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Abstract. Top-down CO2 emission estimates based on satellite observations are of great importance for inde-
pendently verifying the accuracy of reported emissions and emission inventories. Difficulties in verifying these
satellite-derived emissions arise from the fact that emission inventories often provide annual mean emissions,
while estimates from satellites are available only for a limited number of overpasses. Previous studies have
derived CO2 emissions for power plants from the Orbiting Carbon Observatory-2 and 3 (OCO-2 and OCO-3)
satellite observations of their exhaust plumes, but the accuracy and the factors affecting these emissions are
uncertain. Here we advance monitoring and quantifying point source carbon emissions by focusing on how to
improve the accuracy of carbon emission using different wind data estimates. We have selected only isolated
power plants for this study, to avoid complications linked to multiple sources in close proximity. We first com-
pared the Gaussian plume model and cross-sectional flux methods for estimating CO2 emission of power plants.
Then we examined the sensitivity of the emission estimates to possible choices for the wind field. For verifica-
tion we have used power plant emissions that are reported on an hourly basis by the Environmental Protection
Agency (EPA) in the US. By using the OCO-2 and OCO-3 observations over the past 4 years we identified
emission signals of isolated power plants and arrived at a total of 50 collocated cases involving 22 power plants.
We correct for the time difference between the moment of the emission and the satellite observation. We found
the wind field halfway the height of the planetary boundary layer (PBL) yielded the best results. We also found
that the instantaneous satellite estimated emissions of these 50 cases, and reported emissions display a weak
correlation (R2

= 0.12). The correlation improves with averaging over multiple observations of the 22 power
plants (R2

= 0.40). The method was subsequently applied to 106 power plant cases worldwide and yielded a
total emission of 1522± 501 Mt CO2 yr−1, estimated to be about 17 % of the power sector emissions of our
selected countries. The improved correlation highlights the potential for future planned satellite missions with a
greatly improved coverage to monitor a significant fraction of global power plant emissions.
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1 Introduction

The burning of fossil fuels for energy production has been
driving the increase in atmospheric CO2 concentrations from
about 280 to 410 ppm, which has dominated the observed
planetary warming in the 20th and 21st centuries (IPCC,
2021). The Paris Agreement of the United Nations Frame-
work Convention on Climate Change (UNFCCC) aims to
keep global warming well within 2◦ above pre-industrial
average temperatures by reducing global greenhouse gas
(GHG) emissions. It has led to a strengthening of the report-
ing obligations of GHG emissions by the UNFCCC parties
(UNFCCC, 2018). These reports are based on national fos-
sil fuel CO2 emission inventories that use, among others, in-
put data about fossil fuel consumption, heating and carbon
content, the type of combustion, and combustion efficiency.
These reports are hampered by the difficulty to achieve accu-
rate and detailed consumption data, especially for developing
countries (Olivier et al., 2017; International Energy Agency,
2019; European Commission, 2019; Gilfillan and Marland,
2021). The reports are self-declarations, and although re-
viewed by expert teams within the UNFCCC process, they
lack independent verification. In order to address this issue,
existing satellite retrievals of the column-averaged dry-air
mole fraction of carbon dioxide CO2 (XCO2), mainly from
NASA’s Orbiting Carbon Observatory-2 and 3 (OCO-2 and
OCO-3) and Japan’s Greenhouse gases Observing SATellite
(GOSAT), are increasingly explored for an independent ver-
ification of reported emissions (Nassar et al., 2017; Zheng et
al., 2019; Shekhar et al., 2020; Kiel et al., 2021). Due to the
promising first results of OCO-2 and GOSAT, new satellite
instruments are being designed with a focus on better sam-
pling of the atmosphere (larger swath and/or constellation of
satellites), providing an operational emission-monitoring ca-
pacity in the future (Engelen, 2021; CEOS, 2022; NASA,
2022).

Satellite observations are increasingly used for top-down
estimates of fossil fuel emissions (Hakkarainen et al., 2021;
Kuhlmann et al., 2021; Lauvaux et al., 2022). Zheng et
al. (2020b) revealed China’s CO2 emission drops and re-
coveries during the COVID-19 period using the TROPO-
spheric Monitoring Instrument (TROPOMI) NO2 data and
bottom-up inventory data, as well as the GEOS-Chem model
to compute the sensitivity of NO2 concentrations to emis-
sions. Other studies used satellite observations of the to-
tal column dry-air CO2 (XCO2), a Bayesian inversion sys-
tem and a high-resolution transport model to quantify fos-
sil fuel CO2 (ffCO2) emissions in urban areas (Kunik et al.,
2019; Shekhar et al., 2020; Ye et al., 2020). For point source
emitters, Bovensmann et al. (2010) introduced a conceptual
technique to quantify CO2 emissions of single power plants
from XCO2 plume enhancements. Janardanan et al. (2016)
later connected XCO2 enhancements observed by GOSAT

with large emission sources through an atmospheric trans-
port model in forward mode. Nassar et al. (2017, 2021, 2022)
extended the approach and applied it in backward mode in or-
der to quantify CO2 emissions from individual power plants
using OCO-2 and OCO-3 XCO2 data. Reuter et al. (2019)
used a few co-located regional enhancements of XCO2 and
NO2 observed by OCO-2 and TROPOMI, respectively, to
derive emission estimates for power plants, urban areas and
wild fires. Zheng et al. (2020a) used 5 years’ worth of OCO-
2 XCO2 data to estimate emissions from urban and indus-
trial areas in China and compared these local emissions with
the Multi-resolution Emission Inventory for China (MEIC;
Zheng et al., 2018), the Emissions Database for Global
Atmospheric Research (EDGAR; Crippa et al., 2020) and
the Open-source Data Inventory for Anthropogenic Carbon
dioxide (ODIAC; Oda et al., 2018) inventory estimations.
The approach was extended to the entire globe and to OCO-3
by Chevallier et al. (2020, 2022).

Satellite instruments that directly detect CO2 concentra-
tions, such as OCO-2 and OCO-3, can be used for CO2 emis-
sion estimates for power plants and other point sources. How-
ever, the limited track width, low revisit rate and clouds mean
these instruments only incidentally provide useful snapshot
observations over a point source (see Sect. 2.1 for details).
Even fewer observations are located in the downwind direc-
tion of the point source (in the plume), which is optimal to
estimate emissions (Reuter et al., 2019; Zheng et al., 2019).
Hence the demonstration of the use of satellite-observed
XCO2 to quantify point source CO2 emissions comes from
only limited cases or from observing system simulation ex-
periments (OSSEs; Bovensmann et al., 2010; O’Brien et al.,
2016; Broquet et al., 2018; Kuhlmann et al., 2019; Wang et
al., 2020; Wu et al., 2020). For example, Nassar et al. (2017,
2021) manually selected a few OCO-2 tracks that captured
the emission plume of large coal plants for quantitative anal-
ysis. Other studies tried to be more systematic and iterated
through the multi-year XCO2 data and detected some of the
space–time variations in anthropogenic emissions from lo-
cally aggregated signals of emitters (Chevallier et al., 2020,
2022; Zheng et al., 2020a), but it is difficult to attribute these
signals to specific emission sources. Velazco et al. (2011)
quantified errors of power plant annual emission estimates
by a hypothetical Carbon Monitoring Satellite (CarbonSat)
constellation. Hill and Nassar (2019) assessed pixel size and
revisit rate requirements for monitoring power plant CO2
emissions from space. In addition, instantaneous emissions
at satellite overpass times are difficult to compare with an in-
ventory of annual emissions because of the intermittence and
variability of power production and CO2 emissions. This is
why previous studies had to use either instantaneous emis-
sion reports or temporally disaggregated inventories.

In this study, we advance the research of monitoring and
quantifying point source carbon emissions by focusing on
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how to improve the accuracy of carbon emission using dif-
ferent wind data estimates, assessing these emission esti-
mates by comparing it with the US Environmental Protection
Agency (EPA) emission data, and identifying and exploring
suitable cases elsewhere in the world. We compare the Gaus-
sian plume model (GPM) method with the cross-sectional
flux method to estimate emission of power plants in order to
select the best method. We analyze the impact of different
wind field choices on the emission accuracy by comparing
the estimated emissions with hourly reported emissions of
selected power plants. Using the selected method we extend
the estimation of power plant emissions to the global scale.

This paper is organized as follows. Section 2 describes
data sources for this study. In Sect. 3, we describe the
XCO2 enhancement extraction, quantification and validation
method as well as uncertainty calculation. The estimated
CO2 emissions for the US and global power plants are pre-
sented in Sect. 4. Section 5 gives the summary and conclu-
sions.

2 Data

2.1 Satellite data

The Orbiting Carbon Observatory-2 (OCO-2) launched in
July 2014 collects high-resolution spectra of reflected sun-
light in the bands centered near 0.765, 1.61 and 2.06 µm
(Crisp et al., 2017). OCO-2 flies on a near-polar sun-
synchronous orbit and crosses the Equator at a fixed local
time (LT) near 13:36 with a repeat cycle of 16 d. About 10 %
of the approximately 1 million daily CO2 observations are
cloudless and can be used to retrieve the column-averaged
dry-air mole fraction of carbon dioxide (XCO2) with the
Atmospheric CO2 Observations from Space (ACOS) algo-
rithm at a spatial resolution of about 1.29× 2.25 km2 across
swaths which are up to 10 km wide (O’Dell et al., 2018). The
Orbiting Carbon Observatory-3 (OCO-3) launched in May
2019 is mounted on the Japanese Experiment Module – Ex-
posed Facility (JEM-EF) of the International Space Station
(ISS) and views the Earth at all latitudes less than about 52◦

with a footprint size of about 1.6× 2.2 km2. In addition to
the same three observation modes (nadir, glint and target)
as OCO-2, OCO-3 also collects nearly adjacent swaths of
data using a new pointing mirror assembly (PMA), result-
ing in a snapshot area map (SAM) scan of approximately
80× 80 km2. Since all the power plants in this study are
located on land, we only exploit OCO-2 and OCO-3 mea-
surements over land surfaces (i.e., surface type= 1 in the
OCO data). For the observations of OCO-3 SAM mode,
we only analyze data on the same scan line (i.e., simi-
lar PMA elevation angles). We use good-quality retrievals
(XCO2_quality_flag= 0) of version 10r of the OCO-2 bias-
corrected XCO2 retrievals from January 2018 to December
2021 and version 10.4r of the OCO-3 bias-corrected XCO2
retrievals from August 2019 to November 2021 provided

by NASA’s Goddard Earth Sciences Data and Information
Services Center (https://oco2.gesdisc.eosdis.nasa.gov/data/
s4pa/OCO2_DATA/OCO2_L2_Lite_FP.10r/, last access: 1
March 2022, https://oco2.gesdisc.eosdis.nasa.gov/data/s4pa/
OCO3_DATA/OCO3_L2_Lite_FP.10.4r/, last access: 24
March 2022).

The passive-sensing hyperspectral nadir-viewing instru-
ment TROPOMI on the Copernicus Sentinel-5 Precursor
satellite provides daily global coverage of tropospheric NO2
vertical column densities (NO2 TVCDs) with a spatial reso-
lution of 3.5× 7 km2 initially and 3.5× 5.5 km2 since 6 Au-
gust 2019. TROPOMI flies on a sun-synchronous orbit with
an overpass time of 13:30 LT, the same as OCO-2. Global
daily NO2 TVCD maps were gridded to a regular latitude–
longitude grid with 0.025◦ resolution using pixels with a
cloud fraction less than 30 %. In order to keep as many pixels
as possible to observe as much of the plume as possible, data
quality (i.e., “qa value”) filtering is not used. The NO2 data
we obtained are consistent with the OCO-2 and OCO-3 data
of the same day in this study (https://s5phub.copernicus.eu/,
last access: 19 October 2021).

2.2 Power plant database

We collected reported hourly CO2 emission data for US
power plants from the US Environmental Protection Agency
(EPA) from 2018 to 2021 (https://www.epa.gov/airmarkets/
power-sector-emissions-data, last access: 5 March 2022) as
truth to validate the satellite-estimated emission. We sorted
out the list from EPA for all 1631 power plants operated dur-
ing this period.

The publicly available Global Power Plant Database
(GPPD, v1.3.0) from the World Resources Institute was used
to automatically identify CO2 emission signals from power
plants upwind of satellite tracks (Yin et al., 2021). The
GPPD includes 34 936 power plants (https://datasets.wri.org/
dataset/globalpowerplantdatabase, last access: 2 June 2021)
with 15 fuel types, such as biomass, geothermal, hydro, nu-
clear and solar. In this study, we selected power plants using
gas, coal, oil and pet coke as primary fuel to a subset. The
resulting subset of the GPPD comprises 8660 power plants
of which 3998, 2330, 2320 and 12 use gas, coal, oil and pet
coke as primary fuel, respectively. In order to see emission
signals from as many power plants as possible, we did not
delete power plants with a low generation capacity as was
done in other studies (Nassar et al., 2017; Beirle et al., 2021).
The reason is that if a power plant with a small capacity is lo-
cated in an area with less background interference - such as
an area far away from cities and with low vegetation cover-
age – its emissions may still be detectable by satellites.
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2.3 Wind fields

We used three types of wind field data in the CO2 emission
estimation procedures described in Sect. 3. Hourly horizontal
wind fields u and v at 10 m are taken from the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) next-
generation reanalysis ERA5 dataset (0.25◦× 0.25◦) and the
Modern-Era Retrospective analysis for Research and Appli-
cations version 2 (MERRA-2) dataset (0.5◦× 0.625◦). The
effective wind speed proposed by Varon et al. (2018) and
used by Reuter et al. (2019) and Hakkarainen et al. (2021)
was calculated from the 10 m wind by applying the empiri-
cal scaling factor 1.4. Varon et al. (2018) derived this scaling
factor from a linear fit between effective wind speed and 10 m
wind speed. The effective wind speeds from ERA5 (WERA)
and MERRA-2 (WMERRA) are derived using factor 1.4 for
this study. In addition, the wind field (0.25◦× 0.25◦) at half
the height of the planetary boundary layer (WPBL) is derived
from the 3D hourly wind fields, and PBL heights are derived
from the twice daily (0 and 12 h) operational high-resolution
forecasts of ECMWF. We use the wind vector of the model
layer, which contains the altitude equal to the PBL height di-
vided by 2. These three wind field choices are used to explore
the robustness of the emission estimates.

3 Methods

3.1 Extract CO2 enhancement from isolated power
plant point sources

The first step towards estimating CO2 emissions from power
plants is to extract plume XCO2 anomalies, i.e., XCO2 lo-
cal enhancement. We use power plants with hourly reported
emissions from the US EPA as research objects, search for all
adjacent XCO2 observations as candidate cases and choose
XCO2 enhancement cases linked to isolated power plant
emission plumes by the wind direction. The search range is
limited to a 0.25◦ radius around each power plant. The se-
lection is based on the visual identification of a plume in the
downwind direction of the power plant. Power plants located
in urban areas are excluded because their emission plumes
are compounded by urban emissions. This selection of cases
for isolated US power plants allows us to verify the accu-
racy of estimated emissions using hourly reported emission
data from EPA. For global XCO2 data, we provide a semi-
automatic detection algorithm described in Sect. 3.3.

3.2 Gaussian plume model and cross-sectional flux
method

3.2.1 Gaussian plume model method

We use a Gaussian plume model (GPM) and cross-sectional
flux method for inferring power plant CO2 emissions from
XCO2 measurements. In the GPM method (Bovensmann et
al., 2010), the posteriori emission is obtained by a linear

least-squares fit between observed and simulated enhance-
ments weighted by the reciprocal of the XCO2 uncertainty.
The model is based on the following equations:

V (x,y)=
F

√
2π ·β ·

(
x

1000

)0.894
· u
e
−

1
2

(
y

β·(x/1000)0.894

)2

, (1)

XCO2 = V ·
mair

mCO2

·
g

Psurf−ω · g
· 1000, (2)

where V is the CO2 vertical column at the location (x,y)
downwind of the power plant (g m−2), and x and y are the
along-wind distance and across-wind distance (m), respec-
tively. F is the emission rate (g s−1); β is the atmospheric
stability parameter depending on Pasquill stability classes,
which can be determined from the 10 m wind speed and so-
lar radiation obtained from ERA5 reanalysis data (Pasquill,
1961; Nassar et al., 2021); and u is wind speed (m s−1).
Equation (2) is used to convert V in g m−2 to XCO2 in ppm,
in which g is the gravitational acceleration (m s−2), m is the
molecular weight (kg mol−1), Psurf is the surface pressure
(Pa), andω is the total column water vapor (kg m−2) obtained
from XCO2 data files.

The wind direction is allowed to rotate within a range of
±60◦ to account for errors in the wind data. The optimal
wind direction is derived by maximizing the correlation co-
efficient between the simulated and the observed XCO2 en-
hancement. We rejected the case if the maximum correlation
coefficient is less than 0.5, similar as in Nassar et al. (2021).
The outline and direction of the plume can be clearly seen in
NO2 images (Figs. S8, S9), showing that the optimal wind
direction is reliable in those cases.

3.2.2 Cross-sectional flux method

In the cross-sectional flux method, the emission is inferred by
integrating the plume enhancement over the background. An
interval of 200 km along the track, centered on the maximum
XCO2 point, is taken as the analysis window. The follow-
ing function is fitted to XCO2 data in the analysis window
(Fig. S1a in the Supplement):

f (l)= k · l+ b+
A

σ
√

2π
e[−(l)2/2σ 2

], (3)

where f (l) is a parameterized representation of XCO2
(ppm); l is the distance along the OCO-2 or OCO-3 tracks
(km); and k,b,A, and σ are parameters estimated by a non-
linear least-squares fit weighted by the reciprocal of the
XCO2 uncertainty (Zheng et al., 2020a). k·l+b represents the
background XCO2, while the other part of Eq. (3) represents
a single Gaussian-shaped XCO2 peak (Nassar et al., 2017;
Reuter et al., 2019). A represents the line density, which is
same as the area under the fitted curve (Fig. S1b) after re-
moving the background. The cross-sectional CO2 flux is esti-
mated by multiplying the CO2 line density by the wind com-
ponent perpendicular to the OCO-2 or OCO-3 orbit direction
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at the peak position of the plume in m s−1. Similarly, we al-
low the wind direction to rotate slightly to optimize the cor-
relation between observations and the model simulation from
Fig. S1d to S1c.

3.3 Detection of global power plant emission signals

In this study, we use the following steps to extract XCO2
anomalies of global power plants for the estimation of their
CO2 emissions:

1. We detect all satellite overpass data within a 0.25◦ ra-
dius around each power plant and intercept all obser-
vations within the latitude range of± 0.5◦ around the
nearest observation from the power plant as potential
cases.

2. We extract the maximum value point of XCO2 within
the latitude range of± 0.1◦ around the nearest observa-
tion point from the power plant and take this maximum
point as the center to retain the data within the latitude
range of± 0.04◦, as the Gaussian peak of the plume, and
only retain the cases where the number of observations
with sufficient quality in this range is more than 10 to
minimize the effect of missing data in the plume.

3. We calculate the angle between the vector from the
power plant location to the maximum XCO2 point and
the wind direction vector and only retain the cases
where the angle is less than 60◦, to ensure that the XCO2
enhancement is located in the downwind direction of the
power plant.

4. We retain the cases where the XCO2 value of at least
five observations in the Gaussian distribution is greater
than the average value of the data extracted in step (1)
plus 2 times the standard deviation of the data to ensure
that the XCO2 enhancement is significant.

5. We extract the case where the net enhancement of
XCO2 of at least five observations is greater than
1.5 ppm. Here the background is defined as the 90th per-
centile of the data extracted in step (1).

6. Finally, we further screen the automatically identified
cases of power plant plumes visually. Four examples
of cases which were rejected after visual inspection are
shown in Fig. S10. The identification of enhanced sig-
nals seen in the OCO data as resulting from a power
plant outside the swath of OCO is further validated by
using TROPOMI NO2 images for cases where a clear
TROPOMI plume is available. The entire plumes ob-
served by TROPOMI shown in Figs. S8 and S9 show
that the association of the enhancement observed by
OCO with the power plant was done correctly by the
procedure. For the SAM data of OCO-3, only data in
the same scan line are considered.

3.4 Uncertainty analysis and validation

3.4.1 Emission uncertainties

The uncertainty estimates of this study are determined by
three variables which are assumed to be uncorrelated. The
total uncertainty is calculated by error propagation as

εEmission =

√
ε2

XCO2
+ ε2

wind+ ε
2
background, (4)

where each uncertainty is derived from the standard deviation
of an ensemble approach. The XCO2 uncertainty εXCO2 on
the derived emission is computed by perturbing the original
XCO2 data with the uncertainty of the retrieval as provided
in the OCO-2 and OCO-3 data products. The uncertainty re-
lated to the wind εwind is calculated from an ensemble of
emission estimates based on WERA, WMERRA and WPBL.
There are several possible approaches to determine the back-
ground. Hakkarainen et al. (2019) used the daily median of
all XCO2 within the latitude range 10◦ band as the back-
ground to extract the XCO2 anomalies. Nassar et al. (2017)
determined the background region from the manual selection
of observations outside the plume. Zheng et al. (2020a) fitted
the along-track observations by the sum of a Gaussian func-
tion and a linear function, where the linear part defined the
background. We use a simple and automated way by calcu-
lating the percentile of the area defined in Sect. 3.3, step (1),
and determining the background by taking the average value
of all data below the percentile level. Here the background
uncertainty εbackground is computed from the spread in emis-
sion estimates using the 75th, 80th, 85th and 90th percentiles
to define the background values. This range of percentiles
lead to the smallest difference in the reported emissions, as
shown in Fig. S2.

3.4.2 Time-corrected hourly EPA-reported values

The CO2 emissions released by the power plant are trans-
ported to the satellite overpass location by the wind and are
detected as XCO2 enhancement. EPA reports the emission
value of the power plant on an hourly basis. When comparing
emission estimates and hourly reported values, we need to
consider the time lag between the moment when the emission
is released at the stack and the moment it is detected down-
wind by the satellite. This time can be calculated from the
distance between the power plant and the satellite crossing
point and the wind speed. However, unlike the time-weighted
reported emission used in Nassar et al. (2021), we use the
time that the detected plume was released at the power plant.
Therefore, we produce time-corrected hourly reported values
at the time of the emissions seen by the satellite overpass in-
stead of reporting the hourly emission values closest to the
overpass time.
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Figure 1. Estimation process of power plant emissions (a–d). (a) CO2 plume of the Jeffrey Energy Center power plant on 30 October 2020.
(b) Change of XCO2 in a latitude direction from (a). The background value is determined from the average of the observations below the 90th
percentile (green line), background points (blue) and plume points (red). (c) Zoomed-in image of (a) in relation to the area of our simulation.
(d) The simulated normalized XCO2 enhancement for the same region by the GPM. Panels (e–h) show cases of other power plant emission
signals. The blue arrow represents the wind vector halfway the height of the PBL. The wind speeds in (a), (e), (f), (g) and (h) are 2.9, 1.8,
6.1, 2.6 and 3.4 m s−1, respectively.

4 Results

4.1 Comparison of estimated emissions using hourly
monitoring values

Figure 1a shows an example of a power plant emission
plume in the satellite observations. The Jeffrey Energy Cen-
ter power plant in Kansas was in operation at about 01:30
local time on 30 October 2020, and its CO2 plume was
captured by the downwind track of OCO-2. The local en-
hancement appears as a peak in a latitude direction, the
cross-section of which is well approximated by a Gaussian
(Fig. 1b). For the entire US, we analyzed the 1284 plants re-
ported by the EPA, of which 347 were excluded because of
nearby city emissions. A total of 9950 OCO-2 and 13 427
OCO-3 tracks were recorded within a 0.25◦ radius of these
power plants. We used observations in the latitude range of
±0.5◦ around the XCO2 maximum for all tracks (the range
shown in Fig. 1a) and performed a visual selection to identify
cases of enhancement from plumes of isolated power plants
like in Fig. 1. The screening criterion is able to select a clear
plume profile in the XCO2 observations downwind of the
power plant, such as in Fig. 1e–h, while other cases are re-
jected due to insignificant XCO2 enhancement, missing data

and emission source cluster interference, such as in Fig. S10.
In the end, we arrived at 50 cases where the power plant was
operating and the emission plume crossed the satellite track,
including 30 cases from OCO-2 and 20 cases from OCO-3.
When the distance between two adjacent power plants did
not exceed the range of 1 pixel of the satellite, it was re-
garded as a single isolated emission source, and their names
were connected with commas (Table 1).

Previous studies used various choices of wind information
to approximately account for the plume spreading, such as
the wind speed at the assumed height of the chimney plus an
assumed 250 m for typical plume rise above the stack height
(Nassar et al., 2021) or 31 m (Chevallier et al., 2020), the
average wind speed of the pressure layer near the ground
(Zheng et al., 2020a; Hakkarainen et al., 2021), or a cal-
culation of an effective wind (Varon et al., 2018; Reuter et
al., 2019; Hakkarainen et al., 2021). In this study, we com-
pared the estimated CO2 emission results driven by WERA5
(Fig. S3), WMERRA (Fig. S4) and WPBL used for the GPM
method. The correlation coefficient R of the estimated emis-
sion and time-corrected reported US EPA emission of the
50 cases of isolated power plants are 0.35, 0.28 and 0.14
for WPBL, WERA and WMERRA, respectively (Figs. 2a,
S3a, S4a). The results show that the emission estimates ob-
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Figure 2. The emission estimation results by the GPM of all cases with WPBL are compared with the time-corrected hourly reported value
from EPA (a), the average value of emission estimation results of each power plant is compared with the reported value (b), and the sum
of emission estimation results of each power plant is compared with the reported value (c). The vertical error line is the total uncertainty of
estimated emissions. The yellow and blue dashed lines are the fitted lines with the x axis and y axis swapped.

tained using WPBL give better results than the other two
wind options, which suggests that it represents the spread-
ing of CO2 plumes in the vertical direction more accurately
(Figs. 2, S3, S4). The results using MERRA-2 were worse
(Fig. S4) due to its low resolution (GMAO, 2015), which can-
not provide precise wind information for emission sources.
These 50 cases contain multiple observations of 22 isolated
power plants. For some power plants, we have multiple ob-
servation days. For these cases we have averaged the re-
sults. As shown in Fig. 2b, the correlation coefficient R of
the averaged estimated emission and the reported emission
is 0.63, 0.44 and 0.22, corresponding to WPBL, WERA and
WMERRA, respectively (Figs. 2b, S3b, S4b). We also tested
the weighted average considering the uncertainty of the esti-
mates and reached the same conclusion that WPBL has the
best performance. The improved correlation illustrates the
large fraction of randomness in the emission retrieval uncer-
tainty (Chevallier et al., 2022). For the sum of the estimates
of the repetitive cases of each power plant, we obtained a
better correlation of 0.93, 0.89 and 0.73, corresponding to
WPBL, WERA and WMERRA, respectively (Figs. 2c, S3c,
S4c). Therefore, we decided to use WPBL for the estima-
tion of power plant emissions. In this study, the background
for the cross-sectional flux method is determined by fitting
of Eq. (3), while the background for the Gaussian plume
model (GPM) method is determined by the 90th percentile
showing the lowest error for all cases in Fig. S2a. The dif-
ference in background obtained by these two methods is on
average small (Fig. S11a) but with a maximum difference of
0.86 ppm and a minimum of 0.004 ppm (Fig. S11b). Under
the two background calculation methods, the GPM method
has good consistency in the estimation results driven by three
wind fields (Fig. S11c–e). With the background computing
by Eq. (3), the conclusion that estimated emissions have bet-
ter accuracy using the WPBL is still valid (Fig. S12).

Figure 3. Emission values of US power plants estimated with the
GPM (blue circles) and cross-sectional flux (black crosses) methods
compared to the time-corrected reported values (orange diamonds).
The x axis is labeled with YYMMDD.

In Fig. 3, we compare the GPM method and the cross-
sectional flux method driven by WPBL. Among them were
two cases without a result from the cross-sectional flux
method because of invalid fitting. It shows that the estimates
from the cross-sectional flux method fluctuate much more
than the estimates from the GPM method. This is mainly
because the orbits of the OCO-2 and OCO-3 satellites are
not perpendicular to the plume, and the final step of the
cross-sectional flux method uses the wind field component
normal to the orbit multiplied by the line density to esti-
mate the flux, while the GPM method derives the posteriori
emission by a linear least-squares fit between observed and
simulated enhancements. Moreover, the OCO-2 and OCO-
3 observations do not sample the entire emission plume,
as shown in Fig. 1f, but just the part of the plume cross-
section within the narrow width along the orbit. Hakkarainen
et al. (2021) also found that the estimates from the cross-
sectional flux method fluctuated greatly. Therefore, we de-
cided to use the GPM method for the estimation of global
power plant emissions. When comparing plant-level esti-
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Figure 4. Hourly emission variation in seven randomly selected
power plants and dates from hourly US EPA data. The name of each
curve consists of the name of the state, the name of the power plant
and the YYYYMMDD day.

mated emission with reported emission by the US Energy
Information Administration (EIA) from fuel consumption
records (https://www.eia.gov/electricity/data/emissions/, last
access: 21 March 2022), Fig. S6 shows that the correla-
tion between estimated emission and reported annual emis-
sion from EIA (R = 0.39) is lower than that from EPA, al-
though the reported annual emissions from EPA and EIA re-
veal a good correlation (R = 0.80). Figure 4 shows that, due
to strong hourly variations in the power plant emission, the
satellite overpass time is not always representative of the an-
nual emission of a power plant. Note that EIA reports the
yearly mean emission based on the annual fuel consumption
of the power plant, which will differ from the emission at the
satellite overpass time.

Table 1 lists the average estimated emissions for 22 power
plants and the estimated uncertainty caused by the back-
ground, XCO2 and wind field. The deviation of the estimated
emissions and reported emissions varies between 0.47 and
22.11 kt d−1, and the total uncertainty varies between 1.65
and 28.32 kt d−1. The total uncertainty is comparable to the
uncertainty of power plant emissions in previous studies,
which ranged from 3.42 to 19.2 kt d−1 (Nassar et al., 2017,
2022). The uncertainty of wind speed is between 0.08 and
1.4 m s−1, and the uncertainty of background varies between
0.03 and 0.1 ppm (Table S1 in the Supplement). Among the
three uncertainty components, the uncertainty caused by the
wind field is the highest. From 2018 to 2021, for the XCO2
archived data, there are six cases found for the Jeffrey En-
ergy Center power plant (KS) and four cases for the Prairie
State Generating Station (IL), Colstrip (MT), Cumberland
(TN) and Oak Grove (TX) power plants. For a few power
plants, we found that the time variability of estimated and
time-corrected hourly EPA-reported emissions from multi-
ple observation cases of power plants displays a good consis-
tency (Fig. S5), such as the Gibson (IN) and Labadie power
plants (MO). Excluding the two power plants whose uncer-
tainties are greater than the estimated emissions, the uncer-

Figure 5. Statistics of the number of OCO-2 and OCO-3 XCO2
observations, respectively, in each processing step.

tainties of the other cases are within 8 % to 51 % of the re-
ported emissions.

5 Detection and estimation of global power plant
emission signals

Figure 5 shows the number of cases retained for each pro-
cessing step of the automatic detection of global power plant
emission signals using the GPPD. We obtained 1387 d of
XCO2 observation data from OCO-2 from January 2018 to
December 2021 and 766 d of XCO2 observation data from
OCO-3 from August 2019 to November 2021. For 8660
power plants in the world, all tracks from OCO-2 and OCO-
3 were scanned near the power plants. The number of cases
with more than 10 observations (step 2 in Sect. 3.3) near the
Gaussian peak is 39 365 and 42 932 for OCO-2 and OCO-
3. A total of 40.71 % of the XCO2 cases are located in
the downwind direction of the power plant. Among them,
24.94 % of cases contain at least five observations that are
significantly enhanced relative to the background. Among
those 518 and 804 plume observations with at least five ob-
servation points from OCO-2 and OCO-3 have net enhance-
ment exceeding 1.5 ppm. Finally, through visual selection
(step 6 in Sect. 3.3), 83 and 23 cases from OCO-2 and OCO-3
were regarded as plumes from isolated power plants, respec-
tively.

Figure 6 shows the estimated CO2 emissions of 106 global
power plant cases calculated by the GPM method using
WPBL. The estimated emissions of these power plants range
from 3.2 to 109.0 kt d−1. The 25th, 50th and 75th percentiles
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Table 1. The average estimated emissions, reported emissions, uncertainty components and number of observations from US power plants.

Name Reported Estimated Uncertainty Uncertainty Uncertainty Total Number
emission emission of background of XCO2 of wind uncertainty of
(kt d−1) (kt d−1) (kt d−1) (kt d−1) (kt d−1) (kt d−1) observations

James H Miller Jr (AL) 63.8 41.7 1.7 1.0 8.1 8.3 1
Apache Station (AZ) 3.8 24.2 2.4 2.4 3.4 4.8 2
Arlington, Mesquite, Redhawk Facility (AZ) 13.3 12.4 0.8 0.3 1.7 1.9 1
Prairie State Generating Station (IL) 25.6 28.2 1.8 0.2 2.9 3.5 4
Gibson (IN) 36.7 36.0 1.6 1.2 10.3 10.6 3
Jeffrey Energy Center (KS) 44.2 31.4 1.5 0.4 5.1 5.5 6
Iatan (MO) 28.9 21.6 3.2 1.5 2.9 5.5 3
Labadie (MO) 41.0 26.7 1.9 0.8 4.5 5.1 3
Colstrip (MT) 35.0 28.7 1.2 0.5 13.9 14.1 4
Gerald Gentleman Station (NE) 29.7 18.3 1.3 0.4 8.9 9.0 1
Four Corners Steam Elec Station (NM) 16.6 23.6 2.3 0.5 2.5 3.4 2
Cardinal (OH) 37.1 16.6 0.9 0.6 2.9 3.1 2
Conemaugh, Seward (PA) 46.2 41.5 2.9 1.5 5.2 6.2 1
Cumberland (TN) 33.9 34.3 2.2 0.4 4.4 5.0 4
Harrington, Nichols station (TX) 28.0 43.7 2.2 0.6 14.0 14.2 1
Oak Grove (TX) 39.6 30.7 2.2 1.2 6.5 7.1 4
Parish, Carbon-Capture, Brazos Energy (TX) 36.1 17.1 1.1 0.8 3.1 3.4 2
Sam Seymour (TX) 32.6 23.6 1.3 0.0 5.9 6.1 1
Hunter (UT) 19.7 9.3 0.5 0.3 28.3 28.3 1
Intermountain (UT) 13.8 18.8 1.1 0.7 1.9 2.3 1
Dry Fork Station (WY) 9.5 6.3 0.6 0.1 1.5 1.6 1
Laramie River (WY) 32.3 31.7 1.5 0.2 15.9 16.1 2

of the estimated emissions are 19.9, 32.1 and 52.6 kt d−1, re-
spectively. The uncertainties range from 1.2 to 62.6 kt d−1,
and the 25th, 50th and 75th percentiles of uncertainty in the
estimated emissions are 18 %, 29 % and 50 % (Table S2).
Figure 6a shows the location of these power plants and their
emissions, indicated by circle size and color. Figure 6b shows
the sum of estimated emissions for all observations found at
each power plant. The gray vertical lines are an indication
of the uncertainty of the estimated emissions. Furthermore,
we calculated the correlation between the integral of the ob-
served and simulated XCO2 enhancement from Eqs. (1) and
(2) in the latitude direction. Figure S7 shows a correlation
coefficient of 0.56 for observed and simulated enhancements
of global power plant cases.

The detection algorithm reduces 4-year global XCO2 data
to only 106 cases of 78 unique power plants. A large num-
ber of power plant emission cases have been discarded due
to insignificant XCO2 enhancements of less than 1.5 ppm,
not enough valid observations in the plume and finally by a
visual check. We compare the estimated emissions with the
carbon emission inventory EDGAR v6.0 for the power sec-
tor in order to understand the magnitude of the emissions of
detected cases. The estimated emissions of detected power
plants are counted by year and country (Fig. 7). When as-
suming constant emissions of power plants, the sum of esti-
mated emissions of all power plants would be extrapolated
to 1522± 501 Mt yr−1. According to EDGAR, this value ac-
counts for about 17 % of the power sector 2018 emissions of
the countries in Fig. 7b. The estimated emissions from the
few observations in 2018, 2019, 2020 and 2021 account for

Figure 6. The detected global power plants with emission estima-
tion results (a) and the sum of emission estimation results of all
found observations at each power plant (b). The gray vertical lines
are an indication of the uncertainty of the estimated emissions. The
color and size of the circles indicate the estimated emission.

only 2 %, 5 %, 6 % and 4 %, respectively, of all power sec-
tor emissions of countries showed in Fig. 7a in 2018. The
top three countries in terms of detected estimated emissions
of power plants are China, the US and India. This illustrates
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Figure 7. Estimated annual emissions of the detected global power
plants, also shown as a percentage of the total reported emissions of
global power plants. (a) The red curve shows the proportion of an-
nual estimated emissions to the total emissions of all countries with
observations in 2018 (from EDGAR2018 v6.0 1A1a). (b) The red
curve in the right figure shows the percentage of estimated emis-
sions in comparison to the country’s total power plant emissions
according to the inventory.

the fact that OCO-2 and OCO-3 are only capable of seeing
a fraction of the emitted CO2 emissions due to the limited
spatial coverage of the instrument and the often cloudy con-
ditions during observation.

6 Summary and conclusions

In this study, we compared two widely used methods for esti-
mating point source emissions of power plants: the Gaussian
plume model method and cross-sectional flux method. We
applied the two methods to carefully selected power plant
plumes in the US observed by OCO-2 and OCO-3. The ac-
curacy of the two methods is validated with time-corrected
hourly reported emissions from EPA. We found that the
cross-sectional flux method has a larger variability than the
GPM method. This is because when the angle between the
orbit and the wind direction is large, the actual cross-section
shape is asymmetric Gaussian. But the resolution of OCO
observations is not sufficient to fully fit asymmetric Gaus-
sian curves. However, the GPM method directly simulates
XCO2 enhancements at any downwind position using the
wind direction of the emission source, avoiding this issue and
obtaining more stable results. We used the Gaussian plume
model method to evaluate the impact of three kinds of wind
field datasets (WPBL, WERA and WMERRA) on the ac-
curacy of emission estimates of isolated power plants. The
results show that, for a single case, the correlation between
reported emission and estimated emission driven by WPBL
is the highest. When there are multiple observations of the
same power plant, the correlation between the average and
total estimated emissions of the power plant and the reported
emissions is significantly improved, from R2

= 0.40 to 0.87.
No matter what kind of wind field data are used, the Gaus-
sian plume model has a high correlation R2 of the total emis-
sions from power plants from multiple observations, which is
above 0.5. In general, obtaining more observation data from

more instruments can significantly reduce the uncertainty of
estimated emissions of power plants.

Once having selected the best emission estimation method
for isolated power plants, we applied this simple and fast
method globally. We developed a procedure to automatically
detect the emission signals of power plants and, after a visual
selection, obtained 106 global power plant emission observa-
tions of 78 power plants.

Unlike continuous imaging satellites, OCO-2 and OCO-
3 scans cover a very limited part of the Earth’s surface on
a daily basis. By removing the cloud impact and only ex-
tracting the downwind emission plumes of power plants, the
available observations are further reduced. The extremely
limited number of cases from the existing satellites makes
it impossible to capture the time variability of power plants,
whether diurnal or seasonal. In addition, only isolated emis-
sion hotspots are estimated here to avoid the impact of adja-
cent emission sources.

This study has only considered three sources of uncer-
tainty. Future research may investigate additional sources,
such as the assumption of steady-state conditions and the
plume rise, to better understand their impact on the re-
sults. With the future increase in observation sensors with
improved spatial-temporal resolution, such as the planned
Copernicus Carbon Dioxide Monitoring mission (CO2M)
and the Japanese Global Observing Satellite for Greenhouse
gases and Water cycle (GOSAT-GW), the probability of ob-
serving a CO2 plume will greatly increase. The abundant ob-
servation data obtained by the new generation of satellites
will contribute to the monitoring of power plant emissions
worldwide. The emissions of power plants in the background
of other emission signals may also be monitored due to high-
resolution observations and increased swath width, and the
uncertainty of the estimated emissions of power plants will
further decrease.
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of OCO-3 bias-corrected XCO2 retrievals was downloaded
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dard Earth Science Data and Information Services Center
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