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Abstract. Top-down inversions of China’s terrestrial carbon sink are known to be uncertain because of errors re-
lated to the relatively coarse resolution of global transport models and the sparseness of in situ observations. Tak-
ing advantage of regional chemistry transport models for mesoscale simulation and spaceborne sensors for spa-
tial coverage, the Greenhouse Gases Observing Satellite (GOSAT) retrievals of column-mean dry mole fraction
of carbon dioxide (XCO2) were introduced in the Models-3 (a flexible software framework) Community Multi-
scale Air Quality (CMAQ) and ensemble Kalman smoother (EnKS)-based regional inversion system to constrain
China’s biosphere sink at a spatiotemporal resolution of 64 km and 1 h. In general, the annual, monthly, and daily
variation in biosphere flux was reliably delivered, attributable to the novel flux forecast model, reasonable CMAQ
background simulation, well-designed observational operator, and Joint Data Assimilation Scheme (JDAS) of
CO2 concentrations and natural fluxes. The size of the assimilated biosphere sink in China was−0.47 PgCyr−1,
which was comparable with most global estimates (i.e., −0.27 to −0.68 PgCyr−1). Furthermore, the seasonal
patterns were recalibrated well, with a growing season that shifted earlier in the year over central and south
China. Moreover, the provincial-scale biosphere flux was re-estimated, and the difference between the a posteri-
ori and a priori flux ranged from −7.03 TgCyr−1 in Heilongjiang to 2.95 TgCyr−1 in Shandong. Additionally,
better performance of the a posteriori flux in contrast to the a priori flux was statistically detectable when the
simulation was fitted to independent observations, indicating sufficient to robustly constrained state variables
and improved fluxes estimation. This study serves as a basis for future fine-scale top-down carbon assimilation.
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1 Introduction

In the context of human-induced climate change, the Paris
Agreement charts the course for the world to transition to a
green way of development and outlines the minimum steps
to be taken to protect the Earth, which requires all countries
to make significant commitments to stabilize atmospheric
greenhouse gas concentrations and keep the global average
temperature to well under a 2 ◦C rise (UNFCCC, 2015).
Therewith, a growing number of countries and regions are
pledging to achieve net-zero emissions in the second half of
this century, for instance, Austria by 2040, Sweden by 2045,
the European Union by 2050, and China by 2060. Hence,
there has been an increasing demand from policymakers and
the scientific community in general for accurate knowledge
of CO2 emissions from anthropogenic sources (so that the
targeted reductions are effective) and from biospheric uptake
(so that natural reservoirs remain stable) (Ciais et al., 2015;
Pinty et al., 2017; Friedlingstein, et al., 2020; Deng et al.,
2022). In 2019, the Intergovernmental Panel on Climate
Change (IPCC) published a refined methodology report as
an update to its 2006 guidelines with the aim to complement
them with a bottom-up, transparent framework and highlight
the Monitoring and Verification Support (MVS) capacity us-
ing independent atmospheric measurements (IPCC, 2019). A
great deal of effort has been devoted in recent decades to de-
veloping and applying atmospheric CO2 inversions to con-
strain global- and regional-scale CO2 fluxes (Enting et al.,
1995; Thompson and Stohl, 2014; Broquet et al., 2011, Pe-
ters, et a., 2007; Tian et al., 2014; Kou et al., 2017; Koun-
touris et al., 2018). Most of these inversions are informed
by ground-based observations and global chemistry transport
models (CTMs), which is far from sufficient to support the
abovementioned needs. Despite the development of surface
observation networks with highly accurate continuous data,
such as ICOS (the Integrated Carbon Observation System)
in Europe, the global distribution of ground-based CO2 mea-
surements remains rather sparse and inhomogeneous. Conse-
quently, the errors introduced by the incomplete observation
network, and the uncertainties of the CTMs, as well as in-
version framework, have been proven to be a disadvantage
in delivering consistent regional flux estimates obtained us-
ing state-of-the-art global inversions from the national up to
the continental scales (Monteil et al., 2020; Piao et al., 2022;
Schuh et al., 2022).

Spaceborne sensors, designed specifically to retrieve at-
mospheric concentrations with unprecedented spatial cover-
age, have in recent years begun to improve the current under-
standing of greenhouse gases and the associated CO2 emis-
sions’ MVS capacity. At present, there are several opera-
tional CO2 observation satellites in orbit, including Japan’s
Greenhouse Gases Observing Satellite (GOSAT; Kuze et al.,
2009), GOSAT-2 (Glumb et al., 2014), the US Orbiting
Carbon Observatory 2 (OCO-2; Eldering et al., 2017a, b),
OCO-3 (Eldering et al., 2019), and China’s TanSat (Liu et al.,

2018; Yang et al., 2018). It is recognized that satellite re-
trievals of shortwave infrared radiation, despite their uncer-
tainty, are sufficient to reliably capture the seasonal vari-
ability of XCO2 (column-mean dry mole fraction of carbon
dioxide), as a first-order question in constraining inversion
models (Lindqvist et al., 2015; Li et al., 2017). Furthermore,
several centers and universities routinely assimilate GOSAT
XCO2 data into models to estimate terrestrial ecosystem
carbon exchange, including Japan’s National Institute for
Environment Studies (NIES), the United States’ National
Aeronautics and Space Administration (NASA), France’s
Laboratoire des Sciences du Climat et de I’Environnement,
the Netherland’s Institute for Space Research, the UK’s
University of Edinburgh, Canada’s University of Toronto,
and China’s Nanjing University. As an example, the NIES
GOSAT Project provides a Level 4 CO2 data product, and
the monthly regional CO2 flux estimates for the period 2009–
2013, based on XCO2 retrievals and NIES’ global atmo-
spheric tracer transport model with Bayes’ theorem, are pub-
licly available (Maksyutov et al., 2013; Takagi et al., 2014).
Moreover, NASA’s Carbon Flux Monitoring System is an-
other recent top-down global inversion system configured
with 4DVar and GEOS-Chem (Goddard Earth Observing
System with Chemistry) and concurrently assimilates XCO2
from GOSAT and OCO-2. It has released the longest avail-
able terrestrial flux estimates (from 2010–2018) on self-
consistent global and regional scales and has planned future
updates of the dataset on an annual basis (Liu et al., 2021).
In addition, the University of Edinburgh has simultaneously
produced a 5-year CH4 and CO2 flux estimate for 2010–2014
directly from GOSAT retrievals of XCH4 : XCO2 by using
GEOS-Chem and an ensemble Kalman filter (EnKF) (Feng
et al., 2017). Moreover, the Global Carbon Assimilation Sys-
tem has been upgraded by Nanjing University to assimilate
the GOSAT XCO2 retrievals from 2010–2015 with the en-
semble square root filter (EnSRF) algorithm and the Model
for Ozone and Related Chemical Tracers version 4 (Jiang
et al., 2021, 2022). Overall, the top-down CO2 biosphere flux
datasets inverted from satellite data suggest an improved flux
estimation compared with the large uncertainties in process-
based terrestrial biosphere model estimates (Byrne et al.,
2019; Chevallier et al., 2019; Chen et al., 2021). Deng et al.
(2016) and Wang et al. (2018) further highlighted the impor-
tance of improved observational coverage to better quantify
the latitudinal distribution of terrestrial fluxes by combining
GOSAT observations over land and ocean. Also, the sensi-
tivity of observations from GOSAT and OCO-2 to optimized
CO2 fluxes has been examined using GEOS-Chem, indicat-
ing that GOSAT offers greater sensitivity in Northern Hemi-
sphere spring and summer (Byrne et al., 2017; Wang et al.,
2019).

Nevertheless, the inversions primarily involved uncertain-
ties in global CTMs, satellite retrievals, a priori fluxes, and
inversion frameworks. A GOSAT CO2 global inversion in-
tercomparison experiment involving eight research groups
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found that, as expected, the most robust flux estimates were
obtained at large scales and quickly diverged at subconti-
nental scales (Chevallier, 2015; Houweling et al., 2015; Fu
et al., 2021). Generally, the assimilated CO2 flux (i.e., the
analytical field) is a weighted average of background infor-
mation and observations, which depends on the correlation
coefficient between simulated concentrations of the obser-
vation and the state variable (i.e., CO2 flux). In particular,
considering the transport errors introduced by global CTMs,
the reliability of the regional fluxes inferred from GOSAT re-
trievals remains a topic of ongoing discussion (Reuter, et al.,
2017; He et al., 2022). Consequently, if we can configure a
reasonable simulation of the background CO2 concentration
compared with the coarse spatiotemporal resolution of the
global scale, then the flux constrained by observations can
be estimated more precisely at national and city scales. The
step up in inversion resolution and accuracy calls for new de-
velopments in shifting from global to regional inversions.

The use of regional CTMs in CO2 research is more re-
cent. For instance, Huang et al. (2014) demonstrated the
importance of regional CTM performance to assimilation
and suggested it is possible to improve the CO2 concen-
tration accuracy of the synoptic-scale variation by utiliz-
ing EnKF and CMAQ (Multi-scale Air Quality Modeling
System). Zhang et al. (2021) assimilated OCO-2 retrievals
with WRF-Chem/DART (Weather Research and Forecast-
ing model coupled with Chemistry/Data Assimilation Re-
search Testbed) to improve the estimation of CO2 concen-
trations. In recent years, several studies have relied on re-
gional CTMs in CO2 flux inversions inferred from surface
stations, towers, and aircraft flights, including CMAQ, WRF-
Chem, CHIMERE, and the FLEXPART Lagrangian model.
Not only terrestrial ecosystem exchange (e.g., Europe, North
America, East Asia) but also urban CO2 emissions (e.g.,
Los Angeles, Paris, Indianapolis) have been estimated, and
the importance of regional CTM is increasingly recognized
with their advantages in resolving fine-scale CO2 concen-
trations (Brioude et al., 2013; Staufer et al., 2016; Lauvaux
et al., 2016; Thompson et al., 2016; Kou et al., 2017; Zheng
et al., 2018b; Monteil and Scholze, 2021). Moreover, the po-
tential use of regional CTM in CO2 inversions with satel-
lites has been explored with artificial retrievals by Observ-
ing System Simulation Experiments (Peng et al., 2015). Pil-
lai et al. (2016) further concluded that satellite missions such
as CarbonSat (Carbon Monitoring Satellite) have high poten-
tial to obtain high-resolution CO2 fluxes in Germany. How-
ever, regional CTMs are rarely used in satellite carbon data
inversion in estimating China’s terrestrial carbon sink, even
though multimodel comparisons have reported large uncer-
tainties introduced by global CTMs in China’s top-down in-
version (Wang et al., 2020; Piao et al., 2022; Schuh et al.,
2022; Wang et al., 2022).

Previous studies have highlighted that the simultaneous as-
similation of concentrations and fluxes as state variables can
help reduce the uncertainty of both the initial CO2 fields and

the fluxes (Tian et al., 2014; Peng et al., 2015; Kou et al.,
2017). Recently, Peng et al. (2017, 2018, 2020) improved
air quality forecasts and emission estimates over China by
developing a novel flux forecast model with the ensemble-
based Joint Data Assimilation Framework (JDAS), so that
the extended model can construct ensembles of both concen-
tration and flux at the hourly scale. As an extension to this
work, JDAS was further developed towards a high-resolution
inversion of CO2 fluxes based on the CMAQ and ensemble
Kalman smoother (EnKS) with historical GOSAT observa-
tions over China, which holds an advantage over global mod-
els in terms of the CO2 background information and inver-
sion scheme. To the best of our knowledge, this is the most
up-to-date estimate of China’s biosphere flux informed by a
regional CTM and satellite observations. It should prove to
be of considerable value, particularly under the framework
of the Paris Agreement, which requires high-spatiotemporal-
resolution inversions of CO2 flux for carbon accounting at
national scales.

In this paper, we focus on the development of top-down
estimates constrained by GOSAT retrievals and CMAQ. Us-
ing this unique regional inversion technique, we address the
following questions:

1. On what scales can regional CTMs and GOSAT obser-
vations facilitate the inversion of China’s carbon sink?

2. What is the difference between posterior flux inferred
from spaceborne retrievals and prior flux?

2 Methods and data

2.1 CMAQ regional transport model

The atmospheric transport and the signature of sources and
sinks in CO2 concentrations were simulated using a regional
CTM, i.e., CMAQ, which was originally developed by the
US Environmental Protection Agency to model multiple air
quality issues over a variety of scales and has been up-
dated for passive tracers, as in Kou et al. (2013) with a 1–
64 km horizontal resolution capability. The CMAQ regional
modeling system has already been used in several regional
studies and has shown promising performance in captur-
ing the fine-scale spatiotemporal variability of CO2 mix-
ing ratios (e.g., Kou et al., 2013; 2015; Liu et al., 2013;
Huang et al., 2014; Li et al., 2017). The CMAQ configu-
ration used here was a domain of 6720 km× 5504 km with
64 km× 64 km fixed grid cells centered at 35◦ N and 116◦ E
in a rotated polar stereographic map projection. This domain,
having 105 (west–east)× 86 (south–north) grid points, cov-
ered the whole of mainland China and its surrounding re-
gions (Fig. 2). The model has 15 vertical layers unequally
spaced from the ground to approximately 23 km, half of
which are concentrated in the lowest 2 km to improve the
simulation of the atmospheric boundary layer.
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In this study, the initial fields and boundary conditions
of atmospheric CO2 volume fraction were obtained by in-
terpolation of NOAA’s CT2019B, which is a widely recog-
nized estimate of the global distribution of atmospheric CO2.
CT2019B CO2 concentration were created using the opti-
mized surface fluxes, with a spatial resolution of 3◦× 2◦,
25 vertical levels, and a temporal resolution of 3 h (Jacob-
son et al., 2020). In addition, the a priori biosphere and
ocean fluxes used for simulations within the CMAQ domain
were also derived from the CT2019B optimized fluxes at
3 h intervals but with a spatial resolution of 1◦× 1◦. The an-
thropogenic CO2 emission fluxes were based on the Multi-
resolution Emissions Inventory for China, version 1.3, and
the Regional Emissions Inventory in Asia, version 3.2, with
monthly gridded data at a resolution of 0.25◦× 0.25◦ (Zheng
et al., 2018a; Kurokawa and Ohara, 2020). The Global Fire
Emissions Database, version 4.1s, with monthly gridded data
at a resolution of 0.25◦× 0.25◦, was applied to provide the
biomass-burning emissions (van der Werf et al., 2017). The
abovementioned four individual CO2 fluxes (i.e., biosphere,
fossil fuels, fire, and ocean) were spatially interpolated to the
CMAQ grid, conserving the total mass of emissions. CMAQ
integrated and generated a 3D CO2 concentration ensemble
derived by the N ensemble fluxes with perturbed CO2 initial
and boundary conditions. The time step of the CMAQ output
is 1 h.

In addition, RAMS (Regional Atmospheric Modeling Sys-
tem) provides the three-dimensional meteorological fields,
with the lowest seven layers being the same as those in
CMAQ. The initial and lateral boundary meteorological
fields, sea surface temperatures, and initial soil conditions
were prescribed by the European Centre for Medium-Range
Weather Forecasts reanalysis data with a spatial resolution
of 1◦× 1◦ and 6-hourly temporal intervals (Zhang et al.,
2002).

2.2 JDAS CO2 assimilation framework

In the joint assimilation framework, besides the application
of CMAQ to generate ensemble CO2 concentrations, a flux
forecast model was also designed to represents natural flux
variations on account of fluxes acting as model forcing. The
EnKS was further designed to joint assimilate CO2 concen-
trations and fluxes. A brief description of the flux forecast
model as well as the ensemble assimilation scheme is pre-
sented below.

2.2.1 Flux forecast model

CO2 flux was treated as the model input, with the result
that ensemble samples of fluxes could not be prepared by
the CMAQ’s forward forecasting. Consequently, a novel flux
forecast model was designed to generate the background
CO2 flux ensembles Ef

i,t+1, where i = 1, . . .,N refers to the
ith ensemble member at time t (Eq. 1). The superscripts a,

f , and p denote “assimilation”, “forecast”, and “a priori”,
respectively.
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p
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The covariance inflation factor β is further used to keep
the ensemble spread of the CO2 concentration scaling fac-
tor κi,t . The ensemble mean of κi,t can be expressed as
κt= 1

N

∑N
i=1C

f
i,t/C

f
i = 1. Next, in the second part of Eq. (1),

the ensemble mean of Ef
t+1 =

1
M

(
∑1
j=M−1E

a
t−24×j+E

p
t+1)

is determined by the assimilated CO2 flux at the same time
on each day from the previous assimilation cycles among
these M − 1 d (i.e., Ea

t−24×(M−1), Ea
t−24×(M−2), . . ., and

Ea
t−24×1,j =M−1,M−2, . . .,1), and the a priori CO2 flux

E
p
t+1.M refers to the length of the smoothing window, which

was chosen as 4 d.
This design follows Peters et al. (2007), in which the use-

ful observational information from the previous assimilation
cycle was made beneficial to the next assimilation cycle via
a smoothing operator but was further modified to cooperate
with the diurnal variation in CO2 biosphere flux. Then, Ef

t+1

was used to re-center E
p
t+1. In contrast to previous flux mod-

els without diurnal variation, this new flux model is advan-
tageous insofar as it facilitates the development of assimila-
tion between regional CTM forecasts and observations at the
hourly scale, so as to achieve high-resolution inversion. On
the other hand, negative flux in carbon assimilation is real-
istic and reasonable, so it is not excluded. In this way, the
Gaussian assumption is satisfied in JDAS carbon assimila-
tion.

2.2.2 EnKS assimilation scheme

The regional assimilation system used in this study, JDAS,
was developed based on EnSRF originated from NOAA’s op-
erational EnKF system (https://dtcenter.ucar.edu/com-GSI/
users/docs/users_guide/GSIUserGuide_v3.7.pdf, last access:
15 June 2023). The EnSRF algorithm has been modified with
the EnKS feature and further extended to simultaneously as-
similate multiple chemical initial conditions and emissions
with the in situ measurements of their atmospheric observa-
tions (Peng et al. 2017, 2018, 2020; Kou et al., 2021).
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In the present study, the GOSAT observations were in-
troduced in the EnKS-based JDAS framework to constrain
China’s biosphere sink and CO2 concentrations, and natural
fluxes were designed to be concurrently assimilated. Hence,
both the CO2 concentrations (C) and natural fluxes (E) were
regarded as state variables (i.e., x = [C,E]T), and helpful ob-
servational information employed in the current assimilation
cycle could be efficiently capitalized upon in the next assim-
ilation cycle with reduced uncertainty in the initial CO2 con-
ditions. Accordingly, the background of the state variables,
xf
= [Cf,Ef

]
T, can be prepared by CMAQ and flux forecast

model.
The observation operator has been designed to convert the

background forecast to observation space. To obtain the sim-
ulated observations H (Cf), the observation operator H per-
forms the necessary interpolation from CMAQ forecasts to
observation space XCO2. The simulated CO2 concentration
profiles were mapped into the GOSAT satellite retrieval lev-
els and then vertically integrated based on the satellite aver-
aging kernel according to the following equation:

XCO2
f
= XCO2

p
+

Nlev∑
k=1

{[(
yf
k − y

p
k

)
Ak

]
hk(1−w)−1

}
, (2)

where the subscript k represents the retrieval level,
XCO

p
2 denotes the a priori XCO2 for retrieval, yp

k is the
a priori CO2 profile for retrieval, Ak stands for the satellite
column-averaged kernel, hk is a pressure weighting function,
and yf

k denotes the CMAQ-simulated CO2 profile interpo-
lated into the corresponding retrieval levels. As in Eq. (1), the
superscripts f and p also refer to “forecast” and “a priori” in
Eq. (2). Moreover, w denotes the RAMS water mole frac-
tion, which was used to map from the CO2 concentrations to
the dry mole fraction, as suggested by Feng et al. (2009). In
addition, for the H (Ef), it should be noted that H includes
not only interpolation (i.e., Eq. 2) but also CMAQ to convert
from flux to simulated XCO2.

The observation-minus-background, OMB (i.e., y−

H (Cf)), is denoted as “observational increments” or “inno-
vations”, where y refers to GOSAT XCO2. The analysis xa

is obtained by adding the innovations to the model forecast
with weights K (i.e., Kalman gain matrix), which are deter-
mined based on the estimated statistical error covariance of
the forecast and the observations based on Eq. (3).

xa
= xf
+K(y−H(xf)) (3)

Consequently, after completing the “forecast step”, K is
obtained by minimizing the analysis error covariance with
evolved forecast error covariance over time. Then, the as-
sociated analyzed state variables, xa

= [Ca,Ea
]
T, can be

updated by applying the EnKS constrained by GOSAT re-
trievals in the “analysis step”. Hereafter, AN denotes the
analysis fields xa, and BG denotes the model’s first guess
background fields xf.

The basic configuration of the JDAS CO2 inversion set-
tings followed previous studies. For instance, the ensemble
size N was set to 50 to sustain the balance between com-
putational cost and ensemble performance. The horizontal
covariance localization radius was chosen as 1280 km to lo-
calize the observation’s impact and ameliorate the spurious
long-range correlations between state variables and observa-
tions caused by the limited number of ensemble members
(Peng et al., 2023; Houtekamer and Mitchell, 2001; Gaspari
and Cohn, 1999). Moreover, the covariance inflation factor β
was set to 80 to preserve the ensemble spread. In this study,
the assimilation window of EnKS was set to 24 h, and hour-
by-hour assimilation was adopted in the novel flux forecast
model and fine-scale CMAQ background simulation. In an
assimilation cycle, the fluxes for the 24 h smoothing window
were designed to be optimized hour by hour successively.
The distribution of ensemble spread of CO2 flux in January
2016 is provided in Fig. 1. It shows that the values of the
ensemble spread range from 0.2 to 0.8 in most areas, which
is consistent with our previous studies (Peng et al., 2015 in
Fig. 11c and Peng et al., 2023).

2.3 GOSAT XCO2 retrievals

GOSAT, launched by the Japan Aerospace Exploration
Agency in January 2009, was designed to make near-global
greenhouse gas measurements in a sun-synchronous orbit. It
covers the whole globe in 3 d and has a sounding footprint of
approximately 10.5 km. In this study, we assimilated GOSAT
XCO2 retrievals from NASA’s Atmospheric CO2 Observa-
tions from Space Level 2 standard data products (version
ACOS_L2_Lite_FP.9r; data available at https://oco2.gesdisc.
eosdis.nasa.gov/data/GOSAT_TANSO_Level2/, last access:
15 June 2023). This version of processing supports both nadir
and glint soundings. In the case of soundings over water,
a check was made to ensure the observation was made in
glint mode. The XCO2 data from Lite products were bias-
corrected (Wunch et al. 2017; O’Dell et al. 2018). Typically,
Level 2 Lite products contain 10–200 useful soundings per
orbit, noting that more than 50 % of the spectral data were
not processed during retrieval because they did not pass the
first cloud screening preprocessing step.

The update for CO2 flux is given by the observation in-
novation and the correlations between CO2 concentrations
and emissions, while the correlations are naturally provided
by the physics- and dynamics-based numerical model. Al-
though there are limited observation numbers, observations
of 1 h are available. Thus through hourly updates, along with
hourly model advances, the spatially sparse observations can
sufficiently constrain the CO2 flux, which can be demon-
strated by the results. Given the EnKF algorithm, the pos-
terior uncertainty is proportional to the prior uncertainty but
with a smaller magnitude. Based on hourly update, the poste-
rior uncertainty contains the same flow-dependent informa-
tion as the prior uncertainty. For both chemistry assimilation
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Figure 1. The ensemble spread of λa
i,t

at model level 1 in January 2016, when β = 80.

and numerical weather prediction, it is common that the di-
mension of observation is much smaller than the dimension
of state vector. Thus data assimilation helps to use the limited
observations to constrain the state vector.

Before being applied in assimilation, the GOSAT re-
trievals were operated in three steps. First, only the data
retrievals tagged with “RetrievalResults/outcome_flag= 1”
were selected, which indicates the retrieval quality. Sec-
ond, to achieve the most extensive spatial coverage with
the assurance of using the best-quality data available, a
thinning strategy was used when multiple observations ap-
peared in the same model grid point at the same hour on
each day after interpolation of the model’s horizontal coordi-
nates. Only retrievals with a minimum value of uncertainty,
i.e., “RetrievalResults/xco2_uncert”, were selected. Third,
the OMB quality control method is used to check the back-
ground fields to maintain stability in the assimilation. The
records with absolute biases (i.e., |o− b|) greater than 5 ppm
were removed, which are considered to have a lack of re-
gional representativeness, and were mostly found near the
boundary of the model domain. Moreover, the retrievals for
the glint soundings over oceans have relatively larger uncer-
tainty, and thus many data over oceans were excluded in our
inversions in terms of the data-screening strategy (Fig. 2).

Non-assimilated XCO2 observations were used for veri-
fication purposes after another process of repeated sifting,
whose steps were as follows: (1) observations were marked
with “outcome_flag= 1”; (2) XCO2 values with the mini-

mum “xco2_uncert” in the same model grid point and at the
same hour were excluded, which filtered out all of the assim-
ilated XCO2; and (3) outliers were precluded if the |o− b|
was larger than 5.00 ppm.

2.4 Experimental design and evaluation method

Following previous GOSAT inversion work (Maksyutov
et al., 2013; Feng et al., 2017; Wang et al., 2019; Liu et al.,
2021; Jiang et al., 2022), in this study, the natural flux (i.e.,
biosphere–atmosphere exchange and ocean–atmosphere ex-
change) were optimized, while the fossil-fuel and biomass-
burning fluxes were kept unchanged. This design, in which
the natural fluxes were a subset of the state variables, fur-
ther allowed us to focus on investigating the uncertainty
of China’s carbon sink, since the uncertainty in prescribed
biomass-burning and fossil-fuel emissions is minor com-
pared to that of the biosphere fluxes in the model domain
(van der Werf et al., 2017; Zheng et al., 2018a; Kurokawa
and Ohara, 2020). Fully reconciling the differences between
bottom-up and inversion-estimated fossil-fuel emissions is
outside the scope of this work and is therefore not dis-
cussed any further in this study. Consequently, the selected
XCO2 observations were assimilated hourly to adjust the
CO2 concentrations and fluxes. The assimilation was per-
formed for the period 00:00 UTC 25 December 2015 to
23:00 UTC 31 December 2016, using the perturbed initial
conditions and boundary conditions by adding Gaussian ran-
dom noise with a standard deviation of 5 %. The first 7 d was
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Figure 2. Observation increments (XCO2; unit: ppm) and analysis increments (biosphere flux; unit: µmolm−2 s−1) in (a, b) January,
(c, d) July, and (e, f) the whole year of 2016.

set as the spin-up, which has been tested by Peng et al. (2015)
with pseudo-satellite observation and CMAQ assimilation.
Results for the period 1 January to 31 December 2016 are
discussed and validated in detail in this paper.

Then, additionally, to assess the quality of the inversion
results, two sets of forward simulations were performed
throughout the year of 2016. One set of experiments was
forced by the optimized a posteriori fluxes (denoted as FC),
and the other was forced by the prescribed a priori fluxes as
a control experiment (denoted as CTRL). Both forward runs
used the same initial and boundary concentrations from the
CT2019B product. Generally, it is hard to validate the op-

timized flux because comparison with in situ flux measure-
ments is difficult on account of the discrepancy in scales be-
tween fluxes assimilated in the model grid point and eddy-
covariance measurements over a very large uniform underly-
ing surface. Therefore, this traditional approach was adopted
as a compromise to assess whether the a posteriori fluxes
would enable improvements in the fit to observed CO2 con-
centrations, including non-assimilated GOSAT and surface
observations from 14 sites.
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Table 1. Evaluation results between the observations and model (unit: ppm), including model results from CTRL (black, a priori flux
simulation), FC (italic, a posteriori flux simulation), and AN (bold, analysis fields from JDAS).

XCO2 (assimilation) XCO2 (validation)

NUM RMSE CORR MAE Median of RMSE CORR MAE NUM
(BG) (BG) (BG) XCO2 uncertainty (CTRL/FC/AN) (CTRL/FC/AN) (CTRL/FC/AN)

Jan 1788 2.38 0.53 1.97 0.66 3.80/3.79/2.45 0.19/0.19/0.46 2.45/2.45/2.05 2024
Feb 1870 2.29 0.52 1.87 0.72 2.42/2.40/2.37 0.42/0.42/0.43 1.99/1.98/1.97 1902
Mar 1617 2.26 0.49 1.83 0.78 2.48/2.46/2.40 0.36/0.37/0.38 2.05/2.03/2.00 1409
Apr 1346 2.18 0.36 1.76 0.91 1.90/1.90/1.79 0.31/0.32/0.35 1.91/1.91/1.84 1037
May 1090 2.36 0.16 1.95 0.91 2.70/2.71/2.47 0.18/0.18/0.17 2.23/2.23/2.10 826
Jun 734 2.21 0.72 1.78 0.97 2.34/2.35/2.26 0.70/0.70/0.73 1.84/1.83/1.82 615
Jul 728 2.41 0.80 1.99 0.99 2.45/2.44/2.37 0.82/0.82/0.83 2.02/2.02/1.98 560
Aug 842 2.38 0.69 1.98 0.95 2.49/2.50/2.42 0.65/0.65/0.66 2.03/2.03/2.01 742
Sep 854 2.15 0.47 1.76 0.82 2.26/2.22/2.11 0.37/0.38/0.43 1.82/1.80/1.71 879
Oct 1190 2.29 0.45 1.88 0.75 2.37/2.28/2.22 0.37/0.40/0.44 1.91/1.86/1.84 1192
Nov 1517 2.27 0.60 1.85 0.67 2.39/2.36/2.25 0.54/0.55/0.58 1.91/1.89/1.84 1627
Dec 1688 2.26 0.60 1.85 0.64 2.36/2.35/2.34 0.52/0.52/0.53 1.94/1.93/1.91 1847
2016 15264 2.29 0.72 1.87 0.77 2.65/2.63/2.34 0.66/0.66/0.73 2.03/2.02/1.93 14660

“XCO2 (validation)” denotes the independent GOSAT XCO2 retrievals for validation. “XCO2 (assimilation)” represents the observations used for assimilation, and the
corresponding model results come from BG (JDAS background fields). RMSE refers to the root-mean-square error, CORR refers to the correlation coefficient, MAE refers to
the mean absolute bias, and NUM refers to the number of XCO2 data. The monthly and annual averages were calculated from the hourly outputs.

3 Results

3.1 Performance of observational and analysis
increments

We begin by analyzing the observational and analysis incre-
ment performance of JDAS. According to the statistics listed
in Table 1, the total number of assimilated XCO2 values in
2016 reached 15264 (i.e., 79.22 % of the thinned amount),
with the monthly ratio of “assimilated-to-thinned” ranging
from 74.19 % (in August) to 98.91 % (in July). The available
XCO2 data amount for JDAS decreases from 1788 in January
to 1870 in February, to 734 in June, and to 728 in July, which
represents an approximate 61 % reduction in the year-round
monthly comparison. Also, it should be noted that the maxi-
mum median XCO2 uncertainty occurred in July (0.99 ppm)
and the minimum in December (0.64 ppm), indicating a bet-
ter quality of XCO2 retrievals in winter and less stable re-
trievals in summer. As shown in Table 1, both the mean
absolute error (MAE) and root-mean-square error (RMSE)
exhibit a maximum in July (1.99 and 2.41 ppm, respec-
tively) and a minimum in April and September (MAE: 1.76
and 1.76 ppm; RMSE: 2.18 and 2.15 ppm), indicating that the
point-by-point uncertainty is larger in summer and lower in
spring and autumn, which is consistent with previous model
studies (Li et al., 2017). The difference in seasonal perfor-
mance could be partly due to the uncertainties in the spatial
and temporal variations of the biosphere flux estimation and
fossil-fuel inventories.

Figure 2 demonstrates the distribution of XCO2 obser-
vation increments and CO2 flux analysis increments (i.e.,
the analysis-minus-background Ea

−Eb) over the model do-

main, including January (Fig. 2a and b), July (Fig. 2c and d)
and the whole year (Fig. 2e and f). In particular, most of
the available XCO2 in July appears in the north and cen-
tral region of China, but the south and northwest tend to be
blank. The XCO2 innovation range is usually between −3
and 3 ppm in the corresponding model grid point, with a
monthly mean value between −0.12 and −0.96 ppm over
the model domain. Moreover, the pattern of CO2 flux anal-
ysis increments (i.e., AN–FC flux) preserves features from
innovations and certifies that GOSAT XCO2 is effectively
absorbed in JDAS. GOSAT retrievals were found to display
impacts within a certain range near the observation points af-
ter entering the assimilation system. The higher variation in
monthly flux analysis increments for July than those for Jan-
uary indicates that the uncertainties of forecast flux in sum-
mer are larger than those of the variation in winter. Consid-
ering the peculiarities of atmospheric CO2, such as its long
atmospheric lifetime, long-range transport, high background
concentrations, and strong biosphere–atmosphere exchanges,
there are both wide-ranging overall increases (e.g., −0.01
to 0.1 over central China) and decreases (e.g.,−0.2 to−0.01
over South China) and small-scale adjustment taking place
in 2016 (Fig. 2f).

3.2 Size of the annual carbon sink in China

Before presenting a posteriori biosphere fluxes in China from
JDAS, Table 2 provides an overview of most of the well-
known inversion modeling systems, configurations of inver-
sions, atmospheric transport models, spatiotemporal reso-
lutions, and observations. The inversion systems differ by
the transport model, the inversion approach, the choice of
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Table 2. China’s annual carbon sink estimated by different methods, including the inventory method, ecosystem process models, and atmo-
spheric inversion (unit: PgCyr−1).

Method Carbon sink Period covered Reference

Inventory −0.18± 0.07 1980–1999 Piao et al. (2009)
−0.29± 0.12 2000–2009 Jiang et al. (2016)
−0.28 2009–2018 Wang et al. (2022)

Ecosystem
process
models

−0.17± 0.04 1980–2002 Piao et al. (2009)
−0.18 1961–2005 Tian et al. (2011)
−0.12± 0.08 1982–2010 He et al. (2019)

Inversion Observations Transport models Optimization Resolution

CAMS −0.35± 0.033 1996–2005 in situ CO2 LMDZ Bayesian 3.75◦× 2.5◦,
monthly

Piao et al. (2009)

CAMS-v19 −0.25 2010–2016 in situ CO2 LMDZ Variational 3.75◦× 1.875◦,
8 d,

Wang et al. (2022)

BI −0.51± 0.18 2006–2009 in situ CO2 TM5 Bayesian 3◦× 2◦, weekly Jiang et al. (2016)
CT-China −0.39± 0.33 2006–2009 in situ CO2 TM5 EnSRF 1◦× 1◦, weekly Jiang et al. (2016)
CT-China −0.33 2001–2010 in situ CO2 TM5 EnSRF 1◦× 1◦, weekly Zhang et al. (2014)
CT-China −0.27± 0.20 2010 in situ CO2 TM5 EnSRF 1◦× 1◦, weekly Chen et al. (2021)
CT-China −0.41± 0.22 2010–2012 GOSAT XCO2 TM5 EnSRF 1◦× 1◦, weekly Chen et al. (2021)
CT-Europe −0.32 2010–2015 in situ CO2 TM5 EnSRF 1◦× 1◦, weekly van der Laan-Luijkx

et al. (2017)
UoE −1.11± 0.38 2010–2016 in situ CO2 GEOS-Chem EnKF 4◦× 5◦, 8 d Wang et al. (2020)
UoE −0.83± 0.47 2010–2015 GOSAT XCO2 GEOS-Chem EnKF 4◦× 5◦, 8 d Wang et al. (2020)
UoE −0.68 2015 OCO-2 XCO2 GEOS-Chem EnKF 2◦× 2.5◦, 8 d Schuh et al. (2022)
JCS −0.48 2010–2015 in situ CO2 TM3 Bayesian 4◦× 5◦,

monthly
Rödenbeck et al.
(2018)

GCASv2 −0.34± 0.14 2010–2015 GOSAT XCO2 MOZART-4 EnSRF 1◦× 1◦, weekly He et al. (2022)
CCDAS −0.43± 0.09 2010–2015 in situ CO2,

FAPAR
TM2 4D-Var 2◦× 2◦,

monthly
He et al. (2022)

CT-2019B −0.43 2016 in situ CO2 TM5 EnSRF 1◦× 1◦, weekly Jacobson et al. (2020)
JDAS −0.68 2016 in situ CO2 CMAQ EnKS 64× 64 km,

hourly
Peng et al. (2023)

JDAS −0.47 2016 GOSAT XCO2 CMAQ EnKS 64× 64 km,
hourly

This study

Italic font denotes the inversion results after correcting for lateral fluxes according to the flux gap between top-down and bottom-up estimation. The abbreviations used in the table are as follows:
CAMS, Copernicus Atmosphere Monitoring Service; BI, Bayesian inversion; JCS, Jena CarboScope; CCDAS, Carbon Cycle Data Assimilation System; FAPAR, remotely sensed Fraction of
Absorbed Photosynthetically Active Radiation; LMDZ, Laboratoire de Météorologie Dynamique Zoom, a global transport model; and TM5, the global atmospheric Tracer Model 5.

observation, and prior constraints, enabling us to facilitate
international comparison and mutual recognition. For ex-
ample, either in situ CO2 or GOSAT XCO2-constrained
flux (i.e., −1.11 and −0.83 PgCyr−1) demonstrates much
higher sink estimates from GEOS-Chem-based inversion
with a 4◦× 5◦ horizontal resolution. Excluding the out-
liers, most global inversions report a carbon sink in China
of −0.27 to −0.56 PgCyr−1 from in situ CO2 and −0.34 to
−0.68 PgC yr−1 from satellite retrievals. In contrast, our esti-
mates constrained by GOSAT observation (−0.47 PgCyr−1)
agree reasonably well with the previous estimates mentioned
above.

3.3 Regional characteristics of posterior fluxes

As can be seen in Fig. 3a, the annual horizontal distribu-
tion patterns of biosphere flux show significant spatial het-
erogeneity and fairly large gradients in most areas. Fig. 3b
further illustrates annual differences between a priori and
a posteriori fluxes over the model domain. Although China’s

total carbon sink of a posteriori fluxes (−0.47 PgCyr−1) is
approximately equal to the a priori fluxes (−0.43 PgCyr−1),
the spatial distribution has been modified through assimi-
lation. Compared to the prescribed a priori biosphere flux,
not only large-scale vegetation adjustments but also small-
scale conditions can be detected throughout the year af-
ter assimilating atmospheric observations (Fig. 3b). Gener-
ally, the a priori biosphere fluxes are overestimated (∼ 0.1–
0.3 µmolm−2 s−1) in the north (dominated by forest, grass-
land and cropland) and south (dominated by forest and
grassland) of China, while they are underestimated (∼ 0.1–
0.5 µmolm−2 s−1) primarily in central China where there is
a large area of cropland.

Figure 3c–f show the seasonal spatial differences before
and after assimilation, taking January, April, July, and Oc-
tober as representatives of winter, spring, summer, and au-
tumn. The monthly averages were calculated from the daily
averages based on hourly outputs. The difference between
the analysis and prior flux tends to be larger in July, lower
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Figure 3. Horizontal distribution of CO2 biosphere fluxes (unit: µmolm−2 s−1): (a)Ea in 2016, the a posteriori fluxes; (b)EaEp in 2016, the
differences between the a posteriori and a priori CO2 fluxes; (c) EaEp in January; (d) EaEp in April; (e) EaEp in July; (f) EaEp in October.
The red frames mark west China (28–48◦ N, 85–104◦ E), north China (37–52◦ N, 105–135◦ E), central China (30–36◦ N, 105–120◦ E), and
south China (18–29◦ N, 105–123◦ E). The blue frames mark six key ecological areas of China: Daxing’anling (50–53◦ N, 121–127◦ E),
the Loess Plateau (35–40◦ N, 105–112◦ E), the Qinling Mountains (32–34◦ N, 104–115◦ E), the rocky desert in Guangxi (22–25◦ N, 106–
111◦ E), Mount Wuyi (26.5–28.0◦ N, 117.5–119.0◦ E), and Xishuangbanna (21.0–22.6◦ N, 100.0–102.0◦ E).

in April and October, and lowest in January, which indicates
a larger uncertainty in biosphere flux estimates in the grow-
ing season. This is consistent with the findings of previous
studies (Jiang et al., 2016; Chen et al., 2021; Fu et al., 2022).
Moreover, it should be noted that an obvious underestimation
of a priori flux (approximately 0.1–0.5 µmolm−2 s−1) occurs
in the northern, central, and southern vegetation growth re-
gions. On the other hand, the central part of China, domi-
nated by cropland, shows relatively larger a posteriori flux
in winter and smaller a posteriori flux in summer and au-
tumn, in contrast with the a priori flux constrained by the

limited background observation sites (Zhang et al., 2014; Ja-
cobson et al., 2020). Additionally, compared with the weekly
temporal resolution of global inversion, the hourly observa-
tional increments as well as the hourly first-guess fields in
this study hold some advantage in evaluating the monthly
variations of fluxes. As expected, some distinguishing fea-
tures are thus demonstrated in the assimilated fluxes, such as
the carbon sources in parts of central, eastern, and southwest
China, which is more consistent with the underlying surface
situation. In this way, the JDAS inversion system has the
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potential to depict the fine-scale characteristics of biosphere
flux.

Next, we analyze the monthly and annual fluxes in five
large regions – west, north, central, south, and mainland
China (denoted by the red frame in Fig. 3a) – to analyze the
regional inversion in subcontinental-scale flux variation as
well as to contrast results with the previous inversion anal-
ysis (Fig. 4). Given the representative background and ob-
servation information, the seasonality patterns were modi-
fied by JDAS assimilation, with larger annual sinks relative
to the a priori ones and a growing season that is shifted ear-
lier in the year over central and south China. As shown in
Fig. 4, there is an evident difference in the a posteriori an-
nual carbon sink magnitude in these regions, gradually de-
creasing in the north (e.g., forest, grassland and cropland),
south (e.g., forest and grassland), west (e.g., grassland and
tundra), and central region (e.g., cropland) in turn, which is
consistent with the primary corresponding ecosystem types,
while the a priori sink of the west tends to be larger than
that of the south. Using the north as a reference, the annual
carbon sinks of the a priori estimates for the north, south,
west, and central regions are 1.00, 0.57, 0.62, and 0.44, re-
spectively, while those of the a posteriori estimates are 1.00,
0.62, 0.56 and 0.38. On the other hand, the a priori and
a posteriori amplitudes of the seasonal variation (i.e., the
difference between the maximum and minimum monthly
estimates, as defined in Crowell et al., 2019) range from
374.33/333.74, 87.01/80.41, 120.33/113.98, and 82.34/88.00
to 413.17/389.48 TgC per month in north, south, west, cen-
tral, and mainland China, respectively. Moreover, the dras-
tic fluctuation in the daily variation of prior fluxes has been
modified by observational constraints in JDAS (sub-graph in
the left-hand panel of Fig. 4). Therefore, this implies the po-
tential for regional inversion in interpreting underlying pro-
cesses in large regions such as China where the ecosystems
and climate are quite varied.

Nevertheless, achieving robust and reliable flux signals
at smaller regional scales is quite demanding and rather
challenging because of the limited observations and low
accuracy of transport models as well as the a priori in-
formation. In this paper, we further try to investigate the
condition of the regional biosphere carbon sink over sev-
eral of China’s key ecological areas (denoted by the blue
frame in Fig. 3a) – for example, Daxing’anling (DX),
the Loess Plateau (HT), the Qinling Mountains (QL),
the rocky desert in Guangxi (SM), Mount Wuyi (WY),
and Xishuangbanna (XS). These regions are character-
ized by their unique vegetation and climatic conditions.
In particular, the a priori and a posteriori seasonal am-
plitudes amount to 43.64/39.56, 24.03/23.39, 35.73/37.96,
29.36/31.80, 2.70/3.64, and 7.93/7.04 TgC per month in DX,
HT, QL, SM, WY, and XS, respectively. The DX region
is characterized by abundant forest and far more satel-
lite retrievals to constrain fluxes, with annual a priori and
a posteriori carbon sinks of−25.13/−29.64 TgCyr−1. Com-

pared to a priori fluxes, relatively stronger a posteriori
sinks are also found in QL (−60.05/−62.53 TgCyr−1), SM
(−62.10/−71.27 TgCyr−1), WY (0.36/−2.19 TgCyr−1),
and XS (−10.12/−10.79 TgCyr−1), which is consistent with
the improved ecological conditions due to ecological engi-
neering construction as well as generally favorable climatic
conditions. As can be seen in Fig. 5, the XS region is unique
and worthy of attention in contrast to the other regions not
only because it shows different seasonality in its release
of CO2 to the atmosphere in summer and removal of CO2
from the atmosphere in other seasons but also because of the
large transport model errors that are included in the model–
data mismatch error involved in previous inversion studies
(J. Wang et al., 2020; He et al., 2022; Schuh et al., 2022;
Wang et al., 2022; Y. L. Wang et al., 2020). Thus, the above-
mentioned spatial variations of a posteriori fluxes might un-
lock some of the potential local signals in areas where re-
gional transport models are more reliable and observations
are plentiful.

3.4 Provincial patterns of optimized fluxes

In this section, we investigate the provincial patterns of bio-
sphere flux (Fig. 6). Based on the gridded a posterior flux
dataset, we first assess the annual CO2 biosphere sink lev-
els in 31 provinces in mainland China (Taiwan, Hong Kong
SAR, Macao SAR, and Shanghai are not discussed because
of the insufficient grid resolution). At this scale, both the
a priori and a posteriori fluxes indicate the strongest car-
bon sink intensity per unit area being in Shaanxi, Guangxi,
and Guizhou, but the a priori fluxes produce an underestima-
tion in Shanxi and overestimations in Guangxi and Guizhou,
respectively. Next, the second strongest carbon sink inten-
sity is commonly seen in Shaanxi, Sichuan, Chongqing,
and Hubei, whereas a comparatively low level of carbon
sink intensity appears in Xinjiang, Liaoning, Anhui, and
Yunnan as well as in Tibet and Fujian. Furthermore, some
provinces with neutral (i.e., close to 0) source or sink statuses
are re-evaluated by the GOSAT-constrained fluxes (Fig. 6a
and b). For instance, the a posteriori flux in Ningxia is
−0.01–0.01 µmolm−2 s−1, while the a priori flux displays
a weak carbon sink of −0.01 to −0.05 µmolm−2 s−1, due
to the complexity in the estimation related to the grassland
and cropland land surfaces in this province. On the con-
trary, the a priori fluxes in Fujian and Jiangsu are close
to 0, but we find a carbon sink ranging from approxi-
mately −0.01 to −0.05 µmolm−2 s−1 and a carbon source
from 0.05 to 0.1 µmolm−2 s−1, respectively. For Liaoning,
the a priori fluxes are characterized by CO2 sources (0.01–
0.05 µmolm−2 s−1), while the assimilated fluxes with satel-
lite measurements are slightly adjusted to a carbon sink
(−0.05–0.1 µmolm−2 s−1).

Lastly, the sizes of the provincial biosphere fluxes
are summarized and sorted quantitatively in Fig. 7. The
maximum and minimum provincial biosphere flux sizes
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Figure 4. Time series of CO2 biosphere fluxes over (a) mainland China, (b) west China, (c) north China, (d) central China, and (e) south
China, marked by the red frames in Fig. 3a (unit: TgC per month), in each month of 2016, obtained from a priori values (PR, black),
a posteriori values (AN, red), and the flux forecast model (FC, blue). The bars on the right-hand side represent the 12-month average
(unit: TgC per month). The boxes on the left-hand side denote the daily flux (unit: TgCd−1), with the whiskers indicating the minimum and
maximum and the horizontal lines across the box indicating the 25th percentile, the median, and the 75th percentile, respectively.

are in Inner Mongolia (a posteriori: −53.65 TgCyr−1;
a priori: −53.41 TgCyr−1) and Shandong (a posteriori:
5.99 TgCyr−1; a priori: 3.05 TgCyr−1), respectively. More-
over, the difference between the a posteriori and a priori
provincial flux ranges from −7.03 TgCyr−1 in Heilongjiang
to 2.95 TgCyr−1 in Shandong, with an underestimation
greater than 2.00 TgCyr−1 appearing in Shandong (2.95),
Jiangsu (2.31), and Hebei (2.25) and an overestimation
greater than 5.00 Tg Cyr−1 appearing in Heilongjiang (7.03),
Liaoning (5.68), Yunnan (5.59) and Guangxi (5.10). On
the other hand, a smaller percentage of modification be-
tween the a posteriori and a priori flux (i.e., (a posteri-
ori− a priori)/a priori× 100 % in absolute value) arises in
Xinjiang (0.28 %), Inner Mongolia (0.46 %), Tibet (1.10 %),

Qinghai (2.45 %), Gansu (3.21 %), Shaanxi (3.50 %),
Sichuan (4.34 %) and Shanxi (4.65 %), indicating a
lower level of uncertainty in these larger carbon-sink
provinces. Nevertheless, an increased percentage of modi-
fication in provincial flux appears in Jiangsu (a posteriori:
2.29 TgCyr−1; a priori: −0.02 TgCyr−1), Liaoning (a pos-
teriori: −4.27 TgCyr−1; a priori: 1.40 TgCyr−1), Fujian
(a posteriori: −1.15 TgCyr−1; a priori: 0.29 TgCyr−1), and
Shandong (already listed above).

3.5 Evaluation against observations

We further assess the performance of the a posteriori
CO2 fluxes by comparing the CTRL, FC, and AN results
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Figure 5. Time series of CO2 biosphere fluxes over six ecological areas of China (blue frames in Fig. 3a; unit: TgC per month), in each
month of 2016, obtained from a priori values (PR, black bars) and a posteriori values (AN, red bars). The bars on the right-hand side represent
the 12-month average (unit: TgC per month). The subfigures at the bottom denote the daily temperature (blue lines; unit: ◦; left-hand y axis),
total solar radiation (red stars; unit: MJd−1; left-hand y axis), and precipitation (grey bars; unit: mmd−1; right-hand y axis), with the
right-hand bars representing the annual average.

in the fit to non-assimilated GOSAT as well as surface ob-
servations. The monthly and annual statistics were com-
puted from the hourly outputs from the assimilation, simu-
lation and observations. Table 1 demonstrates (as expected)
that the concentration from the analysis fields (AN) per-
forms best when fitted to the non-assimilated XCO2 obser-
vations. It is notable that the column-averaged satellite sig-
nals have limited capacity in facilitating the tropospheric
variation in CO2 concentration compared to surface observa-
tions. Thus the response to changes in the simulated XCO2
signal is weak, and improvement is rather moderate. For
instance, the annual RMSE, MAE, and correlation coeffi-
cient for AN are 2.34 ppm, 1.93 ppm, and 0.73; for FC, they
are 2.63 ppm, 2.02 ppm, and 0.66; and for CTRL, they are
2.65 ppm, 2.03 ppm, and 0.66, respectively. Additionally, the
AN, FC, and CTRL biases from non-assimilated XCO2 ob-
servations are further calculated (Table 3), and the outliers in
CTRL have been effectively amended. When FC is compared
with the CTRL results, the frequency of bias in [−4, 4] in-
creases by 0.25 %, in [−3, 3] by 0.36 %, in [−2, 2] by 0.32 %,

Table 3. Probability distribution of hourly bias (unit: %) and bias
standard deviation (unit: ppm) of XCO2 validation including CTRL,
FC and AN in 2016.

Bias probability distribution CTRL FC AN

[−4, 4] 89.64 89.89 91.02
[−3, 3] 75.63 75.99 76.84
[−2, 2] 56.13 56.45 56.88
[−1, 1] 30.22 30.08 30.24
[0, 4] 53.43 53.62 55.74
[0, 3] 44.65 44.86 46.21
[0, 2] 32.26 32.46 33.07
Bias standard deviation 2.6268 2.6072 2.2674

and in [−1, 1] by 0.14 %. The error standard deviation de-
creases from 2.63 ppm in CTRL to 2.61 ppm in FC and
to 2.27 ppm in AN.

Furthermore, surface in situ observations from 14 sites are
further used as independent observations to evaluate the in-
version results. The modeled CO2 concentrations were ex-
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Figure 6. Horizontal distribution of CO2 biosphere fluxes averaged over each province of mainland China in 2016 (unit: µmolm−2 s−1):
(a) Ea, the a posteriori fluxes; (b) Ep, the a priori fluxes; and (c) EaEp, the differences between the a posteriori and a priori CO2 fluxes.
Note that Taiwan, Hong Kong SAR, Macao SAR, and Shanghai are not discussed owing to the insufficient grid resolution.

Figure 7. The total a priori (black) and a posteriori (red) CO2 biosphere fluxes over each province of mainland China in 2016
(unit: TgCyr−1). The abbreviations of the provinces are NM, Neimenggu; SC, Sichuan; GZ, Guizhou; XJ, Xinjiang; QH, Qinghai; SX’,
Shaanxi; GX, Guangxi; HL, Heilongjiang; GS, Gansu; SX, Shanxi; HUN, Hunan; HUB, Hubei; HEB, Hebei; NEN, Henan; JL, Jilin; XZ,
Xizang; GD, Guangdong; JX, Jiangxi; CQ, Chongqing; YN, Yunnan; AH, Anhui; ZJ, Zhejiang; NX, Ningxia; BJ, Beijing; JS, Jiangsu; SH,
Shanghai; FJ, Fujian; TJ, Tianjin; HAN, Hainan; LN, Liaoning; and SD, Shandong.
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Table 4. Evaluation results between in situ observations and model, including CTRL (black, a priori flux simulation), FC (italic, a posteriori
flux simulation), and AN (bold, analysis fields from JDAS).

Lat. (◦ N)/ Obs. Obs. RMSE RMSE imp. rate MAE MAE imp. rate General site
long. (◦ E) num freq. (CTRL/FC/AN) FC/AN (%) (CTRL/FC/AN) FC/AN (%) description

Longfengshan 44.73/127.60 840 Hourly 10.94/10.87/10.38 0.63/5.16 7.83/7.81/7.72 0.30/1.40 Forest (northeast China)
Shangdianzi 40.65/117.12 1620 Hourly 10.00/9.87/9.74 1.34/2.58 6.87/6.62/6.64 3.53/3.26 Cropland (north China)
Mt. Waliguan 36.28/100.90 338 Daily 7.05/6.64/6.31 5.78/10.43 4.63/4.38/4.15 5.35/10.35 Tibetan Plateau (China)
Shangri-La 28.00/99.40 1709 Hourly 9.76/9.62/9.44 1.42/3.21 7.21/7.08/7.02 1.72/2.61 Forest (southeast China)
Lin’an 30.30/119.72 1410 Hourly 9.42/9.49/8.60 −0.73/8.70 6.63/6.78/6.14 −2.16/7.45 Forest (east China)
Jinsha 29.63/114.22 30 Weekly 9.21/9.41/8.94 −2.13/2.96 6.96/7.04/6.46 −1.15/7.13 Urban (central China)
King’s Park 22.31/114.17 364 Daily 22.12/21.63/21.10 2.22/4.63 17.02/16.68/16.06 1.98/5.06 Urban (Hong Kong SAR, China)
Ulaan Uul 44.45/111.08 49 Weekly 5.50/5.41/5.22 1.62/5.06 3.70/3.63/3.52 2.02/5.09 Grassland (Mongolia)
Ryori 39.03/141.82 8553 Hourly 6.85/6.77/6.06 1.08/11.51 4.59/4.48/3.91 2.21/14.68 Mountain (Japan)
Mt. Dodaira 36.00/139.20 7928 Hourly 7.62/7.51/7.12 1.45/6.50 5.37/5.31/5.00 1.22/6.95 Mountain (Japan)
Kisai 36.08/139.55 8686 Hourly 17.09/15.90/15.80 6.99/7.56 13.00/12.22/12.24 5.99/5.83 Urban (Japan)
Anmyeon-do 36.53/126.32 3228 Hourly 16.00/14.03/13.81 12.34/13.70 10.42/9.41/8.85 9.73/15.06 Coastal (the Korean Peninsula)
Jeju Gosan 33.30/126.21 4373 Hourly 10.10/9.85/8.79 2.42/12.97 7.29/7.12/6.34 2.39/13.10 Ocean (the Korean Peninsula)
Yonagunijima 24.47/123.02 8085 Hourly 9.24/9.21/8.60 0.25/6.86 7.39/7.38/6.91 0.08/6.41 Ocean (Japan)

Avg 10.78/10.44/9.99 2.48/7.27 7.78/7.57/7.21 2.37/7.49

“Lat./long.” refers to the latitude and longitude of the site; “Obs. num” refers to the observation amount; “Obs. freq.” refers to the observation time frequency; “RMSE imp. rate” refers to the improvement rate of RMSE,
i.e., (RMSECTRL −RMSEFC)/RMSECTRL × 100 % and (RMSECTRL −RMSEAN)/RMSECTRL × 100 %; “MAE imp. rate” refers to the improvement rate of MAE, i.e., (MAECTRL −MAEFC)/MAECTRL × 100 % and
(MAECTRL −MAEAN)/MAECTRL × 100 %, respectively. The annual averages were calculated from the hourly output.

tracted from the simulated hourly CO2 fields according to the
locations, elevation, and time of each observation. The aver-
ages of observation, CTRL, FC, and AN over these 14 sta-
tions are 410.97, 413.01, 412.82, and 412.21 ppm, respec-
tively. The statistics of the analytical field (AN) in Table 4
are better than FC and CTRL, including RMSE and MAE,
which gives a direct indication that the assimilation performs
well. Taking improvement rate as example, the RMSE im-
provement rate between the FC and CTRL mostly ranges
from −2.13 % to 12.34 % with an average of 2.48 %, and the
MAE improvement rate ranges from 0.08 % to 9.73 % with
an average of 2.37 %. Although the RMSE and MAE of AN
are lower than CTRL and FC, those of FC are higher than
CTRL in Lin’an (in Wuhan, Hubei) and Jinsha (in Yangtze
River Delta), which are in the vicinity of urban clusters with
increased human activity (Liang et al., 2023). Thus, this helps
to check that the inversions actually improve the model fits
to the observations but also to determine whether some sites
are particularly problematic for natural flux inversions. Inver-
sions actually improve the model fits to the surface observa-
tions in forest areas (in northeast, east, and southeast China),
cropland areas (in north China), grassland areas (in Mongo-
lia), ocean (in the Korean Peninsula and Japan), and coastal
areas (in the Korean Peninsula).

The annual-averaged horizontal distributions of CO2 con-
centration near the surface in 2016 are presented (Fig. 8).
Figure 8a displays the surface CO2 concentration analysis
fields (AN), and the much-refined description in the AN al-
lows for a more detailed characterization of the spatiotem-
poral distribution of CO2 concentration and can further fa-
cilitate an interpretation of satellite data in a regional con-
text over China. Thus, the AN can be used as a closer rep-
resentation of the real condition. As shown in Fig. 8b and c,
compared to the CTRL fields, the FC fields tend to be con-

siderably closer to the AN fields, suggesting that a poste-
riori fluxes are calibrated acceptably. Furthermore, Fig. 8d
shows the year-round statistic of XCO2 error reduction (de-
fined as (1− δFC/δCTRL)× 100%)), as well as the amounts
of non-assimilated XCO2 observations, where δFC repre-
sents the FC XCO2 error standard deviation and δCTRL the
CTRL XCO2 error standard deviation. The region of 8–57◦ N
and 105◦−120◦ E is used as a reference because there is a rel-
atively larger difference between the a priori and a posteriori
fields, including the concentration as well as flux. In gen-
eral, the error reduction is primarily found to be positive and
ranges from approximately 0.80 % to 32.13 % with a median
of 5.65 % and mean of 7.23 %. This zonal evaluation further
verifies the improvement in the a posteriori flux compared to
the a priori flux.

4 Discussion

4.1 China’s carbon sink international comparability
among different methods

The total annual carbon sink in previous research along
with our study is summarized (Table 2). The aim is mainly
to check that different methods – for instance, inventories,
ecosystem process models, and atmospheric inversions – ac-
tually improve the carbon sink international comparability
and mutual recognition. Based on national ecosystem in-
ventory data, China’s terrestrial carbon sink increased from
−0.18 PgCyr−1 in the 1980s to−0.33 PgCyr−1 in the 2000s
owing to forest area expansion and afforestation during re-
cent years (Piao et al., 2009; Jiang et al., 2016; Wang
et al., 2022). Meanwhile, the results from several ecosystem
process-based models display a carbon sink ranging from
−0.13 to −0.22 PgCyr−1 during 1980–2010, achieved by
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Figure 8. The annual-averaged horizontal distribution of CO2 concentrations (unit: ppm) near the surface in 2016: (a) AN, the analysis
concentration; (b) FC−AN, the difference between the a posteriori flux simulation and analysis concentration fields; (c) CTRL−AN, the
difference between the a priori flux simulation and analysis concentration fields; and (d) the XCO2 error reduction (see text for calculation;
blue, with the standard deviation (±) of the analysis XCO2 provided) and independent XCO2 data amount (black stars, rescaled to 1 : 10)
over 8–57◦ N and 105–120◦ E at different latitudes.

assessing the effect of changes in climate and CO2 (Piao
et al., 2009; He et al., 2019). In addition, according to the
flux gap between top-down and bottom-up estimations men-
tioned above, a recent estimate of the lateral flux for China
is −0.14 PgCyr−1, which includes the carbon exchange be-
tween the land and atmosphere in non-CO2 forms as well as
imported wood and crop products (Wang et al., 2022).

The terrestrial carbon sink in 2016 with lateral fluxes ad-
justment amounts to approximately −0.33 PgCyr−1, con-
strained by the GOSAT XCO2 in JDAS (−0.47 PgCyr−1).
Correspondingly, we also provide a corrected carbon sink
estimate of −0.54 PgCyr−1 (i.e., −0.68+ 0.14=−0.54) in-
ferred from in situ CO2 data provided by JDAS (Peng
et al., 2023), which is the optimal mathematical solution un-
der the current sparse observational coverage with daytime
photosynthetic uptake and likely leads to a slight overes-
timation to some extent. Hence, our estimates (−0.68 and
−0.47 PgCyr−1 from in situ CO2 and GOSAT, respectively)
agree reasonably well with the previous estimates mentioned
above.

4.2 To what extent is the JDAS’s posterior flux different
from the prior flux?

In general, most research into the inversion of China’s carbon
sink has commonly used global transport models. The lim-
ited resolution and distribution of observations are deemed
to lead to large uncertainties in inversion in small regions,
especially at national scales (Crowell et al., 2019; Monteil
et al., 2020; Piao et al., 2022). The resolution-related per-
formance of transport models tends to magnify the uncer-
tainty in China’s carbon sink estimates. For instance, Fu et al.
(2021) found that the results of a global model (i.e., GEOS-
Chem) tended to be generally lower than GOSAT’s XCO2
in China from the various terrestrial models with a mean
bias of about 2 ppm in winter, while Lei et al. (2014) found
GEOS-Chem simulations tended to produce higher values
than GOSAT (by 5.8 ppm) in China during summer. In con-
trast, the observational increments of JDAS show an abil-
ity to depict the fine-scale features with strong spatial het-
erogeneity whilst in general retaining the large-scale spatial
patterns, which can be attributed to the CMAQ simulation
performance in differentiating the nuances of anthropogenic
and natural conditions. On the other hand, the analysis in-
crements depend not only on the innovations, but also on
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how well the Kalman gain matrix computes the contribution
weighting factors based on the time-dependent forecast error
covariance. The biosphere flux first-guess fields were derived
from the novel flux forecast model by taking the a priori flux,
the analysis flux from the previous assimilation cycle, and the
forecast concentration (Eq. 1), which is a great help in assist-
ing with improving the background information and initial
perturbation for ensemble forecasting.

The good response of the vegetation condition to the a pos-
teriori results provides a strong foundation for a meaningful
interpretation of biosphere fluxes. Satellites, with their better
spatial coverage, as well as regional transport models, with
their improved stability, can help in assessing the real condi-
tions of local terrestrial ecosystems with complex conditions,
such as over central China. The decreased annual sink and
increased seasonal variability in central China deduced by
the a posteriori flux with satellites may in fact reflect the at-
mospheric CO2 fixed by cropland vegetation, where ∼ 60 %
of the area is cropland with relative few in situ observa-
tions used for constraining the a priori flux (Piao et al., 2009,
2022). Actually, downward correction over forest and grass-
land and upward correction for cropland areas have been val-
idated against independent data. Inversions actually improve
the model fits to the surface observations in cropland, forest,
and grassland areas. In general, (1) widespread underestima-
tion of the a priori flux (0.01–0.1 µmolm−2 s−1) is found in
central China, which is dominated by cropland and where
dense satellite retrievals are accordingly available; (2) over-
estimates are distributed in the northeast and south of China
over a considerable spatial extent; and (3) smaller changes
between a posteriori and a priori estimates are primarily lo-
cated in the west of China, which tends to agree with the
XCO2 OMB pattern. Nevertheless, summer is the season
with the largest percentage of satellite data rejection and re-
trieval uncertainty, still making it a tough test for inversion
systems.

At the provincial scale, the provinces in China differ in
both terrestrial vegetation and anthropogenic activity. As dis-
cussed earlier, the difference between a posteriori and a priori
estimates is closely related to the degree of human activity
intervention. Several factors could account for the provin-
cial spatial distribution constrained by GOSAT, for instance,
the increased precipitation along with the strong El Niño in
2016, the levels of reforestation and afforestation, and the re-
ductions in biofuels in rural areas bringing about a shrubland
carbon sink.

4.3 How well can the JDAS inversion constrain the
carbon sink of China?

Quantitative information on the extent of which the poste-
rior fluxes are constrained by observations has been checked
further. The prior information has been embodied in a priori-
flux-simulated concentrations, and observation information
has been embodied in the a posteriori flux simulation, whose

fluxes are constrained by observations. By evaluating the dif-
ferences between these two sets of simulation results, the
prior information and observation information are now ac-
cessible in order to be assessed quantitatively. At the site
scale (Table 4), some sites tend to systematically be poorly
fitted by the inversions, in particular those in the vicinity of
large urban areas with large anthropogenic emissions, such
as Jinsha and Lin’an. Besides these two sites, the difference
between CTRL and FC is affected by the observation infor-
mation through assimilation ranges from 0.25 % to 12.34 %
(i.e., RMSE decreasing rates), with an average of 2.48 %
among all surface observation sites. According to the statis-
tics, the observations have played a positive role in improv-
ing carbon sink over the model domain. The non-assimilated
GOSAT XCO2 has also been used to assess the difference
between prior and posterior flux simulation. The decrease in
the misfits is rather moderate (Table 1).

In addition, the smaller correlation coefficient improve-
ment in the contrast of CTRL and FC implies that prior flux
patterns play an important role in posterior flux. On the other
hand, favorable meteorological conditions (e.g., precipitation
in the growing season being 20 % higher than that in 2015;
National Climate Center, 2016) have also been reported,
which further supports the improved ecological quality, in-
dicating JDAS’s potential in tracking biosphere CO2 fluxes
from space.

5 Summary and outlook

Top-down estimations of carbon budgets have been included
in the UNFCCC’s MVS framework. At present, most car-
bon sink inversions in China utilize a global transport model
with relatively coarse resolution. Characterized by large het-
erogeneity in its biospheric spatiotemporal distribution, the
transport model error, as well as the sparseness of in situ ob-
servations, leads to large uncertainties in the assimilation of
carbon flux in China. In this study, a regional high-resolution
inversion model (JDAS) was used, which has been extended
to incorporate GOSAT constraints, along with a joint assim-
ilation of CO2 flux and concentration at high spatial (64 km)
and temporal (1 h) resolution. The annual, monthly, and daily
variation in biosphere flux was reproduced reasonably well,
which was attributable to the novel flux forecast model with
diurnal variation, the reliable CMAQ background simulation,
carefully chosen XCO2 retrievals, and the well-designed
EnKS assimilation configuration.

The size of the biosphere carbon sink in China amounted
to−0.47 PgCyr−1 with JDAS by GOSAT constraints, which
is comparable with previous global estimates (i.e., −0.27
to −0.56 PgCyr−1 from in situ observations and −0.34 to
−0.68 PgCyr−1 from satellite retrievals). Next, the much-
refined CMAQ resolution in JDAS inversion was found to
allow for a more detailed characterization of the spatiotem-
poral distribution of CO2 and to further facilitate an interpre-
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tation of carbon flux in a regional context over China. The
a priori and a posteriori seasonal amplitudes ranged from
374.33/333.74, 87.01/80.41, 120.33/113.98, and 82.34/88.00
to 413.17/389.48 TgC per month in north, south, west, cen-
tral, and mainland China, respectively. Also, the drastic fluc-
tuation in the daily variation of a priori fluxes was modified
by observational constraints, which appeared more realistic
than that of the a priori estimates. Moreover, we further in-
vestigated the condition of the biosphere carbon sink in sev-
eral of China’s key ecological areas. Using XS as an exam-
ple, the large transport model errors that were included in
the model–data mismatch error involved in previous global
inversion studies were effectively reduced by JDAS, and
XS was reported to be a relatively stronger sink in contrast
to prior estimates (−10.12/−10.79 TgCyr−1). Furthermore,
the provincial patterns of biosphere flux were investigated
and re-estimated. As seen from GOSAT, the difference be-
tween the a posteriori and a priori provincial flux ranged from
−7.03 TgCyr−1 in Heilongjiang to 2.95 TgCyr−1 in Shan-
dong. Finally, an evaluation against non-assimilated XCO2
and surface observations demonstrated better performance of
the a posteriori flux when fitted to the observations, indicat-
ing improved results in the regional inversion. Considering
our prior estimates from CT2019B, the discrepancy could be
because our study (a) relied on a fine-scale regional trans-
port model; (b) was constrained by GOSAT XCO2 retrievals
with better spatial coverage rather than sparse and inhomoge-
neous in situ observations; (c) performed a joint assimilation
of CO2 flux and concentration, which helped reduce the un-
certainty in both the initial CO2 fields and the fluxes; and
(d) carried out hourly assimilation based on hourly simula-
tion and observation, which was more realistic.

The regional inversion methodology and results presented
here prove the feasibility and superiority of regional CTMs
and satellite observations in investigating China’s carbon
sink. On account of the obvious interannual variation in
the biosphere sink, this work also serves as a foundation
for future multi-year retrospective analyses of biosphere–
atmosphere exchanges under different meteorological condi-
tions. On the one hand, although the ACOS retrieval technol-
ogy has been substantially improved and provides unprece-
dented spatial coverage, more XCO2 retrievals with better
quality and lower retrieval uncertainty are still needed, es-
pecially during summertime as well as over ocean and west
China. On the other hand, a knowledge gap also exists in
inversion-based estimates, in which fossil-fuel emissions are
generally assumed to be accurate. Besides uncertainties in
natural flux, our current knowledge of urban emissions is
far from adequate. Around 70 % of fossil-fuel emissions are
derived from cities in combination with considerable uncer-
tainties. Within the framework of the Paris Agreement, in-
versions at higher spatial resolution are an increasing de-
mand, making it crucial to develop the capacity for inversions
to quantify urban emissions and assess the effectiveness of
emission mitigation strategies, alongside calls for improve-

ments in observations, a priori information, anthropogenic
emission inventories, transport models, and inversion tech-
nology.
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