaly strength is designed to cap-
ture the magnitude of vertical moisture variability rather than
absolute amount of humidity, which would be highest in the
event of clouds (Prange et al., 2021). The found increase in
anomaly strength in the clear sky is in line with our expecta-
tions because in cloudy conditions vertical humidity variabil-
ity is limited by the saturation humidity, leading to weaker
moisture anomalies.

We also see a significant change in the shape of the
anomaly height distributions when comparing clear sky to
all sky. IASI and ERA5 both show a clear bimodal struc-
ture in anomaly height in the clear sky, which was not the
case in the all-sky data. Physically, we explain the posi-
tion of the maxima near 5 and 12 km by levels of preferred
detrainment of moist air from mid-level or deep convec-
tive plumes into the clear-sky environment (Johnson et al.,
1999; Romps, 2014). The mid-level detrainment is thought
to be driven by enhanced stability near the melting level,
and the upper-tropospheric detrainment is associated with in-
creased stability towards the tropopause as the atmosphere

goes into pure radiative equilibrium aloft. We hypothesise
that the mid-tropospheric peak is more pronounced than the
upper-tropospheric peak in ERA5 and IASI anomaly height
distributions because both deep (cumulonimbus) and mid-
level (cumulus congestus) convection causes mid-level de-
trainment, while only deep convection causes upper level de-
trainment. AIRS also shows peaks in anomaly height near 5
and 12 km and another peak in between at around 7 km that
we can not link to a physical mechanism in this height. How-
ever, when interpreting the detailed shape of the distributions
to this extent, we advice caution due to the limited number
of AIRS/ERA5 collocations, which is only about 10 % of the
number of IASI/ERA5 collocations.

We do not find significant changes in biases between satel-
lite retrievals and ERA5 in anomaly strength or thickness
when limiting our data to clear sky. While we do see changes
in the means of the distributions as described above, biases
remain similar. Although biases do not change much, we see
that the all-sky secondary maximum at large anomaly thick-
ness values of IASI, which is not present in ERA5 (Fig. 4),
vanishes in the clear sky, indicating better vertical resolution.
However, going to clear sky does not reduce the gap between
satellite retrievals and ERA5 at anomaly thickness values be-
low 3 km. We conclude that the retrievals’ observing capabil-
ity of moist layers is not significantly limited by clouds.

6 Moist layers’ radiative implications on the
dynamics

In this section we want to translate the datasets’ varying ca-
pabilities to resolve EMLs found in Sect. 5.1 into estimates
of the moist layers’ effect on meso-scale dynamics. EMLs
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Figure 7. Distributions of moist-layer-associated longwave heating rate, static stability (s) and radiatively driven vertical velocity ωrad
for the different collocation datasets. The averaging measure for heating rate is the median. s is calculated based on moist layer median
temperature, potential temperature and potential temperature gradient. ωrad is calculated by division of moist-layer-associated heating rate
and static stability. Vertical dashes indicate means.

are thought to impact the meso-scale dynamics of the atmo-
sphere through their effect on the spatial structure of radiative
heating (Stevens et al., 2017). We attempt to draw a direct
connection between EMLs and dynamics by translating their
effect on the heating rates into radiatively driven vertical ve-
locities ωrad, for which to a first order the static stability is
another contributing factor (Sect. 4).

Figure 7 shows distributions of moist-layer-associated
longwave heating rates, static stabilities (s) and radiatively
driven vertical velocities (Eq. 2). The same moist layers iden-
tified as basis for Fig. 4 are used here, and the three additional
quantities are calculated for each moist layer. This is done by
calculating the vertical median heating rate across each iden-
tified moist layer (Fig. 7, column 1). To calculate the moist
layer averaged static stability s according to Eq. (1), moist

layer median temperatures, potential temperatures and po-
tential temperature gradients are used (Fig. 7, column 2). The
resulting moist-layer-associated heating rates and static sta-
bilities are used to calculate the moist-layer-associated ωrad
(Fig. 7, column 3).

The typical tropical free-tropospheric heating rate is on the
order of−2 K d−1 (Jeevanjee and Fueglistaler, 2020). Moist-
layer-associated heating rates depicted in the first column of
Fig. 7 show their peak at more negative values of around
−3 K d−1 because of the locally enhanced infrared opacity of
the moist layers that cause increased infrared absorption and
cooling to space. However, a saddle point in the distributions
is found at −2 K d−1, which is associated with particularly
weak moisture anomalies that barely increase opacity. The
fact that most heating rates are found at values lower than
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−2 K d−1 shows that our method does in fact filter for the
moisture features we are interested in.

We expect biases in moist-layer-associated heating rates
between the collocated datasets to reflect biases in moist
layer strength and thickness; i.e. stronger and thinner moist
layers go along with more pronounced cooling. We find this
to generally be the case as GRUAN shows the strongest
moist-layer-associated cooling, followed by only a slight bias
to ERA5 and slightly more cooling in the IASI L2 retrieval
than in the AIRS CLIMCAPS retrieval. Differences in heat-
ing rate distributions between ERA5 and GRUAN are small,
indicating that the found biases in moisture anomaly strength
and thickness that could mostly be eliminated by applying
1 km vertical smoothing to the radiosonde data are not very
significant for the moist-layer-associated heating rates. How-
ever, we also find a 19 % difference in the means of static
stability between ERA5 and GRUAN that adds to the slightly
enhanced cooling in GRUAN to result in a 38 % difference in
ωrad means between the two datasets. Static stability values
also showed to be increased in ERA5 compared to GRUAN
in the comparison of the 4-year mean profiles in Fig. 2.

For the IASI/GRUAN comparison, similar biases are
found as for ERA5. The ERA5/IASI comparison reveals that
slightly stronger cooling rates found in ERA5 are balanced
by slightly increased static stabilities in ERA5 yielding only
a 0.7 % difference in ωrad means between ERA5 and IASI.

Stronger biases are found between ERA5 and AIRS.
Moist-layer-associated cooling is weakest in the AIRS
dataset among all investigated datasets. In addition, AIRS
shows significantly enhanced stability with a 44 % mean
difference against ERA5, while ERA5 already showed en-
hanced stability compared to GRUAN. The moist-layer-
associated weaker cooling and enhanced stability in AIRS
yield a 43 % mean difference in ωrad against ERA5 and an
about 80 % mean difference to the GRUAN mean ωrad ob-
tained from collocations with ERA5 and IASI.

To put the found values of ωrad and associated biases be-
tween the datasets into some perspective, we compare our
results to measurements of meso-scale vertical pressure ve-
locities ω obtained from dropsonde measurements of the
EUREC4A field campaign. During EUREC4A, the HALO
aircraft flew 69 circles of about 200 km diameter, launch-
ing 12 dropsondes per circle (Konow et al., 2021; George
et al., 2021). Using the method of Bony and Stevens (2019),
circle-integrated profiles of divergence allow for a deduction
of ω, some first EUREC4A averaged results of which are pre-
sented by Stevens et al. (2021). The campaign mean ranges
between values of 1 and 2 hPa h−1 throughout the free tro-
posphere, while individual circles show maximum variations
between−5 and 10 hPa h−1. The moist-layer-associated ωrad
values we find based on GRUAN with values between 1.5
and 4 hPa h−1 are generally higher than the mean meso-scale
ω measurements. We conclude that EMLs show a significant
radiative impact on meso-scale dynamics when compared to
meso-scale measurements of ω. With biases of moist-layer-

associated ωrad in ERA5, IASI and AIRS data ranging from
38 % to 80 % compared to GRUAN and ωrad means being
on a similar order as meso-scale ω measurements, we con-
clude that these datasets have limited usability to assess the
dynamical impact of EMLs.

7 Conclusions

We assessed ERA5 reanalysis data, the IASI Level 2 Cli-
mate Data Record (CDR) and the CLIMCAPS-Aqua Level
2 retrieval product in terms of their ability to capture vertical
moisture structures, in particular EMLs. As reference, we use
2146 radiosonde soundings from Manus Island of the years
2011 to 2014 that are part of the quality-controlled GRUAN
network. We compared mean profiles of temperature, hu-
midity, and static stability and then identified and charac-
terised collocated moist layers using the method of Prange
et al. (2021) as basis and assessed the moist layers’ impact
on the dynamics in terms of radiative heating and radiatively
driven vertical velocities. In the following, we draw conclu-
sions about our main question – that is, how adequately are
EMLs represented in the different data products?

1. The 4-year mean profiles show a clear mid-tropospheric
maximum in relative humidity in all data products that
is associated with EMLs. It is similarly pronounced in
ERA5, IASI and GRUAN. Only the AIRS CLIMCAPS
retrieval shows significant humidity biases against the
other data products. The mid-tropospheric humidity
peak is not located near the melting level as in the
other datasets but about 100 hPa lower, causing a signif-
icant moist bias in the lower to middle free troposphere.
A peak in mid-tropospheric static stability is also lo-
cated about 100 hPa lower than in ERA5. In the upper
troposphere between about 400 and 100 hPa the AIRS
CLIMCAPS retrieval shows a dry bias against the other
datasets.

2. The number of identified moist layers based on the
method described in Sect. 4 is almost equal between
collocated ERA5 and GRUAN data, indicating a good
amount of vertical water vapour variability in ERA5.
Moist layers in ERA5 are about 50 % weaker and 28 %
thicker than moist layers in GRUAN data. These biases
can be completely negated by applying a 1 km mov-
ing average to GRUAN profiles, indicating 1 km effec-
tive vertical resolution of ERA5 humidity profiles. The
AIRS retrieval shows about 92 % as many moist lay-
ers as ERA5 and the IASI retrieval only about 79 %,
indicating slightly enhanced vertical moisture variabil-
ity in the AIRS retrieval compared to IASI. In addi-
tion, the IASI retrieval shows about 53 % weaker and
85 % thicker moist layers than collocated GRUAN data.
We find that these biases in IASI can not completely be
negated by applying vertical smoothing to the GRUAN
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data, indicating other sources of error than pure smooth-
ing. The AIRS retrieval shows moist layers that are
stronger than and similarly as thick as ERA5. However,
moist layers are generally found about 1.3 km lower in
the troposphere than in ERA5, which limits the conclu-
siveness of comparing moist layer strength, since moist
layers further down are typically stronger.

3. Reducing the investigated collocated scenes between
the two retrieval datasets and ERA5 to clear sky is
found to not significantly change biases in moist layer
strength and thickness, indicating that the cloud han-
dling schemes are not the limiting factors for the re-
trievals’ ability to resolve moist layers. While distribu-
tions of total cloud fractions are comparable between
the two retrieval datasets, collocated ERA5 total cloud
fractions show strong deviations towards cloud fractions
of 1, while retrieval cloud fractions are limited to less
than 0.2. These biases merit further study.

4. Moist-layer-associated heating rates are on average on
the order of −3 K d−1, showing enhanced cooling com-
pared to the mean tropical free-tropospheric cooling
of about −2 K d−1 (Jeevanjee and Fueglistaler, 2020).
Slight biases in moist-layer-associated heating rates are
found between the datasets that are representative of
the found biases in moist layer strength, thickness and
height. Consequently, we find the strongest moist-layer-
associated cooling in GRUAN data and the weakest
cooling in the AIRS CLIMCAPS retrieval, which we
attribute to its significant bias towards lower moist layer
heights where cooling to space is less effective due to
the bigger column of water vapour above the moist lay-
ers.

5. We find that, on average, the moist-layer-associated ra-
diatively driven subsidence ωrad at 1.5 to 4 hPa h−1 is
higher than mean meso-scale subsidence deduced from
EUREC4A field campaign measurements at about 1 to
2 hPa h−1 (Stevens et al., 2021). Hence, EMLs are rel-
evant for meso-scale atmospheric dynamics. Accord-
ing to Eq. (2), ωrad is controlled by both moist-layer-
associated radiative cooling and static stability. Biases
between datasets in both of those quantities are sig-
nificant for the resulting biases in ωrad, which is 38 %
for both ERA5 and IASI with respect to GRUAN and
43 % for the AIRS CLIMCAPS retrieval with respect to
ERA5. We conclude that due to these significant relative
biases, all datasets have limited usefulness to assess the
dynamical impact of EMLs.

Given the inherently limited vertical resolution of reanaly-
sis and retrieval products compared to in situ soundings, we
find ERA5 to resolve EMLs well, while IASI and AIRS show
some more significant biases that can not be explained purely
by vertical smoothing. The IASI L2 CDR shows most sig-

nificant biases in moist layer thickness that may be possi-
ble to improve by more strongly emphasising EMLs in the
retrieval’s training or by introducing an optimal estimation
step to the retrieval as for example found by Calbet et al.
(2006), the downside of which would be the computational
cost. Since an optimal estimation step is already included in
the near-real-time production of IASI L2 retrievals (EUMET-
SAT, 2017), our results based on CLIMCAPS suggest that it
may be worth considering including the optimal estimation
step also in the production of the IASI L2 CDR.

We find the AIRS CLIMCAPS retrieval to be subject
to significant humidity biases, in particular with respect to
moist layer height. Studying the origins of these biases re-
mains a future task, but we see no inherent reason why it
would not be possible to eliminate them. In this context,
we would encourage investigating the reanalysis product
MERRA-2, which is used as prior knowledge for the CLIM-
CAPS retrieval product, to see whether biases in CLIMCAPS
are to some degree inherited from MERRA-2.

Code availability. The code used to calculate the radiative heat-
ing rates has been made publicly available by Kluft and Dacie
(2020) (https://doi.org/10.5281/zenodo.3899702). The code to col-
locate datasets is available as part of the Python package typhon
(Lemke et al., 2021; https://doi.org/10.5281/zenodo.5786028).

Data availability. The collocation datasets are publicly available
on Zenodo (Prange et al., 2022). These include only the data that
are used to deduce our results, i.e. after quality control criteria and
processing steps as described in Sect. 2 have been applied.

Author contributions. MP conducted the data analysis and pre-
pared the manuscript. SAB and MB supervised the data analysis,
contributed ideas to the manuscript and revised it.

Competing interests. The authors declare that they have no con-
flict of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Special issue statement. This article is part of the special issue
“Analysis of atmospheric water vapour observations and their un-
certainties for climate applications (ACP/AMT/ESSD/HESS inter-
journal SI)”. It is not associated with a conference.

Acknowledgements. The authors would like to thank the
GRUAN community and the Atmospheric Radiation Measurement
programme for making the sounding data from Manus Island freely

Atmos. Chem. Phys., 23, 725–741, 2023 https://doi.org/10.5194/acp-23-725-2023

https://doi.org/10.5281/zenodo.3899702
https://doi.org/10.5281/zenodo.5786028


M. Prange et al.: Moist layers in satellite retrievals and ERA5 739

available. The authors would like to thank EUMETSAT for their
support in making the analysed IASI L2 CDR available to us. The
authors would like to thank the AIRS community for making the
analysed CLIMCAPS-Aqua Level 2 dataset freely available for
download and providing helpful documentation in their science ap-
plication guide.

This work contributes to the Cluster of Excellence Climate, Cli-
matic Change, and Society (CLICCS) and to the Center for Earth
System Research and Sustainability (CEN) of Universität Hamburg.

Financial support. This work was funded by the German Re-
search Foundation (DFG) in the project “Elevated Moist Layers –
Using HALO during EUREC4A to explore a blind spot in the global
satellite observing system”, project BU 2253/9-1, part of DFG pri-
ority programme HALO SPP 1294, project number 316646266.

Review statement. This paper was edited by Farahnaz Khosrawi
and reviewed by Nadia Smith and one anonymous referee.

References

Ackerman, T. P. and Stokes, G. M.: The Atmospheric Ra-
diation Measurement Program, Phys. Today, 56, 38–44,
https://doi.org/10.1063/1.1554135, 2003.

Berndt, E., Smith, N., Burks, J., White, K., Esmaili, R., Kuciauskas,
A., Duran, E., Allen, R., LaFontaine, F., and Szkodzinski, J.:
Gridded Satellite Sounding Retrievals in Operational Weather
Forecasting: Product Description and Emerging Applications,
Remote Sens., 12, 3311, https://doi.org/10.3390/rs12203311,
2020.

Bony, S. and Stevens, B.: Measuring Area-Averaged Verti-
cal Motions with Dropsondes, J. Atmos. Sci., 76, 767–783,
https://doi.org/10.1175/JAS-D-18-0141.1, 2019.

Bony, S., Stevens, B., Frierson, D. M. W., Jakob, C., Kageyama,
M., Pincus, R., Shepherd, T. G., Sherwood, S. C., Siebesma,
A. P., Sobel, A. H., Watanabe, M., and Webb, M. J.: Clouds,
circulation and climate sensitivity, Nat. Geosci., 8, 261–268,
https://doi.org/10.1038/ngeo2398, 2015.

Brands, S., Herrera, S., Fernández, J., and Gutiérrez, J. M.: How
well do CMIP5 Earth System Models simulate present climate
conditions in Europe and Africa?, Clim. Dynam., 41, 803–817,
https://doi.org/10.1007/s00382-013-1742-8, 2013.

Buehler, S. A., Östman, S., Melsheimer, C., Holl, G., Eliasson, S.,
John, V. O., Blumenstock, T., Hase, F., Elgered, G., Raffalski,
U., Nasuno, T., Satoh, M., Milz, M., and Mendrok, J.: A multi-
instrument comparison of integrated water vapour measurements
at a high latitude site, Atmos. Chem. Phys., 12, 10925–10943,
https://doi.org/10.5194/acp-12-10925-2012, 2012.

Calbet, X., Schlüssel, P., Hultberg, T., Phillips, P., and August,
T.: Validation of the operational IASI level 2 processor us-
ing AIRS and ECMWF data, Adv. Space Res., 37, 2299–2305,
https://doi.org/10.1016/j.asr.2005.07.057, 2006.

Cardinali, C.: Monitoring the observation impact on the short-
range forecast, Q. J. Roy. Meteorol. Soc., 135, 239–250,
https://doi.org/10.1002/qj.366, 2009.

Chazette, P., Marnas, F., Totems, J., and Shang, X.: Comparison of
IASI water vapor retrieval with H2O-Raman lidar in the frame-
work of the Mediterranean HyMeX and ChArMEx programs, At-
mos. Chem. Phys., 14, 9583–9596, https://doi.org/10.5194/acp-
14-9583-2014, 2014.

Dahoui, M., Isaksen, L., and Radnoti, G.: Assessing
the impact of observations using observation-minus-
forecast residuals, ECMWF Newsletter, 152, 27–31,
https://doi.org/10.21957/51j3sa, 2017.

Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and
Vömel, H.: Reference quality upper-air measurements: GRUAN
data processing for the Vaisala RS92 radiosonde, Atmos. Meas.
Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014,
2014.

ECMWF: IFS Documentation CY41R2 – Part III: Dynamics and
Numerical Procedures, 3, https://doi.org/10.21957/83wouv80,
2016.

ECMWF: IFS Documentation – Cy45r1, Chap. Part IV: Physical
processes, p. 203, ECMWF, https://www.ecmwf.int/en/elibrary/
80895-ifs-documentation-cy45r1-part-iv-physical-processes
(last access: 3 January 2023), 2018.

EUMETSAT: IASI Level 2: Product Guide, EUMETSAT, https:
//www.eumetsat.int/media/45982 (last access: 3 January 2023),
2017.

EUMETSAT: IASI All Sky Temperature and Humidity Pro-
files – Climate Data Record Release 1.1 – Metop-A and -B,
https://doi.org/10.15770/EUM_SEC_CLM_0063, 2022.

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experimen-
tal design and organization, Geosci. Model Dev., 9, 1937–1958,
https://doi.org/10.5194/gmd-9-1937-2016, 2016.

Ferraro, R., Waliser, D. E., Gleckler, P., Taylor, K. E., and Eyring,
V.: Evolving Obs4MIPs to Support Phase 6 of the Coupled
Model Intercomparison Project (CMIP6), B. Am. Meteorol.
Soc., 96, ES131–ES133, https://doi.org/10.1175/BAMS-D-14-
00216.1, 2015.

George, G., Stevens, B., Bony, S., Pincus, R., Fairall, C., Schulz,
H., Kölling, T., Kalen, Q. T., Klingebiel, M., Konow, H., Lundry,
A., Prange, M., and Radtke, J.: JOANNE: Joint dropsonde Ob-
servations of the Atmosphere in tropical North atlaNtic meso-
scale Environments, Earth Syst. Sci. Data, 13, 5253–5272,
https://doi.org/10.5194/essd-13-5253-2021, 2021.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers,
D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G.,
Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming,
J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy,
S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloy-
aux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum,
I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

Jeevanjee, N. and Fueglistaler, S.: Simple Spectral Models for
Atmospheric Radiative Cooling, J. Atmos. Sci., 77, 479–497,
https://doi.org/10.1175/JAS-D-18-0347.1, 2020.

Jiang, J. H., Su, H., Zhai, C., Perun, V. S., Genio, A. D., Nazarenko,
L. S., Donner, L. J., Horowitz, L., Seman, C., Cole, J., Get-

https://doi.org/10.5194/acp-23-725-2023 Atmos. Chem. Phys., 23, 725–741, 2023

https://doi.org/10.1063/1.1554135
https://doi.org/10.3390/rs12203311
https://doi.org/10.1175/JAS-D-18-0141.1
https://doi.org/10.1038/ngeo2398
https://doi.org/10.1007/s00382-013-1742-8
https://doi.org/10.5194/acp-12-10925-2012
https://doi.org/10.1016/j.asr.2005.07.057
https://doi.org/10.1002/qj.366
https://doi.org/10.5194/acp-14-9583-2014
https://doi.org/10.5194/acp-14-9583-2014
https://doi.org/10.21957/51j3sa
https://doi.org/10.5194/amt-7-4463-2014
https://doi.org/10.21957/83wouv80
https://www.ecmwf.int/en/elibrary/80895-ifs-documentation-cy45r1-part-iv-physical-processes
https://www.ecmwf.int/en/elibrary/80895-ifs-documentation-cy45r1-part-iv-physical-processes
https://www.eumetsat.int/media/45982
https://www.eumetsat.int/media/45982
https://doi.org/10.15770/EUM_SEC_CLM_0063
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1175/BAMS-D-14-00216.1
https://doi.org/10.1175/BAMS-D-14-00216.1
https://doi.org/10.5194/essd-13-5253-2021
https://doi.org/10.1002/qj.3803
https://doi.org/10.1175/JAS-D-18-0347.1


740 M. Prange et al.: Moist layers in satellite retrievals and ERA5

telman, A., Ringer, M. A., Rotstayn, L., Jeffrey, S., Wu, T.,
Brient, F., Dufresne, J.-L., Kawai, H., Koshiro, T., Watanabe,
M., LÉcuyer, T. S., Volodin, E. M., Iversen, T., Drange, H.,
Mesquita, M. D. S., Read, W. G., Waters, J. W., Tian, B., Teix-
eira, J., and Stephens, G. L.: Evaluation of cloud and water vapor
simulations in CMIP5 climate models using NASA “A-Train”
satellite observations, J. Geophys. Res.-Atmos., 117, D14105,
https://doi.org/10.1029/2011JD017237, 2012.

Johnson, R. H., Ciesielski, P. E., and Hart, K. A.:
Tropical Inversions near the 0 °C Level, J. Atmos.
Sci., 53, 1838–1855, https://doi.org/10.1175/1520-
0469(1996)053<1838:TINTL>2.0.CO;2, 1996.

Johnson, R. H., Rickenbach, T. M., Rutledge, S. A.,
Ciesielski, P. E., and Schubert, W. H.: Trimodal
Characteristics of Tropical Convection, J. Cli-
mate, 12, 2397–2418, https://doi.org/10.1175/1520-
0442(1999)012<2397:TCOTC>2.0.CO;2, 1999.

Keil, P., Schmidt, H., Stevens, B., and Bao, J.: Variations of
Tropical Lapse Rates in Climate Models and their Implica-
tions for Upper Tropospheric Warming, J. Climate, 34, 1–50,
https://doi.org/10.1175/JCLI-D-21-0196.1, 2021.

Kluft, L. and Dacie, S.: atmtools/konrad, Zenodo [code],
https://doi.org/10.5281/zenodo.3899702, 2020.

Konow, H., Ewald, F., George, G., Jacob, M., Klingebiel, M.,
Kölling, T., Luebke, A. E., Mieslinger, T., Pörtge, V., Radtke,
J., Schäfer, M., Schulz, H., Vogel, R., Wirth, M., Bony, S.,
Crewell, S., Ehrlich, A., Forster, L., Giez, A., Gödde, F., Groß,
S., Gutleben, M., Hagen, M., Hirsch, L., Jansen, F., Lang, T.,
Mayer, B., Mech, M., Prange, M., Schnitt, S., Vial, J., Walbröl,
A., Wendisch, M., Wolf, K., Zinner, T., Zöger, M., Ament, F.,
and Stevens, B.: EUREC4A’s HALO, Earth Syst. Sci. Data, 13,
5545–5563, https://doi.org/10.5194/essd-13-5545-2021, 2021.

Lang, T., Naumann, A. K., Stevens, B., and Buehler, S. A.: Trop-
ical Free-Tropospheric Humidity Differences and Their Effect
on the Clear-Sky Radiation Budget in Global Storm-Resolving
Models, J. Adv. Model. Earth Syst., 13, e2021MS002514,
https://doi.org/10.1029/2021MS002514, 2021.

Lemke, O., Kluft, L., Mrziglod, J., Pfreundschuh, S., Holl, G.,
Larsson, R., Yamada, T., Mieslinger, T., and Doerr, J.: atm-
tools/typhon: Typhon Release 0.9.0 (v0.9.0), Zenodo [code],
https://doi.org/10.5281/zenodo.5786028, 2021.

Mapes, B. E. and Zuidema, P.: Radiative-Dynamical Con-
sequences of Dry Tongues in the Tropical Troposphere,
J. Atmos. Sci., 53, 620–638, https://doi.org/10.1175/1520-
0469(1996)053<0620:RDCODT>2.0.CO;2, 1996.

Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J.,
and Clough, S. A.: Radiative transfer for inhomogeneous
atmospheres: RRTM, a validated correlated-k model for
the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682,
https://doi.org/10.1029/97JD00237, 1997.

Muller, C. and Bony, S.: What favors convective aggre-
gation and why?, Geophys. Res. Lett., 42, 5626–5634,
https://doi.org/10.1002/2015GL064260, 2015.

Muller, C., Yang, D., Craig, G., Cronin, T., Fildier, B., Haerter,
J. O., Hohenegger, C., Mapes, B., Randall, D., Shamekh,
S., and Sherwood, S. C.: Spontaneous Aggregation of Con-
vective Storms, Ann. Rev. Fluid Mechan., 54, 133–157,
https://doi.org/10.1146/annurev-fluid-022421-011319, 2022.

Posselt, D. J., van den Heever, S. C., and Stephens, G. L.: Tri-
modal cloudiness and tropical stable layers in simulations of ra-
diative convective equilibrium, Geophys. Res. Lett., 35, L08802,
https://doi.org/10.1029/2007GL033029, 2008.

Prange, M., Brath, M., and Buehler, S. A.: Are elevated moist
layers a blind spot for hyperspectral infrared sounders?
A model study, Atmos. Meas. Tech., 14, 7025–7044,
https://doi.org/10.5194/amt-14-7025-2021, 2021.

Prange, M., Buehler, S. A., and Brath, M.: Supplementary data
for “How adequately are elevated moist layers represented
in reanalysis and satellite observations?”, Zenodo [data set],
https://doi.org/10.5281/zenodo.6940500, 2022.

Rodgers, C. D.: Inverse Methods for Atmospheric Sound-
ing, Ocean. Planet. Phys., Vol. 2, World Scientific,
https://doi.org/10.1142/3171, 2000.

Romps, D. M.: An Analytical Model for Tropical Relative Humid-
ity, J. Climate, 27, 7432–7449, https://doi.org/10.1175/JCLI-D-
14-00255.1, 2014.

Schulz, H. and Stevens, B.: Observing the Tropical Atmo-
sphere in Moisture Space, J. Atmos. Sci., 75, 3313–3330,
https://doi.org/10.1175/JAS-D-17-0375.1, 2018.

Seidel, D. J., Berger, F. H., Diamond, H. J., Dykema, J.,
Goodrich, D., Immler, F., Murray, W., Peterson, T., Sister-
son, D., Sommer, M., Thorne, P., Vomel, H., and Wang,
J.: Reference Upper-Air Observations for Climate: Rationale,
Progress, and Plans, B. Am. Meteorol. Soc., 90, 361–369,
https://doi.org/10.1175/2008BAMS2540.1, 2009.

Smith, N. and Barnet, C. D.: Uncertainty Characterization and
Propagation in the Community Long-Term Infrared Microwave
Combined Atmospheric Product System (CLIMCAPS), Remote
Sens., 11, 1227, https://doi.org/10.3390/rs11101227, 2019.

Smith, N. and Barnet, C. D.: CLIMCAPS observing ca-
pability for temperature, moisture, and trace gases from
AIRS/AMSU and CrIS/ATMS, Atmos. Meas. Tech., 13, 4437–
4459, https://doi.org/10.5194/amt-13-4437-2020, 2020.

Smith, N., Esmaili, R., and Barnet, C. D.: Community Long-
term Infrared Microwave CombinedAtmospheric Prod-
uct System (CLIMCAPS) Science Application Guides,
https://docserver.gesdisc.eosdis.nasa.gov/public/project/
Sounder/CLIMCAPS_V2_L2_science_guides.pdf (last ac-
cess: 3 January 2023), 2021.

Smith, W. and Weisz, E.: Dual-Regression Approach for High-
Spatial-Resolution Infrared Soundings, 297–311 pp., Compre-
hensive Remote Sensing, Elsevier, https://doi.org/10.1016/B978-
0-12-409548-9.10394-X, 2018.

Smith, W. L., Weisz, E., Kireev, S. V., Zhou, D. K., Li, Z., and Bor-
bas, E. E.: Dual-Regression Retrieval Algorithm for Real-Time
Processing of Satellite Ultraspectral Radiances, J. Appl. Meteo-
rol. Climatol., 51, 1455–1476, https://doi.org/10.1175/JAMC-D-
11-0173.1, 2012.

Stevens, B., Brogniez, H., Kiemle, C., Lacour, J.-L., Crevoisier,
C., and Kiliani, J.: Structure and Dynamical Influence of Water
Vapor in the Lower Tropical Troposphere, Surv. Geophys., 38,
1371–1397, https://doi.org/10.1007/s10712-017-9420-8, 2017.

Stevens, B., Bony, S., Farrell, D., Ament, F., Blyth, A., Fairall,
C., Karstensen, J., Quinn, P. K., Speich, S., Acquistapace, C.,
Aemisegger, F., Albright, A. L., Bellenger, H., Bodenschatz,
E., Caesar, K.-A., Chewitt-Lucas, R., de Boer, G., Delanoë, J.,
Denby, L., Ewald, F., Fildier, B., Forde, M., George, G., Gross,

Atmos. Chem. Phys., 23, 725–741, 2023 https://doi.org/10.5194/acp-23-725-2023

https://doi.org/10.1029/2011JD017237
https://doi.org/10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<1838:TINTL>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2
https://doi.org/10.1175/JCLI-D-21-0196.1
https://doi.org/10.5281/zenodo.3899702
https://doi.org/10.5194/essd-13-5545-2021
https://doi.org/10.1029/2021MS002514
https://doi.org/10.5281/zenodo.5786028
https://doi.org/10.1175/1520-0469(1996)053<0620:RDCODT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<0620:RDCODT>2.0.CO;2
https://doi.org/10.1029/97JD00237
https://doi.org/10.1002/2015GL064260
https://doi.org/10.1146/annurev-fluid-022421-011319
https://doi.org/10.1029/2007GL033029
https://doi.org/10.5194/amt-14-7025-2021
https://doi.org/10.5281/zenodo.6940500
https://doi.org/10.1142/3171
https://doi.org/10.1175/JCLI-D-14-00255.1
https://doi.org/10.1175/JCLI-D-14-00255.1
https://doi.org/10.1175/JAS-D-17-0375.1
https://doi.org/10.1175/2008BAMS2540.1
https://doi.org/10.3390/rs11101227
https://doi.org/10.5194/amt-13-4437-2020
https://docserver.gesdisc.eosdis.nasa.gov/public/project/Sounder/CLIMCAPS_V2_L2_science_guides.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/Sounder/CLIMCAPS_V2_L2_science_guides.pdf
https://doi.org/10.1016/B978-0-12-409548-9.10394-X
https://doi.org/10.1016/B978-0-12-409548-9.10394-X
https://doi.org/10.1175/JAMC-D-11-0173.1
https://doi.org/10.1175/JAMC-D-11-0173.1
https://doi.org/10.1007/s10712-017-9420-8


M. Prange et al.: Moist layers in satellite retrievals and ERA5 741

S., Hagen, M., Hausold, A., Heywood, K. J., Hirsch, L., Jacob,
M., Jansen, F., Kinne, S., Klocke, D., Kölling, T., Konow, H.,
Lothon, M., Mohr, W., Naumann, A. K., Nuijens, L., Olivier, L.,
Pincus, R., Pöhlker, M., Reverdin, G., Roberts, G., Schnitt, S.,
Schulz, H., Siebesma, A. P., Stephan, C. C., Sullivan, P., Touzé-
Peiffer, L., Vial, J., Vogel, R., Zuidema, P., Alexander, N., Alves,
L., Arixi, S., Asmath, H., Bagheri, G., Baier, K., Bailey, A.,
Baranowski, D., Baron, A., Barrau, S., Barrett, P. A., Batier, F.,
Behrendt, A., Bendinger, A., Beucher, F., Bigorre, S., Blades, E.,
Blossey, P., Bock, O., Böing, S., Bosser, P., Bourras, D., Bouruet-
Aubertot, P., Bower, K., Branellec, P., Branger, H., Brennek,
M., Brewer, A., Brilouet , P.-E., Brügmann, B., Buehler, S. A.,
Burke, E., Burton, R., Calmer, R., Canonici, J.-C., Carton, X.,
Cato Jr., G., Charles, J. A., Chazette, P., Chen, Y., Chilinski,
M. T., Choularton, T., Chuang, P., Clarke, S., Coe, H., Cornet,
C., Coutris, P., Couvreux, F., Crewell, S., Cronin, T., Cui, Z.,
Cuypers, Y., Daley, A., Damerell, G. M., Dauhut, T., Deneke, H.,
Desbios, J.-P., Dörner, S., Donner, S., Douet, V., Drushka, K.,
Dütsch, M., Ehrlich, A., Emanuel, K., Emmanouilidis, A., Eti-
enne, J.-C., Etienne-Leblanc, S., Faure, G., Feingold, G., Ferrero,
L., Fix, A., Flamant, C., Flatau, P. J., Foltz, G. R., Forster, L.,
Furtuna, I., Gadian, A., Galewsky, J., Gallagher, M., Gallimore,
P., Gaston, C., Gentemann, C., Geyskens, N., Giez, A., Gollop,
J., Gouirand, I., Gourbeyre, C., de Graaf, D., de Groot, G. E.,
Grosz, R., Güttler, J., Gutleben, M., Hall, K., Harris, G., Helfer,
K. C., Henze, D., Herbert, C., Holanda, B., Ibanez-Landeta, A.,
Intrieri, J., Iyer, S., Julien, F., Kalesse, H., Kazil, J., Kellman, A.,
Kidane, A. T., Kirchner, U., Klingebiel, M., Körner, M., Krem-
per, L. A., Kretzschmar, J., Krüger, O., Kumala, W., Kurz, A.,
L’Hégaret, P., Labaste, M., Lachlan-Cope, T., Laing, A., Land-
schützer, P., Lang, T., Lange, D., Lange, I., Laplace, C., Lavik,
G., Laxenaire, R., Le Bihan, C., Leandro, M., Lefevre, N., Lena,
M., Lenschow, D., Li, Q., Lloyd, G., Los, S., Losi, N., Lovell,
O., Luneau, C., Makuch, P., Malinowski, S., Manta, G., Mari-
nou, E., Marsden, N., Masson, S., Maury, N., Mayer, B., Mayers-
Als, M., Mazel, C., McGeary, W., McWilliams, J. C., Mech,
M., Mehlmann, M., Meroni, A. N., Mieslinger, T., Minikin, A.,
Minnett, P., Möller, G., Morfa Avalos, Y., Muller, C., Musat, I.,
Napoli, A., Neuberger, A., Noisel, C., Noone, D., Nordsiek, F.,
Nowak, J. L., Oswald, L., Parker, D. J., Peck, C., Person, R.,
Philippi, M., Plueddemann, A., Pöhlker, C., Pörtge, V., Pöschl,
U., Pologne, L., Posyniak, M., Prange, M., Quiñones Meléndez,
E., Radtke, J., Ramage, K., Reimann, J., Renault, L., Reus, K.,
Reyes, A., Ribbe, J., Ringel, M., Ritschel, M., Rocha, C. B.,
Rochetin, N., Röttenbacher, J., Rollo, C., Royer, H., Sadoulet,
P., Saffin, L., Sandiford, S., Sandu, I., Schäfer, M., Schemann,
V., Schirmacher, I., Schlenczek, O., Schmidt, J., Schröder, M.,
Schwarzenboeck, A., Sealy, A., Senff, C. J., Serikov, I., Shohan,
S., Siddle, E., Smirnov, A., Späth, F., Spooner, B., Stolla, M.
K., Szkółka, W., de Szoeke, S. P., Tarot, S., Tetoni, E., Thomp-
son, E., Thomson, J., Tomassini, L., Totems, J., Ubele, A. A.,
Villiger, L., von Arx, J., Wagner, T., Walther, A., Webber, B.,
Wendisch, M., Whitehall, S., Wiltshire, A., Wing, A. A., Wirth,
M., Wiskandt, J., Wolf, K., Worbes, L., Wright, E., Wulfmeyer,
V., Young, S., Zhang, C., Zhang, D., Ziemen, F., Zinner, T., and
Zöger, M.: EUREC4A, Earth Syst. Sci. Data, 13, 4067–4119,
https://doi.org/10.5194/essd-13-4067-2021, 2021.

Teixeira, J., Waliser, D., Ferraro, R., Gleckler, P., Lee, T.,
and Potter, G.: Satellite Observations for CMIP5: The Gen-
esis of Obs4MIPs, B. Am. Meteorol. Soc., 95, 1329–1334,
https://doi.org/10.1175/BAMS-D-12-00204.1, 2014.

Villiger, L., Wernli, H., Boettcher, M., Hagen, M., and Aemiseg-
ger, F.: Lagrangian formation pathways of moist anomalies
in the trade-wind region during the dry season: two case
studies from EUREC4A, Weather Clim. Dynam., 3, 59–88,
https://doi.org/10.5194/wcd-3-59-2022, 2022.

Weisz, E., Smith, W. L., and Smith, N.: Advances in si-
multaneous atmospheric profile and cloud parameter regres-
sion based retrieval from high-spectral resolution radiance
measurements, J. Geophys. Res.-Atmos., 118, 6433–6443,
https://doi.org/10.1002/jgrd.50521, 2013.

Wing, A. A., Emanuel, K., Holloway, C. E., and Muller, C.: Con-
vective Self-Aggregation in Numerical Simulations: A Review,
Surv. Geophys., 38, 1173–1197, https://doi.org/10.1007/s10712-
017-9408-4, 2017.

Yoneyama, K., Zhang, C., and Long, C. N.: Tracking Pulses of the
Madden – Julian Oscillation, B. Am. Meteorol. Soc., 94, 1871–
1891, https://doi.org/10.1175/BAMS-D-12-00157.1, 2013.

Zhou, D. K., Smith, W. L., Larar, A. M., Liu, X., Taylor,
J. P., Schlüssel, P., Strow, L. L., and Mango, S. A.: All
weather IASI single field-of-view retrievals: case study – vali-
dation with JAIVEx data, Atmos. Chem. Phys., 9, 2241–2255,
https://doi.org/10.5194/acp-9-2241-2009, 2009.

https://doi.org/10.5194/acp-23-725-2023 Atmos. Chem. Phys., 23, 725–741, 2023

https://doi.org/10.5194/essd-13-4067-2021
https://doi.org/10.1175/BAMS-D-12-00204.1
https://doi.org/10.5194/wcd-3-59-2022
https://doi.org/10.1002/jgrd.50521
https://doi.org/10.1007/s10712-017-9408-4
https://doi.org/10.1007/s10712-017-9408-4
https://doi.org/10.1175/BAMS-D-12-00157.1
https://doi.org/10.5194/acp-9-2241-2009

	Abstract
	Introduction
	Data
	GRUAN radiosondes
	ERA5
	IASI L2 Climate Data Record
	CLIMCAPS-Aqua L2 product
	Collocation procedure

	Climatological mean
	Moisture anomaly identification and characterisation
	Comparison of moisture anomaly characteristics
	All sky
	Clear sky

	Moist layers' radiative implications on the dynamics
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

