

Supplement of

Amino acids, carbohydrates, and lipids in the tropical oligotrophic Atlantic Ocean: sea-to-air transfer and atmospheric in situ formation

Manuela van Pinxteren et al.

Correspondence to: Hartmut Herrmann (herrmann@tropos.de)

The copyright of individual parts of the supplement might differ from the article licence.

- 31 Figure S1: Sampling stations of the MarParCloud: Cape Verde Atmospheric Observatory
- 32 (CVAO) and seawater sampling site (adopted from Triesch et al. 2021b)
- 33
 34
 35
 36
 37
 38
 39
 40
 41
 42

Figure S2: 96 hour back trajectories calculated on an hourly basis within the intervals of the aerosol particle filter sampling at the CVAO for selected time periods, using the NOAA HYSPLIT model (HYbrid Single-Particle Lagrangian Integrated Trajectory, http://www.arl.noaa.gov/ready/hysplit4.html, 26.07.19) in the ensemble mode at an arrival height of 500 m ± 200 m (van Pinxteren et al., 2010), adopted from van Pinxteren et al. (2020). The meteorological conditions observed during the campaign were typical for this site with strong north-easterly wind (30 to 60 °) and are reported in van Pinxteren et al. (2020).

- ____

- ____

- Tab. S1: Overview of the sampling details. The MarParCloud campaign took place from 13
- 67 September 2017 13 October 2017 and details are given in van Pinxteren et al. (2020).
- 68 Selected samples from the campaign were analysed for the OC groups. Further details are
- 69 given in van Pinxteren et al. (2020), and (Triesch et al., 2021a;Triesch et al., 2021b).

Type of sample	Sampling location	Types of samples	Type of analysis / number of samples	Sample treatment and analysis
SML	Bahia das Gatas: 16°53'17'N, 24°54'25'E	Water samples, Spot samples	DL: n = 6 DAA: n = 6 DCHO: n = 3	DL: extract in dichloromethane, filtration (GF-F); analysis: TLC-FID ^{*1} DAA, DCHO: desalination, filtration (0.2 μm), hydrolysis; analysis: UHPLC/ESI-Orbitrap-MS ^{*2} (DAA), HPAEC-PAD ^{*3} (DCHO)
Bulk water	Bahia das Gatas: 16°53'17'N, 24°54'25'E	Water samples, Spot samples	DL: n = 13 DAA: n = 3 DCHO: n = 3	DL: extract in dichloromethane, filtration (GF-F); analysis: TLC-FID ^{*1} DAA, DCHO: desalination, filtration (0.2 μm), hydrolysis; analysis: UHPLC/ESI-Orbitrap-MS ^{*2} (DAA), HPAEC-PAD ^{*3} (DCHO)
PM1	CVAO: 16°51′'49'N, 24°52'02'E sampler installed on a tower: 30 m height	Quartz fiber filters samples, comprise a 24 h intervall	DL: n = 14 AA _{aer} : n = 7 CHO _{aer} : n = 8 Na ⁺ : n = 14 OC: n = 8 EC: n = 8	Lipids _{aer} : extract in dichloromethane, filtration (GF-F); analysis: TLC-FID ^{*1} AA_{aer} , CHO _{aer} : aqueous extract, filtration (0.2 µm), hydrolysis; analysis: UHPLC/ESI-Orbitrap-MS ^{*2} (AA _{aer}), HPAEC-PAD ^{*3} (CHO _{ae}) OC/EC: filter piece directly measured; analysis: Sunset Analyzer Na ⁺ : aqueous extract, filtration (0.45 µm); analysis: ion chromatography

- ^{*1} Thin-layer chromatography -flame ionisation detector, ^{*2} Ultra-high performance liquid chromatography
- 71 with electrospray ionization and Orbitrap mass spectrometry (UHPLC/ESI-Orbitrap-MS),^{*3} High-Performance
- 72 Anion-Exchange Chromatography coupled with Pulsed Amperometric Detection
- 73
- Table S2: Concentration of individual monosaccharides, after hydrolysis step, ($\mu g L^{-1}$) in the
- SML and bulk water samples. For the calculation of the EF_{SML} ($EF_{SML} = c_{SML} / c_{bulkwater}$) the
- 76 SML sample was related to the bulk water sample from the same day.

Sample ID	Sampling date	Fuc	GalN	Rha	Ara	GlcN	Gal	Glc	Xyl+Man	MurAc	GalAc	GlcAc
	27.09.											
SML 7	2017	9.9	3.9	8.7	7.6	5.2	18.1	35.0	10.3	2.1	7.2	1.0
SML 7	27.09.											
(2)	2017	10.5	4.4	9.1	7.5	5.2	19.2	30.6	9.4	2.4	7.4	1.0
	03.10.											
SML 10	2017	8.2	3.0	6.7	6.9	4.2	17.5	17.6	10.0	2.1	8.3	1.9
SML 10	03.10.											
(2)	2017	9.1	3.5	7.4	7.5	4.8	18.6	23.5	10.5	2.5	7.3	3.3
	07.10.											
SML 14	2017	5.3	2.1	5.0	4.0	2.6	8.8	14.3	4.9	3.2	1.7	1.5
SML 14	07.10.											
(2)	2017	6.1	2.4	5.0	4.1	2.6	8.4	13.0	4.6	3.9	1.8	1.9
	27.09.											
ULW 7	2017	4.6	1.6	4.1	3.8	2.4	9.0	24.9	5.4	1.0	8.9	2.7
ULW 7	27.09.											
(2)	2017	4.6	1.4	4.3	3.6	2.3	8.7	30.1	4.5	1.0	7.3	1.8
	03.10.											
ULW 10	2017	7.2	2.8	7.1	5.8	3.5	14.3	16.0	4.8	1.0	7.5	4.2
ULW 10	03.10.											
(2)	2017	6.9	3.0	7.5	6.5	3.8	13.9	13.9	5.3	1.0	8.2	0.4
	07.10.											
ULW 14	2017	7.9	3.0	7.3	7.7	3.9	14.4	30.5	7.3	2.0	6.9	3.5
ULW 14	07.10.											
(2)	2017	7.5	3.4	8.1	6.7	4.5	13.1	28.2	7.4	1.8	5.5	3.9

Table S3: Concentration of individual amino acids, after hydrolysis step, (μ g L⁻¹) in the SML

and bulk water samples. For the calculation of the EF_{SML} ($EF_{SML} = c_{SML} / c_{bulkwater}$) two groups

80 were constructed. The sum of amino acids from SML 16 and ULW 16 were related to each

81 other (group 1), all other SML values were summed up and averaged and divided by all other

82 (summed up and averaged) bulk water values. The final EF SML was calculated as the

83 average between these two values.

Sample ID	Sampling date	Gly	Ala	Ser	Glu	Thr	Pro	Tyr	Val	Phe	Asp	lso	Leu
	28.09.												
SML 8	2017	50.8	39.9	70.4	0.2	17.1	12.2	2.9	15.6	2.2	19.3	7.5	11.1
	03.10.												
SML 10	2017	22.6	7.4	16.3	0.2	1.3	2.5	0.1	2.5	0.4	0.2	0.3	0.9
	04.10.												
ULW 11	2017	5.7	0.2	0.2	0.2	38.2	0.2	0.1	25.8	4.0	38.3	0.2	0.2
	05.10.												
ULW 12	2017	33.6	12.9	38.9	0.2	4.7	3.5	0.1	5.1	1.0	3.9	0.2	3.7
	06.10.												
SML 13	2017	24.3	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.1
	07.10.												
SML 14	2017	38.1	14.1	30.0	0.2	3.1	3.9	0.1	5.6	1.7	9.1	1.9	9.9

	10.10.												
SML 16	2017	36.5	1.2	5.0	0.2	0.8	1.5	0.1	2.4	0.2	0.2	0.2	0.2
	10.10.												
ULW 16	2017	17.4	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2
	20.09.												
SML 3	2017	163.2	93.4	156.9	54.9	28.1	25.4	0.7	28.5	5.4	54.9	9.7	25.7

85 Table S4: Concentration of individual monosaccharides, after hydrolysis step, (pg m⁻³) in the

 PM_1 (detection limit = 5 pg m⁻³).

Sample ID	Start sampling (UTC)	Stop sampling (UTC)	Fuc	GalN	Rha	Ara	GlcN	Gal	Glc	Xyl+Man	MurAc	GalAc	GlcAc
PM1 924	19.09.2017 20:00	20.09.2017 20:00	44	21	5	113	5	112	422	95	187	193	5
PM1 926	22.09.2017 15:00	23.09.2017 15:00	22	13	5	5	5	28	128	138	5	103	5
PM1 927	23.09.2017 15:00	24.09.2017 15:00	27	5	5	5	5	66	917	18	5	454	5
PM1 928	24.09.2017 15:00	25.09.2017 15:00	49	31	5	345	504	107	553	82	5	1147	5
PM1 934	30.09.2017 15:00	01.10.2017 15:00	27	5	5	5	32	35	5	18	5	84	5
PM1 937	02.10.2017 15:00	03.10.2017 15:00	5	5	5	54	5	131	141	71	112	66	5
PM1 945	08.10.2017 15:00	09.10.2017 15:00	5	5	5	5	5	5	50	5	5	5	5
PM1 946	09.10.2017 15:00	10.10.2017 15:00	22	5	5	5	5	5	77	45	5	5	5

- Table S5: Concentration of individual amino acids, after hydrolysis step, (pg m⁻³) in the PM₁
- 91 (detection limit = 2 pg m^{-3}).

Sample ID	Start sampling (UTC)	Stop sampling (UTC)	Gly	Ala	Ser	Glu	Thr	Pro	Tyr	Val	Phe	Asp	lso	Leu
PM1	15.09.2017	16.09.2017												
920	15:00	15:00	1208	794	136	236	562	118	144	51	5	32	30	1208
PM1	18.09.2017	19.09.2017												
923	20:00	20:00	318	528	7	84	148	58	46	3	1143	6	4	318
PM1	23.09.2017	24.09.2017												
927	15:00	15:00	571	811	1039	302	462	420	325	45	5	61	172	571
PM1	26.09.2017	27.09.2017												
930	15:00	15:00	82	387	5	24	45	7	17	5	388	5	5	82
PM1	28.09.2017	29.09.2017												
932	15:00	15:00	668	604	108	149	204	119	111	37	5	22	29	668
PM1	05.10.2017	06.10.2017												
940	15:00	15:00	124	458	199	45	128	69	70	12	5	20	38	124
PM1	07.10.2017	08.10.2017												
942	15:00	15:00	275	805	5	38	170	26	3	-	1168	5	5	275

- 95 Table S6: Relative composition (mol%) of the individual compounds in the bulk water, the SML and
- 96 the aerosol particles. Italic values correspond to half the detection limit. Classification of the lipids
- 97 after (Parrish, 1988;Parrish and Wells, 2021).

	bulk water	SML	aerosol	classification
		amino	acids	
Phe	2.15	0.88	0.66	neutral/polar
Gly	23.68	29.37	35.33	neutral/polar
Ser	16.39	24.42	18.68	neutral/polar
Tyr	0.14	0.36	0.23	neutral/polar
Thr	17.94	4.43	4.45	neutral/non-polar
Ala	5.56	13.67	11.67	neutral/non-polar
Pro	1.59	3.98	4.79	neutral/non-polar
Val	12.87	4.77	3.70	neutral/non-polar
Leu	1.65	4.19	1.33	neutral/non-polar
lso	0.19	1.73	0.63	neutral/non-polar
Asp	17.66	7.33	12.35	acidic
Glu	0.19	4.87	6.16	acidic
		carbohy	drates	
GlcN	4.29	4.77	7.99	basic
GalN	3.23	3.76	1.84	basic
Fuc	8.88	10.46	3.08	neutral
Rha	8.82	8.91	1.76	neutral
Ara	8.56	8.73	8.75	neutral
Gal	15.39	17.56	6.04	neutral
Glc	30.07	25.96	28.98	neutral
Xyl+Man	7.24	9.63	5.52	neutral
				acidic (bacterial
MurAc	1.73	2.25	19.03	tracer)
GalAc	8.59	6.06	7.15	acidic
GlcAc	3.21	1.91	9.87	acidic
		lipio	ls	T
HC	44.07	30.89	39.00	hydrocarbon
ST	0.28	0.53	0.94	sterol
PIG	2.09	1.28	0.50	pigments
ME	0.36	1.34	no data	methyl ester
				membrane
WE TC	0.61	0.80	no data	component
	0.91	1.1/	8.03	metbolic reserve
I FFA	13.65	17.32	21.27	degradation lipids
ALC	1.22	2.26	8.49	degradation lipids
1,3DG	no data	0.29	0.17	degradation lipids
1,2 DG	0.07	0.42	0.46	degradation lipids
MG	0.19	0.19	0.43	degradation lipids

MGDG	16.77	18.44	3.42	glycolipids
DGDG	0.35	3.49	2.84	glycolipids
SQDG	2.11	2.01	5.55	glycolipids
PE	6.17	8.40	4.74	polar lipids
PG	11.12	11.04	4.17	polar lipids
PC	0.03	0.15	no data	polar lipids

99

100 Table S7: Concentration of organic carbon (OC) and elemental carbon (EC) in μ g m⁻³) in the

101 PM₁.

Sample ID	Start sampling (UTC)	Stop sampling (UTC)	OC	EC
PM1 922	17.09.2017 20:00	18.09.2017 20:00	0.310	0.127
PM1 923	18.09.2017 20:00	19.09.2017 20:00	0.274	0.131
PM1 924	19.09.2017 20:00	20.09.2017 20:00	0.201	0.136
PM1 927	23.09.2017 15:00	24.09.2017 15:00	0.169	0.053
PM1 929	25.09.2017 15:00	26.09.2017 15:00	0.202	0.115
PM1 932	28.09.2017 15:00	29.09.2017 15:00	0.130	0.091
PM1 933	30.09.2017 15:00	29.09.2017 15:00	0.13	0.054
PM1 934	30.09.2017 15:00	01.10.2017 15:00	0.150	0.069

102

103

Tab. S8: Average concentration and respective carbon contribution of the OC groups

OC group	ng m⁻³	ng C m ⁻³	% OC	Reference
		carbohydrates		
DCHO	1.5	0.6	0.30	this work
		amino acids		
DAA	2.4	0.8	0.41	this work
		lipids (DL)		
HC	32.1	27.25	13.56	(Triesch et al., 2021b)
TG	21.9	16.83	8.38	(Triesch et al., 2021b)
FFA	18.5	14.08	7.00	(Triesch et al., 2021b)
ALC	6.3	5.00	2.49	(Triesch et al., 2021b)
1,3DG	0.2	0.19	0.09	(Triesch et al., 2021b)
ST	2.6	1.74	0.87	(Triesch et al., 2021b)
1,2DG	0.5	0.41	0.20	(Triesch et al., 2021b)
PIG	0.9	0.55	0.27	(Triesch et al., 2021b)
MG	0.8	0.61	0.30	(Triesch et al., 2021b)
MGDG	3.4	1.51	0.75	(Triesch et al., 2021b)
DGDG	4.0	1.88	0.94	(Triesch et al., 2021b)
SQDG	14.2	8.77	4.36	(Triesch et al., 2021b)
PG	3.8	1.38	0.69	(Triesch et al., 2021b)

PE	10.5	6.62	3.29	(Triesch et al., 2021b)
		others		
				(van Pinxteren et al.,
oxalic acid*	2.0	0.55	0.27	2015)
				(van Pinxteren et al.,
amine	17.0	8.84	4.40	2015)
				(van Pinxteren et al.,
MSA	14.0	1.76	0.88	2015)
				(van Pinxteren et al.,
carbonyls	0.1	0.02	0.01	2015)

*Oxalic acid was the dominant dicarboxylic acid and all other dicarboxylic acids were below LOD.

105

106 References:

107

Parrish, C. C.: Dissolved and particulate marine lipid classes - a review, Marine Chemistry, 23,
17-40, 10.1016/0304-4203(88)90020-5, 1988.

Parrish, C. C., and Wells, J. S.: Determination of Total Lipid and Lipid Classes in Marine Samples,
 Jove-Journal of Visualized Experiments, 10.3791/62315, 2021.

Triesch, N., van Pinxteren, M., Engel, A., and Herrmann, H.: Concerted measurements of free
amino acids at the Cape Verde Islands: High enrichments in submicron sea spray aerosol particles
and cloud droplets, Atmos. Chem. Phys., 21, 163–181, 2021a.

Triesch, N., van Pinxteren, M., Frka, S., Stolle, C., Spranger, T., Hoffmann, E. H., Gong, X., Wex,
H., Schulz-Bull, D., Gašparović, B., and Herrmann, H.: Concerted measurements of lipids in seawater
and on submicrometer aerosol particles at the Cabo Verde islands: biogenic sources, selective
transfer and high enrichments, Atmos. Chem. Phys., 21, 4267-4283, 10.5194/acp-21-4267-2021,
2021b.

van Pinxteren, D., Brueggemann, E., Gnauk, T., Mueller, K., Thiel, C., and Herrmann, H.: A GIS
based approach to back trajectory analysis for the source apportionment of aerosol constituents and
its first application, Journal of Atmospheric Chemistry, 67, 1-28, 10.1007/s10874-011-9199-9, 2010.

van Pinxteren, M., Fiedler, B., van Pinxteren, D., linuma, Y., Koertzinger, A., and Herrmann, H.:
Chemical characterization of sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine
and biomass burning influences, Journal of Atmospheric Chemistry, 72, 105-125, 10.1007/s10874015-9307-3, 2015.

127 van Pinxteren, M., Fomba, K. W., Triesch, N., Stolle, C., Wurl, O., Bahlmann, E., Gong, X. D., 128 Voigtlander, J., Wex, H., Robinson, T. B., Barthel, S., Zeppenfeld, S., Hoffmann, E. H., Roveretto, M., Li, 129 C. L., Grosselin, B., Daele, V., Senf, F., van Pinxteren, D., Manzi, M., Zabalegui, N., Frka, S., Gasparovic, 130 B., Pereira, R., Li, T., Wen, L., Li, J. R., Zhu, C., Chen, H., Chen, J. M., Fiedler, B., Von Tumpling, W., 131 Read, K. A., Punjabi, S., Lewis, A. C., Hopkins, J. R., Carpenter, L. J., Peeken, I., Rixen, T., Schulz-Bull, D., Monge, M. E., Mellouki, A., George, C., Stratmann, F., and Herrmann, H.: Marine organic matter in 132 the remote environment of the Cape Verde islands - an introduction and overview to the 133 134 MarParCloud campaign, Atmospheric Chemistry and Physics, 20, 6921-6951, 10.5194/acp-20-6921-135 2020, 2020.

136