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Abstract. Despite its importance in controlling the abundance of methane (CH4) and a myriad of other tropo-
spheric species, the hydroxyl radical (OH) is poorly constrained due to its large spatial heterogeneity and the
inability to measure tropospheric OH with satellites. Here, we present a methodology to infer tropospheric col-
umn OH (TCOH) in the tropics over the open oceans using a combination of a machine learning model, output
from a simulation of the GEOS model, and satellite observations. Our overall goals are to assess the feasibility
of our methodology, to identify potential limitations, and to suggest areas of improvement in the current obser-
vational network. The methodology reproduces the variability of TCOH from independent 3D model output and
of observations from the Atmospheric Tomography mission (ATom). While the methodology also reproduces
the magnitude of the 3D model validation set, the accuracy of the magnitude when applied to observations is
uncertain because current observations are insufficient to fully evaluate the machine learning model. Despite
large uncertainties in some of the satellite retrievals necessary to infer OH, particularly for NO2 and formalde-
hyde (HCHO), current satellite observations are of sufficient quality to apply the machine learning methodology,
resulting in an error comparable to that of in situ OH observations. Finally, the methodology is not limited to
a specific suite of satellite retrievals. Comparison of TCOH determined from two sets of retrievals does show,
however, that systematic biases in NO2, resulting both from retrieval algorithm and instrumental differences,
lead to relative biases in the calculated TCOH. Further evaluation of NO2 retrievals in the remote atmosphere is
needed to determine their accuracy. With slight modifications, a similar methodology could likely be expanded
to the extratropics and over land, with the benefits of increasing our understanding of the atmospheric oxidation
capacity and, for instance, informing understanding of recent CH4 trends.
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1 Introduction

The hydroxyl radical (OH) dictates the lifetime of many
tropospheric species, including carbon monoxide (CO),
methane (CH4), and numerous volatile organic compounds
(VOCs). Knowledge of OH is therefore necessary to under-
stand the abundance, distribution, and variability of these
species. For instance, Rigby et al. (2017) and Laughner et
al. (2021) attribute recent trends and increases in CH4 at least
partially to changes in OH abundance. Current constraints on
OH are insufficient, however, to assess its relative importance
in controlling these trends (Turner et al., 2017).

Differences in OH distributions among chemistry trans-
port models (CTMs) and chemistry climate models (CCMs)
suggest that these models are insufficient to inform under-
standing of OH abundance and variability without further
observational constraints. OH abundance can differ by up to
80 % among models constrained with identical emissions in
intercomparison projects (Voulgarakis et al., 2013; Nicely et
al., 2020; Zhao et al., 2019; Murray et al., 2021), with mod-
eled trends disagreeing with those derived from observation-
ally constrained methods (Stevenson et al., 2020). Variables
such as the photolysis frequency of O3 (JO1D) (Nicely et
al., 2020), the NOx lifetime (NOx = NO+NO2), and the ox-
idation efficiency of VOCs (Murray et al., 2021) contribute
to these inter-model variations in OH. Using Gaussian em-
ulation, Wild et al. (2020) found that the relative impor-
tance of drivers of OH variability differed widely among
three CTMs. Likewise, the response of OH to the El Niño–
Southern Oscillation (ENSO), the dominant mode of OH
variability on monthly and seasonal timescales (e.g., Ander-
son et al., 2021; Turner et al., 2018), and other modes of
internal climate variability can vary widely among models
(Anderson et al., 2021).

Despite this need for better constraints, observations of
tropospheric OH are limited. The hydroxyl radical has a life-
time of approximately 1 s (Mao et al., 2009), resulting in
large spatial heterogeneity in both the horizontal and verti-
cal. This spatial heterogeneity is further caused by the large
variation in the relative importance of drivers of OH loss and
production in different regions of the atmosphere (e.g., Spi-
vakovsky et al., 2000; Lelieveld et al., 2016). A strategic, rep-
resentative in situ observational network is therefore unfea-
sible. As a result, observations of OH are generally limited
to intensive field campaigns (Miller and Brune, 2022) that
have narrow spatial and temporal coverage. While remotely
sensed OH observations are available, those from satellites
are limited to the stratosphere (e.g., Pickett et al., 2008),
while ground-based observations of total column OH are
dominated by the stratospheric contribution (e.g., Burnett
and Minschwaner, 1998).

Reference gases with well-characterized sources and an
OH sink, such as methyl chloroform (MCF), can be used
to infer OH abundance (Lovelock, 1977). This methodol-
ogy, however, generally yields no information on spatial het-

erogeneity beyond the hemispheric scale (e.g., Montzka et
al., 2011; Rigby et al., 2017; Naus et al., 2019), although
there has been recent success when using three dimensional
inversion techniques (Naus et al., 2021). For MCF in particu-
lar, recent declines in tropospheric abundance will soon dic-
tate the need for a new reference species (Liang et al., 2017).

Multiple studies have attempted to constrain OH through
the creation of proxies and the application of satellite re-
trievals of OH drivers. Murray et al. (2014) showed that
global OH strongly correlated with a combination of JO1D,
water vapor (H2O(v)), and the tropospheric sources of reac-
tive nitrogen and carbon in the GEOS-Chem model. Murray
et al. (2021) demonstrated that OH correlated with this proxy
in multiple CTMs, although the relationship differs strongly
among models. Miyazaki et al. (2020) created a data assim-
ilation framework that ingested satellite observations of CO,
NO2, O3, and HNO3 (nitric acid) into multiple CTMs. The
data assimilation reduced the spread in average OH among
the models and brought the interhemispheric ratio closer
to unity, in line with values suggested by MCF observa-
tions (e.g., Patra et al., 2014). These results demonstrate that
the incorporation of satellite observations into a modeling
framework can improve the representation of OH. Wolfe et
al. (2019) developed a proxy for OH based on formaldehyde
(HCHO) production and loss rates. They applied that proxy
to satellite HCHO observations to estimate OH columns in
the remote troposphere, a region where HCHO abundance is
low and the satellite retrievals are reflective of the a priori
(Zhu et al., 2016). Using machine learning, chemical trans-
port model output, and retrievals of NO2 and HCHO, Zhu
et al. (2022b) developed a method to estimate surface OH
in North American urban areas. Finally, Pimlott et al. (2022)
used a steady-state approximation of OH, including primary
production from H2O and O3 and loss from CO, CH4, and
O3, to estimate OH between 600 and 700 hPa using obser-
vations from IASI (Infrared Atmospheric Sounding Interfer-
ometer). A logical next step, building on the results of these
studies, is the development of a methodology to constrain
OH that ingests multiple satellite retrievals, encompasses the
breadth of OH chemical and dynamical drivers, and spans a
significant enough portion of the globe to inform variability
and trends in CH4 and CO loss.

Combining machine learning, chemical transport model
(CTM) output, and satellite data has the potential to con-
strain tropospheric column OH (TCOH). A variety of ma-
chine learning techniques, such as neural networks (Nicely
et al., 2017, 2020; Kelp et al., 2020), self-organizing maps
(Stauffer et al., 2016), random forest regression (Keller and
Evans, 2019), and gradient boosted regression trees (GBRTs)
(Ivatt and Evans, 2020; Zhu et al., 2022b; Anderson et
al., 2022), show promise in helping to solve problems in at-
mospheric chemistry. In particular, Zhu et al. (2022b) and
Anderson et al. (2022) demonstrated the ability of GBRTs
to predict OH from a chemical transport model with reason-
able accuracy. GBRT models (Elith et al., 2008; Chen and
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Guestrin, 2016) use an ensemble of decision trees to predict
the value of a target based on multiple inputs, even for targets
with highly non-linear dependencies on the inputs.

Here, we present a methodology to infer clear-sky TCOH
in the tropics from space-based observations of its chemical
and dynamical drivers with the goal of assessing the feasi-
bility of our methodology, identifying potential limitations,
and suggesting areas of improvement in the current observa-
tional network. We train a GBRT model using output from
a simulation of the NASA GEOS (Goddard Earth Observing
System) model and then estimate TCOH in the actual atmo-
sphere at the satellite overpass time using inputs from a suite
of satellite retrievals. In Sect. 2, we describe the methodol-
ogy for generating the machine learning model as well as the
satellite retrievals used to constrain TCOH. We then evalu-
ate the suitability of MERRA-2 Global Modeling Initiative
(GMI) as a training dataset (Sect. 3) and, in Sect. 4, present a
satellite-constrained OH product for 1 month from each sea-
son. Finally, in Sect. 5, we explore potential methodologi-
cal limitations and benefits, including lack of validation data,
the impacts of observational uncertainties, and the ability to
use different satellites and retrievals as inputs to the GBRT
model.

2 Description of the methodology to generate the
GBRT model and of the associated datasets

Our overall aim is to demonstrate the feasibility of our ap-
proach to constrain TCOH with satellite-based observations
over broad regional scales. As a first step, we restrict our
analysis to latitudes equatorward of 25◦ and regions over wa-
ter. We chose to focus initially on this domain as it has appre-
ciable OH concentrations and simplified chemistry, as com-
pared to regions with large biogenic and anthropogenic VOC
emissions. Nevertheless, this portion of the atmosphere ac-
counts for 50 %–60 % of global CO and CH4 loss. In this sec-
tion, we describe the creation of the machine learning model
used to predict TCOH (Sect. 2.1) for this region as well as
the satellite products used as inputs to the machine learning
model (Sect. 2.2).

2.1 Creation of the TCOH model

2.1.1 Creation of the GBRT training dataset

For the machine learning model training dataset, we
use a subset of output from the MERRA-2 GMI sim-
ulation (https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/
MERRA2GMI/, last access: 31 May 2023). MERRA-2 GMI
is a 40-year (1980–2019) simulation of the NASA GEOS
model run in replay mode (Orbe et al., 2017) with MERRA-2
(Modern Era Retrospective analysis for Research and Appli-
cations, version 2) meteorology (Gelaro et al., 2017). The
simulation has a resolution of c180 on the cubed sphere (ap-
proximately 0.625◦ longitude by 0.5◦ latitude) with 72 ver-

tical layers and uses the GMI chemical mechanism (Dun-
can et al., 2007; Strahan et al., 2007). Output is available at
daily- and monthly-averaged resolution, as well as instanta-
neous values at 10:00 and 14:00 LST. These times are within
approximately 30 min of the overpass times of the satellites
described in Sect. 2.2. Anderson et al. (2021) and Strode et
al. (2019) provide detailed information about the simulation,
including emissions.

The training target for the machine learning model is
TCOH. In Anderson et al. (2022), we developed a GBRT
parameterization trained on MERRA-2 GMI output to pre-
dict in situ OH concentrations using 27 inputs, only a small
fraction of which are observable from space. That param-
eterization, designed to be integrated into the GEOS mod-
eling framework, performed better when there was a sepa-
rate model for each month as opposed to one model for all
months. While that GBRT model is not appropriate for the
application described here, we employ a similar approach,
creating a separate set of TCOH training targets for each
month. We use instantaneous OH output from MERRA-2
GMI at 14:00 local time for each day of a given month across
the years 2005 to 2019, a timeframe that maximizes over-
lap between the operational lifetime of the satellites listed in
Table 1 and the period of the MERRA-2 GMI simulation.
We omitted data from 2017 to evaluate model performance.
For a given month and year, we calculate daily tropospheric
column values across the grid, filtering out columns where
the maximum cloud fraction in that column was greater than
30 % in order to align the training targets more closely with
satellite data, where retrievals of some species are often fil-
tered for cloud cover. This yields approximately 43 000 valid
grid boxes per day. For each year, we then average these
values to monthly resolution. This results in approximately
600 000 total training targets for each month over the 15-year
period.

We selected the input variables for the machine learning
model (Table 1) based on their relevance to OH chemistry
and variability as well as our current ability to observe the
variable with satellites. Performance was similar for a model
including total column ozone only and for a model also in-
cluding the tropospheric column. We therefore use total col-
umn ozone because of the uncertainties inherent in separat-
ing the column into two parts in the satellite retrieval. We
chose the water vapor layers to correspond with the Atmo-
spheric Infrared Sounder (AIRS) layer product. Layers are
averages over the indicated pressure range, and we denote
the layer names by the highest pressure in that range. We in-
clude sea surface temperatures (SSTs) as a proxy for the In-
dian Ocean Dipole and ENSO, which has a strong impact on
OH variability in the tropics (Anderson et al., 2021; Turner
et al., 2018; Naus et al., 2021). In addition, we include lati-
tude and solar zenith angle as previous work has shown that
these variables can explain a large fraction of the spatial OH
variability (Duncan et al., 2000; Anderson et al., 2022).
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Table 1. Input variables to the machine learning model and the corresponding satellite retrieval used to create the satellite OH product.
Overpass times are ∼ 13:30 LST for all satellites except MOPITT, which has a 10:30 LST overpass.

Variable Satellite retrieval Original horizontal and Reference
temporal resolution

Total O3 column OMI TOMS-Like L3 version 3 0.25◦× 0.25◦, daily McPeters et al. (2015)

Tropospheric NO2 column OMI GSFC L3 version 4 0.25◦× 0.25◦, daily Lamsal et al. (2021)

CO column MOPITT L3 version 8 1.0◦× 1.0◦, monthly Deeter et al. (2019)

HCHO column OMI SAO L3 version 3 0.1◦× 0.1◦, daily González Abad et al. (2015)

H2O(v) column AIRS L3 version 6 1.0◦× 1.0◦, monthly Susskind et al. (2014)

Sea surface temperature MUR L4 version 4.2 0.25◦× 0.25◦, daily Chin et al. (2017)

Aerosol optical depth at 550 nm MODIS Aqua L3 collection 6 0.5◦× 0.5◦, daily Levy et al. (2013)

H2O(v) layers: 925–850, 850–700,
700–600, 600–500, 500–400, AIRS L3 version 6 1.0◦× 1.0◦, monthly Susskind et al. (2014)
400–300, and 300–250 hPa

Solar zenith angle n/a

Latitude n/a

n/a: not applicable.

We sampled the MERRA-2 GMI output to create the train-
ing dataset in the same manner as for the TCOH targets. The
inputs to the machine learning model each correspond to the
same model column as the OH target. All column values
are instantaneous and taken from 14:00 LST to correspond
with satellite overpass times, except for CO, which is for
10:00 LST, near the Measurement of Pollution in the Tro-
posphere (MOPITT) overpass time. Model performance was
similar when using CO output at 14:00 and 10:00 LST, likely
because of limited diurnal variability in CO column in the
study region. SSTs are monthly averages of 24 h averaged
values, and we calculated solar zenith angle at the surface for
noon on the 15th of a given month.

2.1.2 Creation and tuning of the GBRT model

We used the XGBoost package (Chen and Guestrin, 2016)
version 0.81 in Python version 3.6 to create a GBRT model
of TCOH for each month using the training datasets from
MERRA-2 GMI. For each month, we used 90 % of the
dataset for model training and the remainder for model vali-
dation. As mentioned in Sect. 2.1.1, we also used MERRA-2
GMI output from 2017, which was omitted from the training
dataset, as further validation.

To maximize parameterization performance while also
balancing the potential of overfitting, we tuned hyperparam-
eters, including the learning rate, the maximum tree depth,
and the number of trees. We chose hyperparameter values
that minimized the parameterization root mean square er-
ror (RMSE) of the training dataset. We set the learning rate,
which controls the magnitude of change when adding a new

tree, to 0.1, while we varied the maximum tree depth and
number of trees from 6 to 22 and from 10 to 150, respectively.
For both maximum tree depth and number of trees, RMSE
initially dropped significantly with increasing value, repre-
senting sharp improvement in parameterization performance.
RMSE values eventually plateaued, increasing parameteriza-
tion runtime without noticeably improving performance. A
combination of a maximum tree depth of 18 and 100 trees
balanced performance with model training and run time.

To determine whether the inputs to the machine learning
model improved or hindered performance, we performed a
“leave one out” analysis. Using 5-fold cross validation, we
retrained the model, individually omitting each of the inputs,
to determine the percent difference between the mean RMSE
of the 5 folds for the model without a specific input and one
including all inputs. Omitting the inputs listed in Table 1 led
to increases in the RMSE, suggesting that each is necessary
for improved model performance. As a result of this analy-
sis, we do not use water vapor layers for pressures less than
300 hPa because these decreased model performance.

Finally, we found that it was not necessary to apply
satellite averaging kernels and shape factors to the training
dataset. Of the satellite retrievals used in this work (discussed
in Sect. 2.2 and listed in Table 1), only CO, HCHO, and
NO2 could require convolving the model with the averag-
ing kernel. Shape factors for the Ozone Monitoring Instru-
ment (OMI) NO2 retrieval are determined from a similar
setup of the GEOS model, also employing the GMI chem-
ical mechanism and MERRA-2 meteorology. Applying the
satellite shape factors to the simulation discussed here would
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therefore not result in significant changes in the modeled
NO2 (Anderson et al., 2021). To test whether it is neces-
sary to apply the averaging kernels for CO and HCHO, we
created a separate training dataset, where we convolved the
daily MERRA-2 GMI output with the averaging kernel and
a priori from the level 2 data for both species for February
2005–2019. All other inputs were kept the same. We then
retrained the model with these adjusted CO and HCHO vari-
ables. When we applied the satellite data to the model for
February 2017, as described in Sect. 4, the resulting TCOH
differed by less than 1 % on average from the model that did
not include averaging kernel information. This level of un-
certainty is significantly smaller than the other uncertainties
discussed in Sect. 5, so we do not include averaging kernels
in our analysis.

2.2 Description of satellite products

To create the observationally constrained OH product, we use
multiple satellite retrievals, listed in Table 1 and briefly de-
scribed here. Each instrument is located on board a polar or-
biting satellite that provides near-global coverage daily. For
each satellite retrieval, we use the level-3 gridded product,
with the exception of SST which is level 4. Where necessary,
we regridded the retrieval to a common horizontal grid with
a resolution of 1.0◦×1.0◦ and averaged to the monthly scale.

We use these resolutions because, in the study domain, in-
dividual pixel retrievals, particularly of NO2 and HCHO, are
frequently at or below detection limits (González Abad et
al., 2015; Lamsal et al., 2021), necessitating averaging to rel-
atively coarse temporal and spatial scales. The study domain
partially mitigates limitations of the 1.0◦× 1.0◦ resolution,
as spatial heterogeneity of the relevant species is generally
much lower over the remote tropical oceans than over land.
Missing data due to cloud cover and the OMI row anomaly
further increase the need for monthly-scale averaging. While
other satellites, such as OMPS (Ozone Mapping and Pro-
filer Suite) and TROPOMI (Tropospheric Monitoring Instru-
ment), provide retrievals with increased signal to noise ra-
tios and more complete data coverage, the satellites used here
cover a far longer time period. Nevertheless, the 1.0◦× 1.0◦

and monthly resolutions, in combination with the long data
record, provide new constraints on regional trends in TCOH
and some aspects of TCOH temporal and spatial variability.

We use retrievals of three species – HCHO, O3, and NO2
– from OMI, an ultraviolet–visible spectrometer located on
board the Aura satellite, which has an overpass of approxi-
mately 13:30 local solar time (LST). We use the Smithsonian
Astrophysical Observatory (SAO) version-3 HCHO retrieval
(González Abad et al., 2015). Wolfe et al. (2019) found that
this retrieval captured the variability of the HCHO columns
in the remote atmosphere observed during the Atmospheric
Tomography (ATom) campaign with little bias. For total col-
umn O3, we use the TOMS-like (Total Ozone Mapping Spec-
trometer) retrieval version 3 (McPeters et al., 2015), which

agrees with ground-based and other satellite observations
within approximately 1 % (Labow et al., 2013). Finally, we
use the Goddard Space Flight Center version-4 NO2 tropo-
spheric column retrieval (Lamsal et al., 2021). While previ-
ous studies have thoroughly evaluated this retrieval in more
polluted atmospheres (e.g., Lamsal et al., 2014; Choi et
al., 2020), evaluation in the remote tropical atmosphere, as
defined in this study, is limited.

For water vapor and aerosol optical depth (AOD) at
550 nm, we use retrievals from AIRS and the Moderate Res-
olution Imaging Spectroradiometer (MODIS) instruments,
respectively, both located on board the Aqua satellite with
an overpass of approximately 13:30 LST. We use the to-
tal column water vapor standard physical retrieval as well
as the seven water vapor layers listed in Table 1 (Susskind
et al., 2014). Multiple studies have evaluated the accuracy
of the AIRS H2O(v) column and layers retrievals in the re-
mote tropical atmosphere, finding a bias of 5 % or less and
high correlation against both remote and in situ observations
(Bedka et al., 2010; Anderson et al., 2016; Pérez-Ramírez et
al., 2019). We use collection 6 of the dark target MODIS
AOD retrieval at 550 nm, which is highly correlated with
observations from the AERONET network over the ocean
(Levy et al., 2013).

We also use retrievals of CO from MOPITT, which is on
board the Terra satellite with an overpass of 10:30 LST. We
use the version-8 retrieval that includes both near-infrared
and thermal infrared radiances (Deeter et al., 2019). CO re-
trievals from MOPITT in the remote tropics generally agree
with ground-based remotely sensed observations within 10 %
(Hedelius et al., 2019; Buchholz et al., 2017).

Finally, we use SSTs from the Multi-scale Ultra-high Res-
olution (MUR) analysis, which combines nighttime SST
observations from multiple satellite platforms, including
MODIS, as well as in situ observations and agrees with other
SST analyses within 0.36 ◦C (Chin et al., 2017).

3 Evaluating the suitability of the MERRA-2 GMI
simulation as a training dataset

Before generating the GBRT model to predict TCOH, we
first demonstrate that the MERRA-2 GMI simulation is suit-
able to use as a training dataset. Because of the paucity of
in situ observations of OH over most of the globe, we nec-
essarily use output from an atmospheric chemistry model to
train the machine learning model. The atmospheric chem-
istry model output must reasonably capture the distribu-
tion, magnitude, and ENSO-related variability of OH and the
drivers listed in Table 1, as GBRT models are unable to ex-
trapolate beyond the photochemical environments on which
they are trained (Anderson et al., 2022).
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3.1 Comparison of the distribution and magnitude of
simulated OH drivers to observations

Simulated OH from MERRA-2 GMI agrees with observa-
tions over the remote ocean within the instrumental uncer-
tainty. Anderson et al. (2021) compared MERRA-2 GMI out-
put to in situ observations from the first two deployments of
ATom, finding modest correlation (r2 values between 0.3 and
0.78 depending on the hemisphere and season) between ob-
servations and the model. The average normalized mean bias
was on the order of 20 %, a slight high bias but within the
2σ observational uncertainty of 35 %. Agreement was high-
est in the remote atmosphere, whereas the largest error was in
regions of fresh, continental outflow off the coasts of South
America and New Zealand.

The simulation captures both the observed variability and
the magnitude of the majority of GBRT model inputs with
reasonable fidelity, suggesting that the satellite retrievals
highlighted in Sect. 2.2 are suitable inputs for a machine
learning model trained on MERRA-2 GMI output (Fig. 1).
Figure 1 compares the distribution of the February train-
ing dataset created from the MERRA-2 GMI simulation
for 2005–2019 to the satellite observations of the indicated
species for February 2017, a month omitted from the train-
ing dataset. Distributions of the remaining water vapor layers
are shown in Fig. S1 in the Supplement. In addition, corre-
lations between observations and MERRA-2 GMI output for
February 2017 are shown, as an example, in Figs. S2 and S3.
With the exception of HCHO, distributions of the species
are similar between the observations and MERRA-2 GMI,
with the training dataset encompassing the full range of al-
most all species. A GBRT model trained on MERRA-2 GMI
will therefore likely not have to extrapolate to photochemi-
cal environments on which it was not trained when applied
to the satellite data. Further, MERRA-2 GMI total column
O3, H2O(v) column, AOD, CO, and SSTs are all highly cor-
related (r2 of 0.65 or higher) with their respective satellite
observations, and biases are within 10 %, on average. Ander-
son et al. (2021) did show that MERRA-2 GMI CO columns
demonstrate biases of opposite sign in the Northern Hemi-
sphere and Southern Hemisphere, however.

Agreement between MERRA-2 GMI and satellite obser-
vations for NO2, HCHO, and the H2O(v) layers is more vari-
able than for the other species. While modeled NO2 is moder-
ately correlated with observations (r2

= 0.68) with relatively
similar distributions, MERRA-2 GMI has a normalized mean
bias (NMB) of 63 %. This disagreement is most pronounced
at low column values, however, where observational uncer-
tainty is large. Further, Anderson et al. (2021) demonstrated
distinct regions of bias in NO2 related to biomass burning and
lightning emissions. Modeled HCHO, on the other hand, is
not correlated with observations and is biased low by−77 %.
Modeled water vapor layers are all modestly correlated with
observations (r2 of 0.64 or greater) but vary in their bias, with

the 925, 850, 700, and 300 hPa layers biased within 30 % and
the remaining layers biased up to 71 %.

The satellite product is insensitive to the differences be-
tween the HCHO distribution of the satellite and training
dataset highlighted in Fig. 1. To determine the effects of
the difference in HCHO distribution, we extended the train-
ing dataset to cover the full time period of the MERRA-2
GMI simulation (1980–2019) and then subsampled the resul-
tant data to match the satellite HCHO distribution. Extending
the training dataset to 1980 allows for the subsampled train-
ing dataset to have a similar size (∼ 600000 points) as the
original training set. We then created a new machine learn-
ing model using this sub-sampled dataset and calculated OH
fields for February 2017 using the satellite inputs from Ta-
ble 1. We compared this to the TCOH field calculated from
a model using the original training dataset, finding agree-
ment within 5 %. Similarly, the satellite-constrained TCOH
product discussed in Sect. 4.2 differs by only 3 % on aver-
age from one determined with a GBRT model that excludes
HCHO as an input, suggesting the limited impact of potential
errors in the MERRA-2 GMI HCHO distribution on model
performance. These uncertainties are small in comparison to
that resulting from uncertainties in the NO2 and HCHO satel-
lite retrievals discussed in Sect. 5.2. If the uncertainty of the
satellite inputs decreases, as retrievals and instruments im-
prove, then it will become necessary to more closely align
the training and observed HCHO distributions.

Finally, because NO2 and HCHO have the largest differ-
ences between satellite observations and the training dataset,
we trained a separate machine learning model to predict
TCOH, omitting these two species as inputs. When this
model was evaluated using the independent MERRA-2 GMI
output described in Sect. 4.1, the normalized root mean
square error (NRMSE) was 10.1 %, more than a factor of
2 degradation in performance as compared to the baseline
model. This suggests that omitting these species from the ma-
chine learning model would result in a greater uncertainty in
the final TCOH product than that which results from the re-
trieval uncertainties and the potential discrepancies between
observations and the training dataset.

3.2 Evaluation of the simulated ENSO-related variability
of OH drivers

Because ENSO is the dominant mode of OH variability (An-
derson et al., 2021; Turner et al., 2018), the training dataset
must also capture the ENSO-related variability of the GBRT
model inputs. Anderson et al. (2021) demonstrated that the
correlation of columns of CO, H2O(v), and to a lesser extent
NO2, from the MERRA-2 GMI simulation with the Multi-
variate ENSO Index (MEI) (Wolter and Timlin, 2011) agreed
closely with correlations of the corresponding species for ob-
servations from MOPITT, AIRS, and OMI. Unsurprisingly,
based on the strong correlation and low bias of MERRA-2
GMI SSTs with observations, the simulation also captures

Atmos. Chem. Phys., 23, 6319–6338, 2023 https://doi.org/10.5194/acp-23-6319-2023



D. C. Anderson et al.: Constraining OH with satellites 6325

Figure 1. Comparison of the normalized distributions of the training dataset (red) for the February model and satellite observations of the
indicated species for February 2017 (blue). Purple indicates regions of overlap. We use H2O(v) at 700 hPa as an example for all H2O(v)
layers. Distributions of the other H2O(v) layers are shown in Fig. S1. We also indicate the r2 of the correlation between MERRA-2 GMI
output for February 2017 and the corresponding satellite retrieval as well as the normalized mean bias of that output.

the relationship between SSTs and ENSO. The simulation
therefore sufficiently captures the ENSO-related variability
of these species to act as training data for the GBRT model.
We now evaluate this relationship for the remaining GBRT
model inputs.

The MERRA-2 GMI-simulated ENSO-related variability
of AOD and the various water vapor layers also agrees well
with observations. Figures 2 and S4 show the correlation of
AOD, HCHO, and the various H2O(v) layers with the MEI
for the satellite retrievals and MERRA-2 GMI. MERRA-
2 GMI captures the general distribution and magnitude of
correlation between AOD and ENSO, despite the low op-
tical depths over much of the domain. There are some re-
gional differences, however, particularly in the eastern south-
ern hemispheric Pacific. For the H2O(v) layers, the simulation
underestimates the magnitude of the correlation in some ar-
eas, but in general, there is excellent agreement for all layers
throughout the troposphere. This suggests that, despite the
high bias discussed above, including the H2O(v) layers could
provide important, vertically resolved information to the ma-
chine learning model.

Modeled accuracy of the HCHO–ENSO relationship is
more difficult to assess. While both the OMI retrieval
and MERRA-2 GMI demonstrate broad regions of anti-
correlation between HCHO and ENSO, the correlations with
OMI HCHO are weaker and noisier than for the other satel-
lite retrievals. Over much of the domain, HCHO abundance
is low, often at or below the retrieval detection limit, suggest-
ing that the HCHO retrieval might not be of sufficient quality
to capture ENSO-related variability. We investigate the im-
pacts of the HCHO observational uncertainty in Sect. 5.

Finally, because we use total column O3 as an input to the
GBRT model, we do not evaluate the relationship between
ENSO and O3, as the stratosphere dominates the O3 column

and the ENSO-related variability is mostly confined to the
troposphere. Oman et al. (2013) found that a GEOS CCM
simulation and a combination of O3 retrievals from the Mi-
crowave Limb Sounder (MLS) and the Tropospheric Emis-
sion Spectrometer (TES) exhibited similar ENSO-related
variability in the middle and upper troposphere, demonstrat-
ing that simulations in the GEOS framework can capture this
relationship. If a TES-like satellite retrieval were currently
available, it could be a valuable contributor to the GBRT
model described here, as it would provide vertically resolved
information about one of the primary drivers of OH produc-
tion.

4 Tropical tropospheric column OH constrained
with observations of its drivers

We now demonstrate the ability of the GBRT model to de-
termine TCOH. First, we show that the GBRT model can
reproduce MERRA-2 GMI modeled TCOH from a year in-
dependent of the training dataset, a so-called “hold out set”
(Sect. 4.1). We then input satellite data from 1 month from
each season into the GBRT model to evaluate the realism of
the calculated TCOH fields (Sect. 4.2).

4.1 Evaluation with an independent year from MERRA-2
GMI

The machine learning model is able to capture both the mag-
nitude and the variability of TCOH across each season when
applied to MERRA-2 GMI output from 2017, a year indepen-
dent of the training dataset. For August 2017 (Fig. 3b), the
predicted TCOH is highly correlated with MERRA-2 GMI
(r2 of 0.98). TCOH from the machine learning model agrees
with the CTM simulation within 4.8 % on average. The over-
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Figure 2. Distribution of the regression coefficient of a linear least squares fit of the indicated variable against the MEI for the respective
satellite retrieval (a, c, e) and MERRA-2 GMI (b, d, f) for February. Regressions of AOD are for 2010 to 2019, the years for which we have
a 1◦, gridded satellite product, while HCHO and water vapor 700 hPa are for 2005 to 2019. Satellite data are on a 1◦× 1◦ grid, while model
output is at the native model resolution.

all NMB is negligible (−0.1 %), although there are some re-
gions of coherent bias (Fig. 3a). Results are similar for Febru-
ary, May, and October 2017 (Fig. S5). The normalized root
mean square error for each of these months is comparable to
that found for a GBRT parameterization of OH created with
a similar methodology that included 27 inputs (Anderson et
al., 2022). This suggests that limiting inputs to model vari-
ables observable from space does not degrade the ability of
the machine learning model to predict TCOH. The low bias
and high correlation between the GBRT and MERRA-2 GMI
TCOH for all 4 months examined here also suggests that any
potential overfitting by the GBRT model is minimal.

4.2 TCOH from satellite observations of its drivers

We now apply satellite data from the 4 months corresponding
to the ATom campaign (August 2016, February 2017, Octo-
ber 2017, and May 2018) to the GBRT model to determine
TCOH fields across the tropics. More details about ATom as
well as evaluation of the GBRT model with ATom observa-
tions are in Sect. 5. We use the satellite observations listed
in Table 1, all of which have been averaged to the monthly
scale and to a 1◦× 1◦ horizontal resolution. We include only
grid boxes with observations for all GBRT model inputs and
where those observations are within the range of the corre-
sponding inputs from the training dataset. Because the satel-
lite inputs for most species exclude grid boxes with a cloud
fraction greater than approximately 30 %, the product pre-
sented here represents predominantly clear sky conditions.

The GBRT model and multi-satellite inputs yield TCOH
fields that are geophysically credible based on our current
understanding of OH photochemistry. Although the domain-

wide average changes little with season, with a minimum of
5.84× 1012 molec. cm−2 in May 2018 and a maximum of
6.35× 1012 molec. cm−2 in August 2016, the spatial distri-
bution varies widely among the 4 months (Fig. 4). In both
February 2017 and August 2016, TCOH minimizes in the
winter hemisphere, consistent with lower OH production due
to low insolation. The reverse is true for the summer hemi-
sphere. In addition, TCOH maximizes in regions with strong
continental outflow and along coastlines, regions likely to be
impacted by anthropogenic and biomass burning emissions
of OH drivers.

In general, TCOH from the multi-satellite product dif-
fers in both magnitude and distribution from the MERRA-
2 GMI simulation. For example, for February 2017, mean
MERRA-2 GMI TCOH is 6.96× 1012 molec. cm−2, 12 %
higher than the satellite product (Fig. S6). This is consis-
tent with the comparison to in situ observations discussed
in Sect. 3.1 where MERRA-2 GMI overestimates ATom ob-
servations by ∼ 20 % and underestimates CH4 lifetime, sug-
gesting that the satellite product is again of reasonable mag-
nitude. While understanding the satellite–model differences
in TCOH is beyond the scope of this work, we consider the
variety in TCOH spatial distributions generated by the GBRT
model to be promising. The difference between the satellite-
constrained product and MERRA-2 GMI lends some confi-
dence that the GBRT model is not overfit or “tied” to ge-
ographic determiners in the training dataset, but rather it is
sensitive to variations in the chemical and dynamical drivers
of OH. These results all suggest that the methodology pre-
sented here can produce a reasonable satellite TCOH prod-
uct in the tropics, with values and distributions independent
of the chemistry model used to create the GBRT model.
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Figure 3. Percent difference between TCOH predicted by the machine learning model and that from MERRA-2 GMI for August 2017, a
month and year omitted from the training dataset (a). A regression of the machine learning TCOH against MERRA-2 GMI for the same
month (b). The r2 of a linear, least squares regression, the normalized mean bias (NMB), and normalized root mean square error (NRMSE)
are also indicated.

Figure 4. TCOH calculated with the machine learning model using satellite inputs for the months of each ATom deployment: February
2017 (a), May 2018 (b), August 2016 (c), and October 2017 (d). The mean, domain-wide TCOH value in molec. cm−2 for each month is
also indicated.

5 Understanding and mitigating potential
challenges in using this methodology to constrain
TCOH

In this section, we outline possible limitations of the machine
learning methodology and the current observational network
of the GBRT model inputs and provide potential means to
mitigate these limitations where necessary. In Sect. 5.1, we
discuss the current lack of sufficient in situ observations to
thoroughly evaluate the methodology, highlighting this point
by validating the GBRT model with data from the ATom
campaign. In Sect. 5.2, we investigate the impacts of random
retrieval errors in satellite retrievals on the TCOH product,
while in Sect. 5.3, we evaluate the impacts on TCOH when
using different satellite retrievals as inputs.

5.1 Insufficient in situ observations for thorough
independent evaluation

While we demonstrated in Sect. 4.1 that TCOH calculated
with the GBRT model agrees closely with a hold-out set from
MERRA-2 GMI, it is also important to demonstrate that the
GBRT model can replicate observed TCOH from the actual
atmosphere. Because the satellite TCOH product shown in

Fig. 4 is monthly and at a 1◦× 1◦ resolution, however, there
are no observations with which to evaluate the product. We
can test the ability of the GBRT model to reproduce observed
TCOH from field campaigns, however, assuming there are
concomitant observations of the input species listed in Ta-
ble 1. The additional need for tropospheric column values of
many of these species severely limits the datasets available
for validation. To our knowledge, the ATom campaign is the
only source of the required inputs with enough observations
to attempt a limited validation.

During ATom (Thompson et al., 2022), scientists mea-
sured a suite of air quality and climate relevant trace
gases and aerosols throughout the atmosphere above the re-
mote Pacific and Atlantic. ATom took place in four parts:
ATom 1 (July–August 2016), ATom 2 (January–February
2017), ATom 3 (September–October 2017), and ATom 4
(April–May 2018). During each deployment, flights con-
sisted of a series of ascents and descents across all tropical
latitudes over the Pacific and Atlantic oceans. This allows
for the calculation of tropospheric column content of the ob-
served species and evaluation of the machine learning model
across most latitudes of our study domain and across all sea-
sons.
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To evaluate the GBRT model performance, we calculated
TCOH using a modified GBRT model and observations from
the ATom deployments as inputs. We then compared the val-
ues to the observed OH columns. To calculate the column
values from the observations, we averaged data into 25 hPa
pressure bins for each ATom profile. We filled in missing
data using a log-linear interpolation and then integrated the
column. Our analysis here includes only profiles with ob-
servations of all necessary species, which spanned at least
700 hPa, and where less than 25 % of the pressure bin val-
ues were interpolated. We also omitted any profiles that had
pressure bins with negative OH values. In addition, we re-
strict our analysis to latitudes within 25◦ of the Equator and
profiles conducted between 12:00 and 15:00 LST. Values for
total column O3, AOD, and SSTs, for which there were no
observations during ATom, were taken from the MERRA-2
GMI simulation from the grid box closest to the center of
the respective profile. Because ATom profiles did not span
the entire tropospheric column, we trained a separate GBRT
model where OH and all tropospheric column input vari-
ables were substituted with columns spanning 990–250 hPa,
the median range of ATom profiles. This allows for a more
direct comparison between observed and modeled TCOH.
The spatial distribution of the valid ATom columns and the
corresponding columns calculated with the GBRT model are
shown in Fig. S7.

The GBRT model captures the variability of the observed
TCOH, and, while there is a modest overall high bias, the
median normalized absolute error of 28.3 % is within obser-
vational uncertainty. When applied to all ATom deployments,
predicted TCOH is correlated with the observations with
an r2 of 0.67 and a mean bias of 1.14× 1012 molec. cm−2

(Fig. 5). Many of the data points agree within the combined
modeled and observational uncertainty. The r2 values for in-
dividual deployments are 0.88 for ATom 1, 0.73 for ATom 2,
and 0.78 for ATom 3 and 4. The level of agreement between
observed and predicted OH is comparable or better than that
of other methods to infer OH from space. For example, Pim-
lott et al. (2022) found an r of 0.78 (r2

= 0.61) when esti-
mating ATom OH using a steady-state approach, with r val-
ues ranging from 0.51 to 0.85 (r2 of 0.26 to 0.72) for the
different deployments. The level of agreement we show here
therefore demonstrates the validity of the machine learning
method to capture the variability of OH.

The source of the model–measurement disagreement, with
over- and underprediction at low and high column content
respectively, is unclear, although there are multiple poten-
tial error sources. For example, a typical profile taken during
ATom spanned 300–400 km in latitude, disconnecting the top
and bottom of the profile in space. This is in contrast to the
data used to train the model, which were vertical columns
over one location. This could lead to a degradation in model
performance when applied to ATom, since the columns are
not directly analogous to the training dataset. These effects
are likely limited because ATom observations are in the re-

Figure 5. Regression of TCOH observed from the ATom deploy-
ments against that predicted from the GBRT model. Error bars
represent the 2σ observational uncertainty as reported in Brune et
al. (2020) and the GBRT uncertainty described in Sect. 5.2. The r2

of a linear least squares fit and the mean bias are also shown.

mote atmosphere, where the spatial distribution of relevant
species is likely to be more homogeneous than over land.

Further, there is a known interference with the ATom NO2
observations, suggesting another possible contributor to dis-
agreement between measured and modeled OH. Because of
thermal degradation of NO2 reservoir species, such as or-
ganic nitrates and peroxyacetyl nitrate, in the instrument in-
let, ATom NO2 observations are likely biased high (Silvern et
al., 2018; Shah et al., 2023; Nault et al., 2015). To test the po-
tential impact of NO2 on the predicted OH columns, we ap-
plied the ATom observations to a model that omits NO2 as an
input. Removing NO2 increases the r2 to 0.74, decreases the
mean bias to 0.82×1012 molec. cm−2, and decreases the me-
dian normalized absolute error slightly to 25.7 % (Fig. S8).
These improvements in performance suggest that errors in
NO2 could be contributing to the measurement–model dif-
ferences. Omitting NO2 does, however, likely introduce ad-
ditional errors as NOx compounds are essential to OH pro-
duction in some regions of the atmosphere. When we apply
the hold-out set from MERRA-2 GMI to this model, for ex-
ample, the NRMSE increases by approximately 50 %, high-
lighting the importance of keeping NO2 as an input variable.

For more certain evaluation of the GBRT model with ob-
servations, greater certainty in the in situ NO2 observations
is needed. Although the in situ observations are insufficient
to evaluate the absolute accuracy of the product, the results
presented here demonstrate that a machine learning model
trained on data from a CTM simulation can capture TCOH
variability in the actual atmosphere and suggest that pre-
dicted OH columns agree with observations within instru-
mental uncertainty.
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5.2 Impacts of uncertainties in the satellite retrievals on
TCOH

In the remote atmosphere where HCHO and NO2 abun-
dances are low, retrieval uncertainty of an individual pixel
for both species can be on the order of 100 % and is often
reflective of the a priori (González Abad et al., 2015; Lam-
sal et al., 2021). Given the importance of these species to
the GBRT model as well as to OH chemistry, it is necessary
to determine how the propagation of the retrieval uncertain-
ties from these and other model inputs impacts the predicted
TCOH.

We determined the total uncertainty in TCOH from all in-
puts as well as the resultant uncertainty from each individ-
ual input for February 2017. First, we estimated an average
retrieval uncertainty for each input based on reported val-
ues in the retrieval files or from the literature (Table S1 in
the Supplement). We note that for NO2 and HCHO we use
a fit uncertainty for a single retrieval. Because we are us-
ing monthly averaged data at 1◦× 1◦ horizontal resolution,
this likely significantly overestimates the actual uncertainty
in these retrievals as the random error from individual pixels
will tend to cancel when averaged over such large spatial and
temporal scales. Our results are therefore an upper bound on
the estimated TCOH uncertainty.

Next, for each grid box and model input, we created a
Gaussian distribution of 2000 values with the modeled value
for February 2017 as the mean and the estimated uncertainty
as the standard deviation. For each input, we then ran the
GBRT model 2000 times to create a distribution of predicted
TCOH values for each grid box. The normalized uncertainty
in TCOH attributable to a given input is the ratio of the stan-
dard deviation of the resultant distribution divided by the
mean value. We repeated this process individually for all in-
puts. In addition, to estimate a total uncertainty in TCOH,
we varied all inputs simultaneously with the same Gaussian
distributions described above.

Uncertainty from the NO2 retrieval, and to a lesser extent
HCHO, dominates the total uncertainty in the TCOH prod-
uct but is of a magnitude comparable to that of in situ OH
observations. Median TCOH 1σ uncertainty resulting from
NO2 is 16.5 %, with maxima in the remote atmosphere in
regions where NO2 columns are low. Median uncertainty
in TCOH resulting from HCHO is 7 %, averaged over the
study domain, despite the large uncertainty in the HCHO re-
trieval itself. In contrast to NO2, uncertainties in TCOH re-
sulting from HCHO maximize in regions with higher HCHO
columns (Fig. 6). The magnitude of that uncertainty is likely
an overestimate as the actual retrieval uncertainty for HCHO
in these regions is significantly lower than the value as-
sumed for the error analysis. In comparison, median TCOH
uncertainties resulting from other inputs are 2.9 % or less
(Figs. S9 and S10). Total TCOH uncertainty is 16.6 % and is
dominated by the NO2 uncertainty. This uncertainty analysis
is in general agreement with the model feature importance

(Fig. S11), a measure of the relative importance of GBRT
model inputs, where HCHO and NO2 consistently have the
largest values of the satellite inputs.

These results demonstrate that the satellite retrieval inputs
to the machine learning model are of sufficient quality to
produce a meaningful TCOH data product when averaged
over large spatial and temporal scales. The 2σ uncertainty
in TCOH resulting from the uncertainties in these retrievals
is on the order of that reported for in situ OH observations
(Brune et al., 2020). As discussed earlier, this is also likely
an upper bound on the uncertainty from random retrieval er-
rors, and uncertainties could be reduced through further av-
eraging, although at the expense of reduced spatial and tem-
poral resolution. Improving the satellite retrievals of NO2
and HCHO in the remote atmosphere, using retrievals with
less noise over the remote atmosphere such as HCHO from
OMPS (González Abad et al., 2016), or incorporating data
from satellites with higher resolution, such as TROPOMI,
could also reduce the uncertainty in their retrievals and thus
in TCOH. As discussed in the next section, however, system-
atic biases between satellite retrievals can also lead to uncer-
tainties in the TCOH.

5.3 Sensitivity of TCOH to different satellite retrievals of
GBRT inputs

The satellite retrievals listed in Table 1 provide the benefit
of a long record, with data from most retrievals available
from at least 2005 to the present. Such a rich dataset would
allow for long-term trend analysis of TCOH. These instru-
ments are near the end of their life cycle, however, so it is
instructive to see how retrievals from newer satellites impact
the predicted TCOH from the GBRT model. In addition, al-
though these newer satellites, such as TROPOMI, have a sig-
nificantly shorter observational record than those in Table 1,
TROPOMI also has finer spatial resolution and the added ad-
vantage of providing retrievals for CO, NO2, O3, HCHO, and
H2O(v). Using retrievals of multiple species from the same
instrument could negate errors resulting from differences in
viewing geometry as well as from overpass time. Here, we in-
vestigate the effects of applying retrievals from TROPOMI to
the machine learning model and compare them to the results
from the product described in Sect. 4, highlighting poten-
tial impacts resulting from instrumental differences as well as
those resulting from differences in retrieval algorithms. The
results emphasize the need for thorough retrieval validation
in the remote atmosphere, particularly of NO2.

5.3.1 Description of TROPOMI and a modified GBRT
model

TROPOMI, a successor instrument to OMI, is a spectrome-
ter covering portions of the ultraviolet, visible, and infrared
spectrum (Veefkind et al., 2012). It is located on board the
Sentinel-5 Precursor satellite, which is polar orbiting and has
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Figure 6. Normalized 1σ uncertainty in the satellite TCOH product due to uncertainties in the HCHO (a) and NO2 (b) retrievals. The
combined uncertainty from all input species is shown in panel (c).

a local overpass time of approximately 13:30 LST. Horizon-
tal resolution for the month examined here (May 2018) is as
high as 7 km× 3.5 km at nadir. All TROPOMI retrievals used
here, unless otherwise indicated, are the reprocessed version-
1 products. We have gridded the Level-2 product for each
species to a 1◦× 1◦ resolution and averaged the data to the
monthly scale, applying the recommended quality flags and
filtering for cloud fraction greater than 30 %.

We use two different retrievals of TROPOMI NO2 for
this analysis. First, we use the KNMI (Royal Nether-
lands Meteorological Institute) NO2 retrieval (van Geffen et
al., 2020), which is based on the DOMINO (Dutch OMI
NO2 product) retrieval developed for the OMI instrument.
Wang et al. (2020) found that this retrieval was biased high
when compared to ship-based observations from a MAX-
DOAS instrument over the remote oceans, while Verhoelst
et al. (2021) found good agreement between the retrieval and
ground-based observations on Réunion. In addition, we use
the MINDS (Multi-Decadal Nitrogen Dioxide and Derived
Products from Satellites) retrieval, which uses the same al-
gorithm as for the OMI product described in Sect. 2 (Lamsal
et al., 2022). This retrieval has not been evaluated in the re-
mote tropics.

We also use TROPOMI retrievals of HCHO, H2O(v) col-
umn, total column O3, and CO. The HCHO retrieval (De
Smedt et al., 2018) was found to have a 30 % low bias
with respect to an OMI retrieval using the same algo-
rithm due to differences in cloud processing (De Smedt et
al., 2021). While evaluation in the remote tropics is lim-
ited, the TROPOMI retrieval does overestimate HCHO in
polluted regions (De Smedt et al., 2021) when compared to
ground-based observations. The TROPOMI H2O(v) (Chan et

al., 2022) retrieval has a slight dry bias with comparison to
other satellite products, while the total column O3 retrieval
(Garane et al., 2019) agrees within 0 %–1.5 % with ground-
based observations. Finally, the CO retrieval (Borsdorff et
al., 2019) agrees with MOPITT over the oceans within 3 %
on average (Martínez-Alonso et al., 2020). TROPOMI does
not have an equivalent retrieval of the AIRS H2O(v) layers.

To calculate TCOH using TROPOMI data, we trained a
separate machine learning model using all inputs from Ta-
ble 1 except the water vapor layers, for which there are no
TROPOMI retrievals. Removal of the layers from the ma-
chine learning model does not significantly degrade perfor-
mance. For example, for May 2017, removing the H2O(v)
layers from the model increases the NRMSE from 5.34 %
to 5.73 % when applying the GBRT model to the hold-out
set. For this new model, we then calculate TCOH using
TROPOMI data, including the KNMI NO2 retrieval. For
SSTs and AOD, we use the MUR and MODIS products re-
spectively. While TROPOMI does have an aerosol product,
the UV aerosol index, the corresponding output from the
MERRA-2 GMI simulation, is unavailable. We refer to this
TCOH as the TROPOMI-KNMI product. We have also cal-
culated TCOH using the satellite retrievals in Table 1, except
for the water vapor layers, using this GBRT model, and re-
fer to that as the OMI–MOPITT–AIRS product. We restrict
our analysis to May 2018, the only month for which we have
TROPOMI water vapor data.

5.3.2 TROPOMI data applied to the GBRT model

TCOH from the TROPOMI-KNMI product is higher than
that from the OMI–MOPITT–AIRS product for May 2018.
Figure 7 shows TCOH calculated from the TROPOMI-
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KNMI product as well as the percent difference between
the two products. While there is modest correlation between
the two (r2

= 0.63), the TROPOMI product is 27.6 % higher
than the OMI–MOPITT–AIRS product, with higher values
across almost the entire domain. Differences between the
products are most pronounced in the Indian Ocean and off
the coasts of Indonesia and the Philippines.

In general, observations from TROPOMI agree with those
from the satellites in Table 1, with the exception of NO2
and HCHO. Ozone, H2O(v), and CO from TROPOMI are
highly correlated (r2 of 0.85 or higher) and agree within 10 %
on average (Fig. S12) with their respective retrievals from
OMI, MOPITT, and AIRS. On the other hand, TROPOMI-
KNMI NO2 is systematically higher (145 % on average),
and TROPOMI HCHO is 20 % lower than their correspond-
ing OMI retrievals. The higher TCOH from the TROPOMI
product is consistent with the increase in NO2, which would
lead to higher secondary production of OH. Further, while
TROPOMI-KNMI NO2 is modestly correlated with OMI
NO2 (r2

= 0.61), TROPOMI and OMI HCHO are not cor-
related (r2

= 0.23), highlighting the difficulty of the HCHO
retrieval. Note that we are not seeking to determine which re-
trieval, if any, is more accurate. We are highlighting the dif-
ferences to emphasize the impact that systematic differences
in retrieval magnitudes of GBRT model inputs can have on
the resultant TCOH.

NO2 drives the differences between the two TCOH prod-
ucts. To determine the impacts of the different TROPOMI
inputs on the TCOH product, we individually swapped each
TROPOMI input into the OMI–MOPITT–AIRS product, re-
placing the corresponding input from Table 1. We then de-
termined the difference in TCOH from the OMI–MOPITT–
AIRS product that does not include TROPOMI. While this
method will not yield the exact contribution from a partic-
ular retrieval because of the non-linear nature of OH chem-
istry, it does yield information about the relative importance
of each species. Swapping in TROPOMI CO, H2O(v), and
O3 changed TCOH by less than 2 %, while using TROPOMI
HCHO increased TCOH by 3 %. In contrast, TROPOMI NO2
increased TCOH by 29 %, showing that the higher TCOH in
the TROPOMI product is driven by differences in NO2.

The increased TCOH in the TROPOMI product likely
results from a combination of differences in the NO2 re-
trieval algorithm as well as instrumental differences. Com-
parison of the KNMI and MINDS retrievals illustrates this
point. When compared to OMI, the MINDS NO2 retrieval
is 58 % higher for May 2018, as compared to 145 % higher
for the KNMI retrieval. The closer agreement is unsurpris-
ing since the MINDS NO2 uses the same retrieval algo-
rithm as for OMI. Substituting the MINDS NO2 as an in-
put to the TROPOMI product (TROPOMI-MINDS product)
reduces the difference with respect to the OMI–MOPITT–
AIRS product to 18 % (Fig. S13). While this is an improve-
ment in agreement, the differences in TCOH as well as the
lack of change in r2 value still suggest that differences be-

tween OMI and TROPOMI unrelated to the retrieval algo-
rithm account for some of the discrepancy. In addition, the
training dataset does not take TROPOMI averaging kernels
and shape factors into account, which could also contribute
to the observed differences.

The results here demonstrate the sensitivity of the method-
ology to any systematic bias in the input retrievals. As with
the random error analysis, the level of uncertainty introduced
by these biases is low enough to allow for a meaningful OH
product. Despite these differences, the methodology to deter-
mine TCOH using machine learning that we have presented
here still captures the variability in TCOH, consistent with
the ATom evaluation outlined in Sect. 5.1. To reduce the un-
certainty of TCOH, better evaluation of NO2 in the remote
atmosphere is needed to determine which retrievals, if any,
are accurate.

6 Discussion and recommendations for future
observations

The method of estimating clear-sky TCOH presented here
has the potential to increase our understanding of the atmo-
spheric oxidation capacity. Because of the long record of ob-
servations from MOPITT, OMI, AIRS, and MODIS, we can
calculate tropical TCOH from 2005 to the present, and since
the methodology is not constrained to a particular satellite,
newer satellite missions could extend the dataset beyond the
end of these instruments’ lifetimes. In addition, this method-
ology will provide sub-hemispheric information on OH vari-
ability, supplementing information available from MCF in-
versions.

The methodology could be expanded to the extratropics
and over land, allowing for global constraints on OH. Ex-
pansion over land will likely require additional satellite re-
trievals, like that of isoprene (Wells et al., 2020), in regions
with more complex VOC chemistry than in the remote atmo-
sphere. A higher-resolution TCOH product over land would
also likely be feasible because of the increased signal to noise
of the NO2 and HCHO retrievals. Expanding this product
beyond the tropics could increase understanding of global
CH4, CO, and VOC trends and variability and allow for a
wider range of satellite retrievals as inputs. For example, cur-
rent and upcoming geostationary air quality satellites such
as Sentinel 4, TEMPO (Tropospheric Emissions: Monitoring
of Pollution), and GEMS (Geostationary Environment Mon-
itoring Spectrometer) could provide retrievals of most of the
necessary inputs to the machine learning model, allowing for
the understanding of diurnal variability in TCOH and poten-
tially in the diurnal variability of ozone production (Zhu et
al., 2022a).

A similar methodology could likely be used to determine
OH at different layers of the atmosphere. Because CH4 loss
is not evenly distributed throughout the tropospheric column,
vertically resolved OH would better help inform this pro-
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Figure 7. TCOH for May 2018 determined using TROPOMI inputs, including the KNMI NO2 retrieval (a). The difference between the
TROPOMI and multi-satellite product is shown in panel (b). Panel (c) shows the regression of TCOH calculated from TROPOMI against
that calculated from retrievals from MOPITT, OMI, and AIRS as well as the percent difference between the two TCOH products.

cess. Vertically resolved OH could also help understand dif-
ferences in OH drivers in the upper and lower troposphere
(Spivakovsky et al., 1990; Lelieveld et al., 2016), which can
often be decoupled from the column. While column inputs,
such as those discussed here, could be used, the inclusion
of vertically resolved satellite retrievals, such as the AIRS
H2O(v) layers, would provide additional information. Tropo-
spheric O3 at different atmospheric layers, such as that previ-
ously provided by the TES satellite, could also be invaluable
here, as O3 is a large driver of primary OH production.

Satellite-derived OH would also a provide a much-needed,
observational constraint on OH variability in global chem-
istry models. Because the methodology can capture variabil-
ity in TCOH of both observations and 3-dimensional model
output, TCOH trends from a satellite-constrained product
could be used to evaluate modeled trends and as well as the
spatial variability resulting from events like ENSO. While
the satellite-derived OH could not explicitly indicate the
cause of differences, the spatial distribution of the differ-
ences as well as differences in observed and modeled ma-
chine learning model inputs could indicate potential dynam-
ical or emission sources of error in the 3D model.

Further, the combination of the satellite-derived OH and
the machine learning model could help identify the impacts
of any diagnosed errors in emissions inventories as well as
the impacts of unexpected events, such as COVID-19-related
shutdowns, on TCOH. For example, if there are significant
discrepancies between observed and modeled NO2 in a spe-
cific region of the atmosphere, the satellite NO2 could be
scaled to more closely match the 3D model values and then
be input into the machine learning model. The difference in
TCOH would then indicate the relative impact of the model
error. This would serve as a computationally efficient com-

plement to other methodologies constraining models with
observations (e.g., Miyazaki et al., 2020, 2021) to identify
the impacts of these errors on the atmospheric oxidation ca-
pacity. A similar methodology could be used for unexpected
events that significantly impact emissions of OH drivers, al-
lowing for quick determination of their potential impacts on
the atmospheric oxidation capacity before emissions inven-
tories could be revised.

While we have shown that the methodology captures the
variability of observed OH and generally agrees with obser-
vations within measurement uncertainty, it is unclear whether
differences result from GBRT model deficiencies or struc-
tural differences between the in situ observations and the
training dataset. Additional field campaigns with observa-
tions of OH and the GBRT model inputs would allow for a
more thorough evaluation of both the OH product and the
methodology itself. Such a field campaign would need to
provide complete tropospheric columns of all species and
cover less horizontal distance than the ATom profiles (e.g.,
from spiral flight patterns). In situ observations of NO2 with-
out significant interference from NOx reservoir species are
also needed to reduce uncertainty. Alternatively, NO2 and
other species could be measured through aircraft-based re-
mote sensing. Finally, repeated sampling over the same lo-
cations for multiple days within a defined area would allow
for meaningful statistical analysis while also allowing for the
comparison of TCOH columns calculated from satellite ob-
servations.

Finally, accuracy of the TCOH product is dependent on
the accuracy of the satellite retrievals input into the ma-
chine learning model, with the NO2 retrieval having the
largest effect. To reduce the uncertainty of the TCOH prod-
uct, more information about the accuracy of individual NO2
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retrievals is required. Currently, there is little validation of
OMI and TROPOMI NO2 retrievals in the remote, tropical
atmosphere, so it is difficult to assess which retrievals, if any,
are correct. Recent efforts, such as the QA4ECV (Quality
Assurance for the Essential Climate Variables), to improve
NO2 retrieval algorithms have reduced uncertainty, particu-
larly over land (Boersma et al., 2018), although it is unclear
how the accuracy of these retrievals translates to the remote
tropics as validation data are still extremely limited. Even
retrievals of TROPOMI and OMI made with the same algo-
rithm show differences, suggesting that instrumental differ-
ences could also affect the results. Future satellite missions
should focus on trying to reduce the uncertainty in NO2 re-
trievals, particularly in the remote atmosphere, both through
improvements in instrument design and algorithm develop-
ment.

Data availability. Output from the MERRA-2 GMI sim-
ulation is publicly available at https://acd-ext.gsfc.nasa.
gov/Projects/GEOSCCM/MERRA2GMI/ (NASA Goddard
Space Flight Center, 2023). Satellite retrievals for the
OMI-MOPITT-AIRS product can be found at: OMI HCHO
(https://doi.org/10.5067/Aura/OMI/DATA3010) (Chance, 2019),
OMI O3 (https://doi.org/10.5067/Aura/OMI/DATA3002) (Bhartia,
2012), OMI NO2 (https://doi.org/10.5067/Aura/OMI/DATA3007)
(Krotkov et al., 2019), AIRS H2O
(https://doi.org/10.5067/Aqua/AIRS/DATA303) (AIRS
Science Team and Teixeira, 2013), MODIS AOD
(https://doi.org/10.5067/MODIS/MYD08_M3.061) (Platnick,
2015), MUR SST (https://doi.org/10.5067/GHM25-4FJ42)
(JPL MUR MEaSUREs Project, 2019), and MOPITT CO
(https://doi.org/10.5067/TERRA/MOPITT/MOP03JM_L3.008)
(NASA LARC, 2000). Satellite retrievals for the
TROPOMI product can be found at: MINDS NO2
(https://doi.org/10.5067/MEASURES/MINDS/DATA203) (Lamsal
et al., 2022), KNMI NO2 (https://doi.org/10.5270/S5P-s4ljg54)
(Copernicus Sentinel-5P, 2018c), CO (https://doi.org/10.5270/S5P-
1hkp7rp) (Copernicus Sentinel-5P, 2018a), and HCHO
(https://doi.org/10.5270/S5P-tjlxfd2) (Copernicus Sentinel-
5P, 2018b). Data from the ATom campaign are located at
https://doi.org/10.3334/ORNLDAAC/1925 (Wofsy et al., 2021).
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