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Section S1. Converting the volumetric soil moisture to the gravimetric soil moisture. 30 
 31 
The conversion from volumetric to gravimetric soil moisture is documented in many papers, such 32 
as in Oleson et al. (2013). We followed Kok et al. (2014b) and adopted a globally constant soil 33 
particle density of 𝜌! = 2650	kg	m"#. Then we used the MERRA-2 global soil porosity (poros, 34 
𝜑, Fig. S1b) to yield the bulk density of soil 𝜌$: 35 
𝜌$ = 𝜌!(1 − 𝜑)          (S1) 36 
Then, using the water density of 𝜌% = 1000	kg	m"#, we converted the MERRA-2 volumetric soil 37 
moisture (SFMC, 𝜃, m3 water / m3 soil, Fig. S1a) to gravimetric moisture 𝑤 (kg water / kg soil, 38 
Fig. S1c): 39 
𝑤 = &!

&"
𝜃           (S2) 40 
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Section S2. A discussion on other approaches of combining rock and vegetation drag 50 
partition effects 51 
 52 

To our knowledge only a few approaches explicitly proposed to represent both rock and 53 
vegetation roughness in one drag partition scheme, but they all have different limitations. The first 54 
approach was proposed by Darmenova et al. (2009) and subsequently modified by Foroutan et al. 55 
(2017): They assumed rock 𝜆 for different land types (e.g., Table 2 in Darmenova et al., 2009), 56 
and combined rock 𝜆 with vegetation 𝜆 (from Eq. 9b) using Darmenova’s double drag partition 57 
equation (see Eq. 5 in Foroutan et al., 2017). The second approach was also proposed by 58 
Darmenova et al. (2009): They provided measured rock 𝑧'( and vegetation 𝑧'( for different land 59 
types (Table 1 in Darmenova et al., 2009), determined the dominant land type (bare or vegetated) 60 
for each grid, and then applied M&B95 to calculate drag partitioning. The third approach was 61 
proposed by Klose et al. (2021): They provided a relation between vegetation 𝜆, ℎ, and 𝑧'(, plus 62 
a relation between vegetation height ℎ and LAI, and thus derived the vegetation roughness length 63 
𝑧'( as a function of LAI. They then used Prigent et al. (2012) satellite measurements of 𝑧'( (time-64 
invariant, static, mostly representing rocks), and took the larger 𝑧'( between Prigent’s static 𝑧'( 65 
and their dynamic vegetation 𝑧'(. They finally used M&B95 to calculate drag partitioning with 66 
𝑧'(. All three approaches tried to represent both rock and vegetation roughness using either 𝑧'( or 67 
𝜆, which was problematic because rocks are better measured in 𝑧'( by satellites and plants are 68 
better parameterized in 𝜆. For example, globally gridded rock 𝜆 was not available and thus the first 69 
and second approaches needed to assign 𝜆 for rocks as a function of land type, which can be 70 
inaccurate and highly uncertain because 𝜆 also depends on other factors apart from the land type. 71 
On the other hand, the second and the third approaches assumed one dominant land type and used 72 
one single (either rock or vegetation) 𝑧'( to represent the whole grid, but ignored the fact that a 73 
grid can be partly covered by plants and partly by rocks, which was only accounted for by the first 74 
approach (the double drag partition equation is a function of rock 𝜆, plant 𝜆, and 𝑓)). Note that the 75 
second and the third approaches had to choose either rock or plant 𝑧'( because adding up the rock 76 
𝑧'(  and plant 𝑧'(  is not allowed (𝑧' is not additive, whereas 𝜆 is additive). The same problem 77 
would not occur if there were global scale observations of rock roughness measured in density 𝜆, 78 
which could either be directly applied to the double drag partition equation in Darmenova et al. 79 
(2009) or be added upon plant 𝜆 and then converted to 𝑧'( in Klose et al. (2021). All in all, due to 80 
insufficient and inadequate observations, all the aforementioned approaches struggle to accurately 81 
represent the combined effect of vegetation and rocks on the drag partition and dust emission. In 82 
Sect. 3.2, we will propose a novel approach that incorporates both roughness of rocks and plants 83 
and equally respects the 𝑧'(  and 𝜆  from both schools of drag partition parameterizations, 84 
quantifying the drag partitions of rocks and plants into one hybrid drag partition factor 𝐹*++. 85 
 86 
 87 
 88 
  89 



Section S3. Description of the Comola et al. (2019) intermittency scheme coupled with Kok 90 
et al. (2014b) dust emission equation 91 
 92 

In the C19 scheme, the dust emission flux 𝐹, is calculated using the impact threshold (𝑢∗./) 93 
instead of either the fluid (𝑢∗+/) or a combined threshold (𝑢∗/). Following the reasoning in Comola 94 
et al. (2019b), we update K14 (Eq. 7) with 𝑢∗./ instead of 𝑢∗/ as the threshold (see Sect. 2 for the 95 
description of K14 and dust emission thresholds): 96 

𝐹, = 𝐶/01*𝐶,𝑓$(2*𝑓34(5
&#60∗%& "0∗'(
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0∗'(
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-∗%(/ 	 for 𝑢∗8 > 𝑢∗./   (S3a) 97 

where 𝑢∗8/ = 𝑢∗+/<𝜌(/𝜌(' is the same standardized fluid threshold as in the default K14 scheme. 98 
Because 𝑢∗./ < 𝑢∗+/, this modified equation accounts for more small dust fluxes that occur due to 99 
turbulent winds intermittently driving transport even when 𝑢∗ < 𝑢∗+/. These fluxes are important 100 
over marginal source regions for which emissions are otherwise missed by employing 𝑢∗+/ as the 101 
threshold (Comola et al., 2019b). 102 

Next, we account for the intermittency effect on dust emissions by following C19 in 103 
introducing the intermittency factor η, which denotes the fraction of time that saltation is active in 104 
a model time step (e.g., ~30 mins). 𝜂 corrects the horizontal sand saltation flux, but since dust 105 
emission flux scales with saltation flux (Shao et al., 1993), 𝜂 is also the fraction of time that dust 106 
emission is active in a model timestep. We thus account for the effect of intermittency by 107 
multiplying the dust emission flux by 𝜂 (Comola et al., 2019): 108 
𝐹,,: = 𝜂𝐹,           (S3b) 109 
where 𝜂 ∈ [0,1].  110 
 C19 determines 𝜂 using the average wind speed, wind fluctuations, and the saltation (and 111 
thus dust emission) thresholds. C19 parameterizes 𝜂  using information at the typical saltation 112 
height of 𝑧;<= = 0.1 m, so we need to first define 𝑢+/, 𝑢./, and 𝑢8 to be 𝑢∗+/, 𝑢∗./, and 𝑢∗8 translated 113 
to the height of 𝑧;<= using the log law of the wall:  114 
𝑢>(𝑧;<=) =

0∗1
?
ln 9@234

@/#
:          (S4a) 115 

where subscript 𝑋 could be 𝑓𝑡, 𝑖𝑡 or	𝑠, 𝑢(𝑧;<=) is the wind speed at saltation height 𝑧;<=, 𝑧'( is the 116 
aeolian roughness length taken here as 10"A m for simplicity (see Martin and Kok, 2018), and k = 117 
0.386 is the von Kármán constant in the atmospheric boundary layer (Andreas et al., 2006). To 118 
parameterize the effect of turbulent wind fluctuations on saltation intermittency, we further define 119 
𝑢I  to be the instantaneous wind speed at 𝑧;<=, which is described by a normal distribution with a 120 
mean equal to the model time step mean 𝑢 and a standard deviation 𝜎0B% (Chu et al., 1996), and 𝑢8 121 
and 𝜎0B% are defined for a time interval of > 10 min. Comola et al. (2019b) then showed that the 𝜎0B 122 
parameterization using the Monin-Obukhov similarity theory (MOST) worked well for in-situ 123 
measurements of horizontal saltation fluxes. 𝜎0B is height invariant and can be parameterized using 124 
MOST as (Panofsky et al., 1977): 125 

𝜎0B% = 𝑢∗8 912 − 0.5
@'
C
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C
≥ 0     (S4b) 126 

where L is the Monin-Obukhov length and 𝑧. is the planetary boundary layer (PBL) height. In 127 
boundary-layer meteorology, turbulence is generated by mechanical shear and buoyancy (Stull, 128 
1988). The shear-driven turbulence in a flow scales with 𝑢∗8 , while the buoyancy-driven 129 
turbulence scales with 𝑧./𝐿 . According to Eq. (S4b), high-frequency wind fluctuations (𝜎0B% ) 130 
increase with shear (𝑢∗8 > 0) and buoyancy (L < 0). For larger wind fluctuations 𝜎0B%, it is easier 131 



for 𝑢I8 to sweep across 𝑢./ and shut off dust emission, leading to 𝜂 < 1. As a result, the emission 132 
flux predicted by our scheme will be smaller than the other existing parameterizations for 𝑢8 >133 
𝑢+/. If 𝑢8 ≫ 𝑢+/, 𝑢I8 will be less likely to sweep across 𝑢./ and 𝜂 will approach 1. Furthermore, 134 
when 𝑢./ < 𝑢8 < 𝑢+/ , 𝜂 will be much smaller than one and closer to zero, leading to a small 135 
emission flux when other parameterizations predict a zero emission flux. When 𝑢8 < 𝑢./, 𝜂 could 136 
also be greater than zero when 𝜎0B% is large enough so that the instantaneous 𝑢I8 crosses through 𝑢./, 137 
but the DPM employed would not generate any emission anyway according to Eq. S3a. 138 

With saltation-height variables defined, the total fraction of time 𝜂 when saltation is active 139 
in a model timestep is then formulated as: 140 
𝜂 = 1 − 𝑃+/ + 𝛼(𝑃+/ − 𝑃./)         (S5) 141 
where 𝑃./ = 𝑃(𝑢I8 < 𝑢./) is the cumulative probability that the instantaneous wind 𝑢I  does not 142 
exceed the impact threshold 𝑢./, and 𝑃+/ = 𝑃(𝑢I8 < 𝑢+/) is the cumulative probability that 𝑢I8 does 143 
not exceed the fluid threshold 𝑢+/. The fluid threshold crossing fraction 𝛼 is defined as the fluid 144 
threshold crossing rate Cft, which is the number of times 𝑢I8 sweeps across 𝑢+/ per second, divided 145 
by the total crossing rate Cft + Cit, which is the number of times 𝑢I8 sweeps across 𝑢+/ and 𝑢./ per 146 
second: 𝛼 = F5(

F5(GF'(
. 𝛼  approaches 1 when instantaneous wind 𝑢I8  mostly crosses 𝑢+/ , and 147 

approaches 0 when 𝑢I  mostly crosses 𝑢./. C19 showed that 𝛼 is a function of 𝑢8,	𝜎0B, 𝑢./, and 𝑢+/: 148 
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such that 𝛼 → 1 in the limit of 𝑢8 ≫ 𝑢+/, and 𝛼 → 0 for 𝑢8 → 0 and 𝜎0B% → 0. As for 𝑃+/ and 𝑃./, 150 
assuming a Gaussian distribution for 𝑢I , i.e., 𝑢I8~	𝒩(𝑢8, 𝜎0B%

	H ), 𝑃+/ and 𝑃./ can be expressed using 151 
the error functions erf(𝑥) as: 152 
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T1 + erf X05("0%

√HI-6%
YZ         (S6b) 153 

𝑃./ =
D
H
T1 + erf X0'("0%

√HI-6%
YZ         (S6c) 154 

Within a model timestep, dust emission is continuous for the fraction of time 1 − 𝑃+/ when 155 
𝑢I8 > 𝑢+/, and for the fraction of time 𝑃+/ − 𝑃./ dust emission is in the hysteresis regime (𝑢./ <156 
𝑢I8 < 𝑢+/) where dust emission can only be active for a fraction of time 𝛼 when 𝑢I8 crossed 𝑢+/ 157 
more recently than 𝑢./ in the hysteresis regime. Using Eqs. S3–S6, we computed 𝜂 from Eq. S3b, 158 
yielding the dust emission flux 𝐹,,: that accounts for the effects of intermittency. 159 

We note that the C19 scheme is designed for GCMs and RCMs in RANS mode (not in LES 160 
mode), regardless of the time step used. 161 
 162 
  163 



Section S4. Calculating the Obukhov length L from MERRA-2 meteorological fields 164 
 165 
MERRA-2 does not include the Obukhov length L, but outputs several variables that allows us to 166 
compute L, using (Bonan, 2015; Lee and Buban, 2020): 167 
𝐿 = −𝜌(𝑐!𝑇𝑢∗#/𝑘𝑔𝐻,          (S7) 168 
where 𝜌( is air density (kg m-3), 𝑐! is the specific heat capacity of air under constant pressure (J 169 
kg-1 K-1), 𝑇 is air temperature (in this study we chose 𝑇D', which is air temperature at the height of 170 
10 m), 𝑢∗ is friction velocity (m s-1), 𝑘 is the von Kármán constant, 𝑔 is gravitational acceleration 171 
(m s-2), and 𝐻 is the sensible heat flux (W m-2). MERRA-2 provides sensible heat flux (SHLAND) 172 
and 𝑇D' (T10M), allowing us to directly compute 𝐿. 173 
 174 
 175 
  176 



Section S5. Comparing our simulated dust emission threshold against observationally 177 
derived Pu et al. (2020) threshold 178 
 179 

Here we make a comparison between our simulations of dust emission thresholds and the 180 
observationally based threshold estimate from Pu et al. (2020). They compared the wind speed 181 
distributions from reanalyses against observationally derived DAOD distributions to obtain a 182 
threshold wind speed 𝑢/,L0  for each gridbox (Fig. S13 below) that corresponds to a threshold 183 
DAOD value (i.e., 0.5 over arid regions and 0.05 over semiarid regions), above which is defined 184 
as a dust emission event.  185 

In this paper, we argue that dust emission equations should employ the impact threshold 186 
𝑢∗./. Given that 𝑢/,L0 was obtained by matching DAOD distributions against the distributions of 187 
wind speed 𝑢, 𝑢/,L0 is more relevant to the impact threshold 𝑢./ than the fluid threshold 𝑢+/ (i.e., 188 
the moisture effect is less relevant). Furthermore, Pu et al. (2020) used wind speed 𝑢 at 10 m 189 
instead of the soil surface wind speed 𝑢8	(= 𝑢𝐹*++) in the analysis, and thus 𝑢/,L0 captured a larger 190 
threshold wind speed that included the impact threshold 𝑢./ as well as the drag partition effect 𝐹*++ 191 
that inhibits saltation. To make a fair comparison, we compare here 𝑢/,L0 against our 𝑢∗./ divided 192 
by the drag partition factor, 𝑢∗.//𝐹*++, which is larger than 𝑢∗./. We used the log law of the wall 193 
(Eq. S4a) to change 𝑢∗./ from a velocity scale to a velocity of 𝑢./ at the level of z = 10 m, yielding 194 
𝑢.//𝐹*++ instead. 195 

In Fig. S13, the top two panels show the Pu et al. (2020) annual mean threshold 𝑢/,L0 (Fig. 196 
S13a) and the 𝑢.//𝐹*++ from our scheme (Fig. S13b). Both maps share similar spatial variability 197 
and magnitudes over certain regions such as Africa and Australia. The bottom panels show the 198 
bias (Fig. S13c) and ratio (Fig. S13d) of the thresholds, showing that the larger discrepancies occur 199 
over East and Central Asia. For instance, over the Kyzylkum, 𝑢/,L0 is 4–7 m s-1 higher than our 200 
threshold. In general, Fig. S13c shows that, over most emission source regions, 𝑢/,L0  and our 201 
threshold are relatively close to each other and differ by ~1–2 m s-1. This comparison shows that 202 
both methods derived dust emission thresholds of similar magnitudes and moderate spatial 203 
consistency. 204 

We note two small caveats to this comparison. First, 𝑢/,L0 was derived by using a DAOD 205 
threshold as a proxy for defining an emission event, such that the inferred threshold depends on 206 
the extent to which non-local dust is advected from upwind regions instead of emitted locally. This 207 
transport effect might cause a lower 𝑢/,L0 in downwind regions, such as over the Sahel, as seen in 208 
Fig. S13a. Therefore, the global spatial pattern of 𝑢/,L0  partially reflects the DAOD spatial 209 
variability. Second, our 𝑢.//𝐹*++ (Fig.13b) is an annual mean, including those high-LAI seasons 210 
when there are no dust emissions. Therefore, removing seasons with high LAI and low emissions 211 
would likely yield a smaller mean 𝑢.//𝐹*++ over semiarid regions, which might better represent 212 
the annual threshold wind speed (beyond which dust emission occurs). 213 

 214 
 215 
 216 
 217 
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Section S6. A detailed discussion of the caveats and limitations of the new dust emission 219 
scheme 220 
 221 
6.1. Soil median diameter representation 222 
 For our derived parameterization for the dry soil median diameter 𝐷g! , we obtained a 223 
relationship between 𝐷g! and silt+clay fraction for non-arid regions (LAI > 1), and a constant of 224 
𝐷g!' = 127 ± 47 μm for arid regions (LAI < 1). In theory, 𝐷g! should be a function of soil properties 225 
(Hillel, 1980) and therefore implicitly of space and time, but we obtained a simple relationship for 226 
𝐷g!	 over arid regions because 1) different studies provided measurements of different soil 227 
properties such that data are limited and insufficient for a more detailed statistical analysis, 2) the 228 
uncertainties of the measured soil PSDs are moderately large, and 3) most 𝐷g! measurements over 229 
arid regions found 𝐷g! within 40–250 μm (Fig. 1c), which limited the dry fluid threshold 𝑢∗+/' to 230 
vary within the relatively small range of ~0.204–0.268 m s-1 (from Eq. 2 assuming 𝜌( =231 
1.225	kg	m"# ). This range is about ten times smaller than the global range of the wet fluid 232 
threshold 𝑢∗+/ (~ 1 m s-1). Thus, using a single 𝐷g!'~127	𝜇m across all arid regions appears to be 233 
a reasonable approach given the current data availability. 234 
 A number of previous studies have also compiled their global 𝐷g! maps for calculating the 235 
dust emission threshold (Laurent et al., 2008; Tegen et al., 2002; Menut et al., 2013). These studies 236 
used global soil texture data (with known fractions 𝑓( of soil components including sand, silt, and 237 
clay) to determine gridded soil types using the soil texture triangle diagram (e.g., 238 
FAO/IIASA/ISRIC/ISS–CAS/JRC, 2012; Chatenet et al., 1996; Shirazi and Boersma, 1984), and 239 
calculated gridded 𝐷g!  maps by combining the soil component fractions 𝑓(  with the estimated 240 
aggregated particle size 𝐷g( of the soil components by a weighted mean 𝐷g! = ∑ 𝑓(𝐷g((  (Menut et 241 
al., 2013). Since these 𝐷g( values are based on measurements from Chatenet et al. (1996), these 242 
studies also took into account the aggregated sizes of the individual soil components. However, 243 
owing to insufficient data worldwide, these maps have not been verified against the measurements 244 
of the in-situ soil PSD. On the other hand, our results based on observations suggest that the spatial 245 
variability of 𝐷g! over deserts are relatively small compared to 𝐷g! over nonarid regions, and does 246 
not significantly correlate with soil texture and soil properties (see Eq. 14). Our results thus 247 
surprisingly suggest that the 𝐷g! parameterization can reasonably be much simplified into a global 248 
constant over arid regions. This approach is consistent with another current approach of employing 249 
a globally constant soil particle diameter (e.g., Zender et al., 2003a; Mahowald et al., 2006) and 250 
significantly different from another approach of employing a 𝐷g! map (e.g., see Fig. S10 for the 251 
input DgM map for the CHIMERE CTM; Mailler et al., 2017; Menut, 2018; Menut et al., 2021). 252 
Furthermore, the 𝐷g!  measurements showed a positive relationship with the silt+clay fraction 253 
𝑓8.4/G34(5 over the non-arid regions, which we attributed to the increasing cohesion between soil 254 
particles with the increasing silt+clay content. This is different from the negative 𝐷g!–𝑓8.4/G34(5 255 
relationship assumed by most past studies (Tegen et al., 2002; Laurent et al., 2008; Menut et al., 256 
2013) as they assumed that 𝐷g! increased with sand content (𝑓8(1,= 1 – 𝑓8.4/G34(5). We argue that 257 
our 𝐷g! – 𝑓8.4/G34(5  relationships are based on observations and should thus represent an 258 
improvement over the past assumed 𝐷g! –texture relationships. We anticipate that as more 259 
measurements emerge in the future, more statistical or machine learning modeling approaches can 260 



more robustly decipher the intricate relationships between the aggregated 𝐷g!  and the soil 261 
properties in order to further improve the representation of the global 𝐷g! map. 262 
 263 
 264 
6.2. Hybrid drag partition scheme 265 

For our drag partition scheme, we combined the drag partition for rocks (𝑓*++,2) from the 266 
Marticorena and Bergametti (1995) scheme with the drag partition for vegetation (𝑓*++,)) from the 267 
Okin (2008) scheme using a weighted mean approach employing the land cover fractions of rocks 268 
and vegetation, which is a novel approach. Nonetheless, our scheme still contains several major 269 
limitations. First and foremost, we calculate the rock 𝑓*++,2 using the Prigent et al. (2005) aeolian 270 
roughness length data derived from the ERS microwave sensor, but we could not completely 271 
separate rock roughness from vegetation roughness in the dataset. Marticorena et al. (2006) argued 272 
that ERS sensor measurements has relative small local incident angles such that the contribution 273 
from vegetation roughness is relatively small compared to the contribution from rock roughness. 274 
We also removed as much vegetation influence as possible on 𝑧'( by taking the minimum 𝑧'( out 275 
of the 12 available monthly data for all grids, but it is still possible that a small fraction of 276 
vegetation roughness remains. Thus, our approach of combining the time-invariant Pr05 𝑧'( (and 277 
𝑓*++,2) with the time-varying 𝑓*++,) will probably result in a small degree of double-counting of 278 
vegetation roughness in our drag partition scheme. We also note that the Pr05 data used the 279 
microwave backscatter coefficient as a proxy for inferring 𝑧'(, but it does not perfectly correlate 280 
with the 𝑧'( measured by the ground sites, and so there will be some corresponding errors in the 281 
Pr05 𝑧'( used in our drag partition scheme. 282 

Second, the land cover fraction areas used are obtained from the ESA CCI dataset in our 283 
drag partition scheme, which are annual mean and thus not season-dependent. The land cover of 284 
vegetation 𝐴)  in Eq. 21b should also be a function of time mainly because of the seasonally 285 
changing vegetation cover. However, most current land cover datasets provide annual data but not 286 
seasonal data, and thus 𝐴2  and 𝐴)  in Eq. 21b are only spatially varying within the year 2006. 287 
Furthermore, most land cover datasets only provide near-term land cover data (the farthest data 288 
goes back to the year 850; e.g., Klein Goldewijk et al., 2017). ESA CCI has a temporal coverage 289 
of 1992–2019, and so the dataset will represent relatively well for present-day scenarios but 290 
become less representative of paleoclimatological scenarios, for which the vegetation distributions 291 
differ from that in the present day, such as during the Green Sahara > 6000 years ago (Kutzbach 292 
et al., 1996; Bonan, 2015). 293 

A third limitation of our new drag partition scheme is that the Okin (2008) drag partition 294 
scheme requires the vegetation cover fraction 𝑓) as a proxy for vegetation density. In this study, 295 
we proposed LAI	~	𝑓) = 1 − 𝑓$(2*  as discussed in Eq. 18b. Since LSMs do not have accurate 296 
simulations of 𝑓) , there are only preliminary equations for calculating the bare and vegetated 297 
fractions proposed by previous papers (e.g., Mahowald et al., 2006; see discussions in Eq. 11 and 298 
Eq. 18b). However, Eq. 11 (and thus 𝑓) ~ LAI) only applies to regions with low LAI because 299 
leaves are mostly not overlapped; over regions with higher LAI, leaves start to overlap and LAI > 300 
𝑓) . Thus, this assumption could overestimate 𝑓)  and thus 𝑓*++,) , thereby underestimating dust 301 
emissions over vegetated regions (e.g., underestimations over western U.S. deserts in Fig. 7e). 302 
Thus, LSMs need a more accurate parameterization of 𝑓) to get a more accurate vegetation drag 303 
partition effect regardless of whether the Okin (2008) or the Raupach et al. (1993) scheme is used. 304 
Alternatively, LSMs could also read in observed 𝑓) from available satellite-derived products such 305 



as MODIS or AVHRR 𝑓), as done by Wu et al. (2016) for instance. We used the observed/modeled 306 
LAI instead of observed 𝑓), because LSMs actively simulate LAI, allowing the scheme to be used 307 
in past and future climates when vegetation cover observations are not available.  308 

A fourth important limitation is that O08 does not fundamentally distinguish the drag 309 
partitioning between different plant functional types (PFTs). O08 assumes that all short plants are 310 
hemispheric in shape and produce the same 𝑓*++,) if they have the same 𝑓) or LAI. In reality, short 311 
plants such as shrubs, herbaceous plants, and crops have vastly different shapes; some are far from 312 
hemispheric and can hardly be approximated by a simple geometry or shape. Nonetheless, this 313 
limitation is not unique to O08 but shared by other drag partition schemes such as Raupach et al. 314 
(1993), as their 𝑓*++,)  equations are also functions of 𝑓)  only and not functions of PFTs. More 315 
research is thus warranted in the future to better quantify the plant shapes and 𝑓*++,) of different 316 
PFTs. 317 
 318 

 319 
6.3. Dust emission intermittency scheme 320 

There are two important caveats about the Comola et al. (2019b) intermittency scheme. 321 
The first caveat is that it has exponential dependences on 𝑢∗8, 𝜎0B%, 𝑢∗./, and 𝑢∗+/ (see Sect. S3) and 322 
is thus very sensitive and vulnerable to the accuracy of the GCM simulations of the four variables. 323 
For instance, if the thresholds are overestimated by the threshold schemes, not only will emissions 324 
be underestimated but 𝜂 from C19 will also be close to zero and further worsen the low bias of the 325 
dust emissions. Therefore, a prerequisite of employing the C19 scheme is that the wind 𝑢∗8 and 326 
the thresholds should be adequately simulated and have reasonable ranges of variability throughout 327 
the year. If simulated well, 𝜂 will have reasonable day-to-day and seasonal fluctuations. Otherwise, 328 
𝜂 can constantly fall on one or zero and become unindicative of the boundary-layer dynamics 329 
temporal variability, and the resulting 𝜂 time series will further impact and worsen the temporal 330 
variability of the 𝐹,,: time series. 331 

There is a second caveat about a technical flaw in C19. When 𝑢∗8 < 𝑢∗./ in a time step, 332 
while Comola’s theory allows turbulence to generate instantaneous winds 𝑢I8  that exceed the 333 
impact and fluid thresholds and generate some emissions (even when the averaged 𝑢∗8 < 𝑢∗./ 334 
across the model timestep), the setup in Eq. S3 by nature could not allow emissions when 𝑢∗8 <335 
𝑢∗./. C19 allows 𝜂 > 0 (per Eq. S5) when 𝑢∗8 < 𝑢∗./. However, the way C19 was parameterized 336 
was such that C19 still depends on conventional dust emission equations such as Kok et al. (2014b) 337 
or Zender et al. (2003a), which by nature prohibit emissions when the mean 𝑢∗8 < 𝑢∗./ within a 338 
model time step (Eq. S3). This means that the C19 theory and the C19 dust emission 339 
parameterization contain an internal logical inconsistency, and the C19 scheme per se still does 340 
not generate emissions 𝐹,,: (Eq. S3b) for 𝑢∗8 < 𝑢∗./ (𝜂 > 0 per Eq. S5, but 𝐹,,: = 	𝜂𝐹, = 0 since 341 
𝐹, = 0 per Eq. S3). But, because the turbulent emissions in the 𝑢∗8 < 𝑢∗./ regime is small, the 342 
C19 formulation is still a good approximation for turbulent emissions, performing much better 343 
than the conventional timestep-constant models as demonstrated in Comola et al. (2019b). 344 
 345 
 346 
 347 
6.4 Reducing the grid scale-dependence of dust emission simulations 348 
 We produced the correction maps to scale the spatial variability of the low-resolution dust 349 
emission simulations, matching the spatial variability of the high-resolution emissions (Fig. 9) to 350 



reduce the scale-dependence of dust emission simulations. As such, it is an alternative to the 351 
computationally expensive but more fundamental solution of simulating dust emissions in the 352 
highest model resolution possible and then regrid to coarser resolution. Employing the scaling map 353 
𝐾q3  is different from the fundamental solution in the sense that the maps in Fig. 9 are time-354 
independent and derived by matching the annual total high-resolution emissions (Sect. 4.2). As 355 
seen in Fig. S10, the scaling map exhibits a moderate degree of seasonality, but employing an 356 
annual scaling map like Fig. 9 will already address a large part of the scale-dependence problem. 357 
We suggest GCMs and CTMs, which focus on present-day simulations, perform multiyear 358 
simulations in both high and native grid resolutions to obtain monthly climatological maps of 359 
scaling factors for present-day dust emission simulations. Afterwards, ESMs only need to read in 360 
the climatological monthly scaling maps to rescale the native grid dust emissions every month 361 
before passing the dust emissions to the atmospheric model component. If desired, instead of 362 
generating climatological maps, models can even choose to obtain transient (e.g., monthly) 𝐾q3 363 
maps as a time series for the past decades of the historical period (e.g., 1980–2020) so that the 364 
scaling maps contain a much better temporal variability in terms of seasonality, interannual and 365 
decadal variability, of the historical dust emissions than compared with the climatological scaling 366 
maps. 367 

Our proposed approach is an alternative to a more common approach, which is to employ 368 
a Weibull distribution to the GCM winds (Cakmur et al., 2004; Grini et al., 2005; Cowie et al., 369 
2015; Zhang et al., 2016; Menut, 2018; Tai et al., 2021). In the Weibull approach, in each time 370 
step the model assumes a Weibull PDF for each grid that is characterized by the modeled mean 371 
wind speed and a shape parameter 𝑘 representing the subgrid wind variability. 𝑘 could be a global 372 
constant (e.g., k = 4 in Menut, 2018), a parameterized function of the model mean wind speed (e.g., 373 
Grini et al., 2005), or a globally gridded map obtained by comparing coarse winds against high-374 
resolution winds (Ridley et al., 2013; Tai et al., 2021). A distinction between our approach and the 375 
Weibull approach is that while previous studies derived the shape parameter by comparing high- 376 
and low-resolution winds (e.g., Tai et al., 2021), we directly make use of the high- and low-377 
resolution input fields to calculate dust emissions (Figs. 8c and d) and then compare between the 378 
high- and low-resolution emissions. Therefore, the correction map 𝐾q3 (Fig. 9) captures subgrid 379 
wind variability due to subgrid spatial characteristics just like 𝑘 in the Weibull approach, and thus 380 
we anticipate some intrinsic spatial correlations between the 𝐾q3 and 𝑘 maps.  381 

However, there are three distinctions and advantages of our approach over the Weibull 382 
approach. The first and the most important one is that our approach accounts for not only the 383 
subgrid variability of wind but all other fields (𝑢∗8, 𝑤, LAI, etc). 𝐾q3 is obtained via comparing 384 
emissions across resolutions and thus its magnitude is a result of the subgrid variability of all input 385 
fields, whereas in Tai et al. (2021) the 𝑘 is obtained via comparing winds across resolutions and 386 
thus only captures subgrid wind variability. The second advantage is that our approach makes no 387 
assumption about the distributions of the subgrid variability of forcings. The Weibull approach is 388 
a parametric statistical method, which means the dust models need to assume the subgrid winds 389 
follow a Weibull distribution, but the subgrid spatial wind variability can deviate substantially 390 
from a Weibull distribution due to several reasons, such as complex terrain (Jiménez et al., 2011). 391 
Our method is non-parametric and thus more robust in capturing subgrid variability of multiple 392 
input fields at once. The third advantage is that our approach saves computational cost because it 393 
only needs to (1) find the 𝐾q3  map and (2) directly apply 𝐾q3  to correct the coarse emissions. 394 
Meanwhile, past studies needed to (1) find the 𝑘  map, (2) iteratively calculate emissions by 395 
looping across the Weibull PDF (3) sum across the PDF to yield the total emission, and (4) update 396 



the Weibull PDF for each grid and time step. Repeating step (2) for all times and grids is 397 
computationally very expensive.  398 

There is yet another alternative approach to account for subgrid variability of winds and 399 
other parameters. Some CTM studies (e.g., Meng et al., 2021) proposed to simulate dust emissions 400 
at the highest resolution possible and then store the results as a gridded emission inventory. Meng 401 
et al. (2021) proposed that CTMs do not need to simulate dust emissions and instead only need to 402 
regrid the stored gridded dust emissions to the desired grid resolutions. An advantage of their 403 
approach is clearly that their regridded dust emissions will have the correct spatial and temporal 404 
correlations with their high-resolution dust emission inventory, which means there will be no grid 405 
scale-dependence problem in their approach. Their approach also saves time and computational 406 
resources because they do not simulate but just read in and regrid dust emissions. This approach 407 
is particularly favorable for the CTM simulations for air quality forecasts and hindcasts in which 408 
models need to ensure the near-term input meteorological fields are very accurate to generate an 409 
accurate dust emission inventory, such as the air quality forecasts conducted by the Environmental 410 
Protection Agency (EPA) using CMAQ (Appel et al., 2013, 2017), or other CTM studies such as 411 
GEOS-Chem (Zhang et al., 2013; Meng et al., 2021). However, for GCMs/ESMs that care about 412 
long-term simulations and aerosol–climate interactions, there is a need to actively simulate dust 413 
emissions and allow a full coupling between meteorology and dust, which could not be achieved 414 
by feeding the models with an inventory. In that case, our scaling method is likely more desirable 415 
for GCMs and ESMs to reduce the scale-dependence problem. 416 

Also, we note that although our approach alleviated the grid-scale dependence of dust 417 
emissions, the grid-scale dependence problem also appears in other component of dust cycle 418 
simulations, such as in dust transport. The grid-scale dependence can be due to not just the 419 
averaging problem but also other problems, such as numerical diffusion which worsens with 420 
increasing grid size in an Eulerian GCM (Rastigejev et al., 2010; Eastham and Jacob, 2017; Zhuang 421 
et al., 2018). It has to be solved in the atmospheric model component such as by some adaptive 422 
mesh refinement approaches (e.g., Semakin and Rastigejev, 2016) or machine learning methods 423 
(e.g., Zhuang et al., 2021). 424 
  425 



Table S1. Past studies employed in this paper that collected dry soil aggregate size distributions 426 
over different countries. 427 

Study Number of 
samples we used 

Location of the sites Ariditya 

Ciric et al. (2012) 5 Pannonian Basin, 
Serbia 

nonarid 

Li et al. (2014) 4 Tarim Basin arid 
Wagner et al. (1992) 2 Kansas arid 
Chandler et al. (2004) 3 Columbia Plateau arid 
Mei et al. (2004)  4 Northern China arid 
Swet and Katra (2016) 2 Negev, Israel arid 
Mirzamostafa et al. (1998) 2 Kansas nonarid 
Liu et al. (1998) 3 Inner Mongolian 

Plateau &Tengger 
Desert, China 

arid 

Kalhoro et al. (2017) 6 Loess Plateau nonarid 
Su et al. (2007) 4 Hexi Corridor arid 
Udom and Ogunwole (2015) 4 Port Harcourt, Nigeria nonarid 
Malobane et al. (2019) 2 University of Fort 

Hare 
nonarid 

Klose et al. (2017) 5 New Mexico arid 
Shao et al. (2011) 1 Victoria, Austrialia arid 

aThe aridity of the sampling site was classified by this study based on whether the annual mean MERRA-2 LAI (see Fig. 3a in 428 
the main text) is smaller or larger than 1. 429 
 430 
 431 
 432 
 433 
 434 
Table S2. The global total redistributions in the normalized emissions from each modification. 435 
 Using 𝐷"! = 127 

μma 
Including 𝐹"##b Including the 

intermittencyc 
Our scheme 
compared with 
K14d  

Arid 216 Tg yr-1 3257 Tg yr-1 3075 Tg yr-1 3663 Tg yr-1 
Nonarid 34 Tg yr-1 354 Tg yr-1 87 Tg yr-1 395 Tg yr-1 
Globe  250 Tg yr-1 3611 Tg yr-1 3163 Tg yr-1 4058 Tg yr-1 

aNormalized Expt. II minus normalized Expt. I (Fig. S7a). 436 
bNormalized Expt. III minus normalized Expt. II (Fig. S7b). 437 
cNormalized Expt. V minus normalized Expt. III (Fig. S7e). 438 
dNormalized Expt. V minus normalized Expt. I (Fig. S7f). 439 
 440 
 441 
 442 
  443 



 444 
Table S3. The global total emissions all simulations schemes and their contributions from arid 445 
and nonarid regions. 446 
 Original 

emissions 
Normalized 
emissions  

% of emissions 
from arid regions 

% of emissions of 
nonarid regions 

K14 29254 Tg yr-1 5000 Tg yr-1 92.1 % 7.9 % 
Our scheme 11494 Tg yr-1 5000 Tg yr-1 97.8 % 2.2 % 
MERRA-2 1561 Tg yr-1 5000 Tg yr-1 97.3 % 2.7 % 
Z03–Z 424 Tg yr-1 5000 Tg yr-1 100 % 0 % 
Z03–G 442 Tg yr-1 5000 Tg yr-1 100 % 0 % 

 447 
 448 
Table S4. Regional contributions of dust emissions to the global total emission for different 449 
schemes. a, b 450 
 DustCOM

M & B16c 
K14 Our scheme Z03–Z Z03–G MERRA-2 

NW Africa 18 % 10.4 % 14.4 % 7.5 % 23.2 % 20.1 % 
NE Africa 16 % 17.5 % 14.5 % 13.3 % 17.9 % 17.1 % 
Sahel 13 % 17.4 % 15.9 % 20.8 % 16.5 % 21.5 % 
Middle East 
/ C Asia 

29 % 29.4 % 30.6 % 32.5 % 31.3 % 29.2 % 

E Asia 13 % 4.1 % 11.9 % 14.3 % 4.0 % 6.5 % 
N America 3 % 1.8 % 1.1 % 0.1 % 0.02 % 0.5 % 
Australia 3 % 10.8 % 6.4 % 9.7 % 6.8 % 2.6 % 
S America 4 % 2.3 % 2.2 % 0.5 % 0.07 % 1.7 % 
S Africa 2 % 6.3 % 3.0 % 1.4 % 0.3 % 0.7 % 
high-lat (w/ 
Patagonia) 

5 % (from 
B16) 

2.8 % 6.3 % 0.2 % 0.2 % 1.7 % 

aAll percentages from MERRA-2 and our simulations are rounded to 1 decimal place, except for smaller values 451 
where we rounded to 2 decimal places. 452 
bBullard et al. (2016) obtained 5 % including Patagonia emissions, which overlaps with the S. America domain 453 
defined in Kok et al. (2021a, b). We present the percentage here assuming the nine K21 source regions sum up to be 454 
100 %, since K21 (DustCOMM) predicted zero emissions outside of the domains (including B16 will yield 105 %). 455 
We arrange the other columns the same way such that the percentages from the nine K21 regions sum up to 100 % 456 
also. 457 
cValues are directly obtained from Table 2 of Kok et al. (2021b), which were rounded up to integers, except for 458 
high-latitude emissions that are obtained from Bullard et al. (2016). 459 
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 464 

 465 
Figure S1. MERRA-2 soil moisture for the year 2006 used in this study. (a) Volumetric soil 466 
moisture (m3 m-3), (b) soil porosity, and (c) gravimetric soil moisture (kg kg-1). 467 

 468 
 469 
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 471 

 472 
Figure S2. The relationships between soil median diameter 𝐷g!  and soil texture and other soil 473 
properties documented in multiple past studies for arid regions. We relate 𝐷! to content of (a) sand, 474 
(b) silt, (c) clay in %, as well as to (d) soil organic carbon (SOC) content in %, (e) pH value, and 475 
(f) % of calcite (CaCO3). The symbols show the name of each individual study and lines denote 476 
linear regressions for which statistics are included for each panel. Studies may not have 477 
documented certain texture or properties, so some plots have fewer data points (especially for soil 478 
properties). 479 
 480 
 481 
 482 
 483 
 484 
 485 

 486 
Figure S3. The SoilGrids global 0.1° × 0.1° maps of (a) sand, (b) silt, and (c) clay in % (Hengl et 487 
al., 2017). 488 
 489 
 490 
 491 



 492 

 493 
Figure S4. Global distributions of MERRA-2 seasonal mean LAI for the year 2006. Four seasonal 494 
mean LAI maps are plotted, including the (a) December–January–February, (b) March–April–May, 495 
(c) June–July–August, and (d) September–October–November. The color bar saturates at 1, so 496 
regions in dark green color have LAI > 1 and are defined as non-arid area in this study. 497 
 498 
 499 
 500 

 501 
Figure S5. The annual mean intermittency factor η, which denotes the fraction of time within a 502 
time step that emission is active, averaged over the whole year 2006.  503 
 504 
 505 



 506 
Figure S6. Spatial patterns of the unnormalized dust emission flux for each modification of the 507 
default dust emission scheme. The plots include results for the (a) default K14 scheme (expt. I), 508 
(b) K14 with changed soil particle diameter only (expt. II), (c) K14 with the new soil particle 509 
diameter and drag partition effect (expt. III), (d) K14 with the new soil particle diameter, drag 510 
partition effect, and impact threshold (expt. IV), and (e) K14 with all modifications, i.e., our new 511 
scheme (expt. V). The bottom of each panel notes the unnormalized global total emission in Tg yr-512 
1. 513 
 514 
 515 
 516 
 517 
 518 
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 520 
Figure S7. The effects of the proposed improvements to the parameterization of dust emissions on 521 
the default (Kok et al., 2014a, b) dust emission scheme. Maps of unnormalized emission 522 
differences with individual improvements added on top of the default K14 scheme. The individual 523 
improvements are respectively (a) changing the soil median diameter to 127 μm (expt. II), (b) 524 
including the drag partition effect (expt. III), (c) employing the impact threshold, (d) applying the 525 
intermittency factor, and (e) including the Comola et al. (2019b) intermittency scheme, a 526 
combination of (c, d). (f) Maps of unnormalized emission differences between our new scheme 527 
and the K14 scheme. The color bars of the maps of differences are drawn to log10 scale. 528 
 529 
 530 
 531 
 532 
 533 
 534 
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 537 
Figure S8. Spatial patterns of the normalized dust emission flux for each modification of the default 538 
dust emission scheme (same as Figure S6 but normalized). The plots include results for the (a) 539 
default K14 scheme (expt. I), (b) K14 with changed soil particle diameter only (expt. II), (c) K14 540 
with the new soil particle diameter and drag partition effect (expt. III), (d) K14 with the new soil 541 
particle diameter, drag partition effect, and impact threshold (expt. IV), and (e) K14 with all 542 
modifications, i.e., our new scheme (expt. V). All plots are normalized to have a global total 543 
emission of 5000 Tg yr-1. 544 
 545 
 546 
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 551 
Figure S9. Coordinates of the nine main dust source regions in Kok et al. (2021a) adapted in this 552 
study.  The coordinates of the nine source regions are: (1) western North Africa (20°W – 7.5°E; 553 
18°N – 37.5°N), (2) eastern North Africa (7.5°E – 35°E; 18°N – 37.5°N), (3) the Sahel (20°W – 554 
35°E; 0°N – 18°N), (4) Middle East / Central Asia (30°E – 70°E for 0°N – 35°N, and 30 – 75°E 555 
for 35 – 50°N), (5) East Asia (70°E – 120°E; 35°N – 50°N), (6) North America (130°W – 80°W; 556 
20°N – 45°N), (7) Australia (110°E – 160°E; 10°S – 40°S), (8) South America (80°W – 20°W; 557 
0°S – 60°S), and (9) Southern Africa (0°E – 40°E; 0°S – 40°S). The graph is adopted from (Kok 558 
et al., 2021a). 559 
 560 
 561 
 562 
 563 

 564 
Figure S10. Seasonal variability in the correction map 𝐾q3 at a resolution of 0.9°×1.25°, for (a) 565 
December–January–February, (b) March–April–May, (c) June–July–August, (d) September–566 
October–November, and (e) the whole year. 567 
 568 
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 570 

 571 
Figure S11. (Kok et al., 2021a, b) DustCOMM emissions versus the dust emission simulations 572 
using the (Zender et al., 2003a) scheme with different source functions S. (a) Globally gridded 573 
Zender et al. (2003a) emissions (kg m-2 yr-1) with source function S from Ginoux et al. (2001) 574 
(Z03–G). (b) Globally gridded Zender et al. (2003a) emissions (kg m-2 yr-1) with source function 575 
S from (Zender et al., 2003b) (Z03–Z). Both (a) and (b) panels are normalized to 5000 Tg yr-1 576 
annual global total emissions. (c) Kok et al. (2021a, b) DustCOMM regional emissions (obtained 577 
from the fifth column of Table 1 in K21b scaled to a global total of 5000 Tg yr-1) versus the regional 578 
emissions computed by the Z03–G scheme and the Z03–Z scheme. The regional emissions are 579 
obtained following the nine source regions in Fig. 10a, with one extra point being the “high-latitude” 580 
emissions obtained from the Bullard et al. (2016) estimation. The error bars show one standard 581 
error, except that the B16 high-latitude emission does not contain any error estimate. The black 582 
line shows the 1:1 line. 583 
 584 
 585 
 586 
 587 



 588 

 589 
Figure S12. Kok et al. (2021a, b) DustCOMM emissions versus the dust emission simulated by 590 
MERRA-2 (Gelaro et al., 2017). (a) Globally gridded MERRA-2 emissions (kg m-2 yr-1) using 591 
GOCART (Ginoux et al., 2001). Emissions in (a) are normalized to 5000 Tg yr-1 annual global 592 
total emissions. (c) Kok et al. (2021a, b) DustCOMM regional emissions (obtained from the fifth 593 
column of Table 1 in K21b scaled to a global total of 5000 Tg yr-1) versus the regional emissions 594 
simulated by MERRA-2. The regional emissions are obtained following the nine source regions 595 
in Fig. 10a, with one extra point being the “high-latitude” emissions obtained from the Bullard et 596 
al. (2016) estimation. The error bars show one standard error, except that the B16 high-latitude 597 
emission does not contain any error estimate. The black line shows the 1:1 line. 598 
 599 
 600 
 601 
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 605 
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 615 

 616 
Figure S13. Comparison between the dust emission threshold simulated in this study and the 617 
observationally derived dust emission threshold from Pu et al. (2020). (a) Pu et al. (2020) threshold 618 
wind speed at 10 m height (𝑢/,L0, m s-1). (b) The simulated impact threshold friction velocity 𝑢∗./ 619 
modified by the simulated hybrid drag partition effect, 𝑢.//𝐹*++  (m s-1), from this study. The 620 
impact threshold was translated from a 𝑢∗./ to 𝑢./ at 10 m height using the log law of the wall. (c) 621 
The differences between 𝑢/,L0 and 𝑢.//𝐹*++. (d) The ratio between the two thresholds, with color 622 
bar drawn to log10 scale. 623 
 624 
 625 
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 631 

 632 
Figure S14. Soil median diameter 𝐷g! used in Menut et al. (2013) as an input of the CHIMERE 633 
chemical transport model, for the dust emission threshold and drag partition effect calculations. 634 
 635 
 636 
 637 
 638 
 639 
 640 

 641 
Figure S15. Global distributions of MERRA-2 friction velocity 𝑢∗ for the year 2006. 642 
 643 
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